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Preface

This Policy was developed as part of the continuing work of the Standing Committee on
Highways. The Committee, then titled the Committee on Planning and Design Policies, was
established in 1937 to formulate and recommend highway engineering policies. This Committee
has developed A Policy on Geometric Design of Rural Highways, 1954 and 1965 editions; A
Policy on Arterial Highways in Urban Areas, 1957; A Policy on Design of Urban Highways and
Arterial Streets, 1973;  Geometric Design Standards for Highways Other Than Freeways, 1969;
A Policy on Geometric Design of Highways and Streets, 1984, 1990, and 1994; A Policy on
Design Standards—Interstate System, 1956, 1967, and 1991;  and a number of other AASHO and
AASHTO policy and “guide” publications.

An AASHTO publication is typically developed through the following steps:  (1) The
Committee selects subjects and broad outlines of material to be covered. (2) The appropriate
subcommittee and its task forces, in this case, the Subcommittee on Design and its Task Force on
Geometric Design, assemble and analyze relevant data and prepare a tentative draft. Working
meetings are held and revised drafts are prepared, as necessary, and reviewed by the
Subcommittee, until agreement is reached. (3) The manuscript is then submitted for approval by
the Standing Committee on Highways and then the Executive Committee. Standards and policies
must be adopted by a two-thirds vote by the Member Departments before publication. During the
developmental process, comments are sought and considered from all the states, the Federal
Highway Administration, and representatives of the American Public Works Association, the
National Association of County Engineers, the National League of Cities, and other interested
parties.
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Foreword

As highway designers, highway engineers strive to provide for the needs of highway users
while maintaining the integrity of the environment. Unique combinations of design requirements
that are often conflicting result in unique solutions to the design problems. The guidance supplied
by this text, A Policy on Geometric Design of Highways and Streets, is based on established
practices and is supplemented by recent research. This text is also intended to form a
comprehensive reference manual for assistance in administrative, planning, and educational
efforts pertaining to design formulation.

Design values are presented in this document in both metric and U.S. customary units and
were developed independently within each system. The relationship between the metric and U.S.
customary values is neither an exact (soft) conversion nor a completely rationalized (hard)
conversion. The metric values are those that would have been used had the policy been presented
exclusively in metric units; the U.S. customary values are those that would have been used if the
policy had been presented exclusively in U.S. customary units. Therefore, the user is advised to
work entirely in one system and not attempt to convert directly between the two.

The fact that new design values are presented herein does not imply that existing streets and
highways are unsafe, nor does it mandate the initiation of improvement projects. This publication
is not intended as a policy for resurfacing, restoration, or rehabilitation (3R) projects. For projects
of this type, where major revisions to horizontal or vertical curvature are not necessary or
practical, existing design values may be retained. Specific site investigations and crash history
analysis often indicate that the existing design features are performing in a satisfactory manner.
The cost of full reconstruction for these facilities, particularly where major realignment is not
needed, will often not be justified. Resurfacing, restoration, and rehabilitation projects enable
highway agencies to improve highway safety by selectively upgrading existing highway and
roadside features without the cost of full reconstruction. When designing 3R projects, the
designer should refer to TRB Special Report 214, Designing Safer Roads:  Practices for
Resurfacing, Restoration, and Rehabilitation and related publications for guidance.

The intent of this policy is to provide guidance to the designer by referencing a
recommended range of values for critical dimensions. It is not intended to be a detailed design
manual that could supercede the need for the application of sound principles by the
knowledgeable design professional. Sufficient flexibility is permitted to encourage independent
designs tailored to particular situations. Minimum values are either given or implied by the lower
value in a given range of values. The larger values within the ranges will normally be used where
the social, economic, and environmental (S.E.E.) impacts are not critical.

The highway, vehicle, and individual users are all integral parts of transportation safety and
efficiency. While this document primarily addresses geometric design issues, a properly equipped
and maintained vehicle and reasonable and prudent performance by the user are also necessary
for safe and efficient operation of the transportation facility.
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Emphasis has been placed on the joint use of transportation corridors by pedestrians,
cyclists, and public transit vehicles. Designers should recognize the implications of this sharing of
the transportation corridors and are encouraged to consider not only vehicular movement, but also
movement of people, distribution of goods, and provision of essential services. A more
comprehensive transportation program is thereby emphasized.

Cost-effective design is also emphasized. The traditional procedure of comparing highway-
user benefits with costs has been expanded to reflect the needs of non-users and the environment.
Although adding complexity to the analysis, this broader approach also takes into account both
the need for a given project and the relative priorities among various projects. The results of this
approach may need to be modified to meet the needs-versus-funds problems that highway
administrators face. The goal of cost-effective design is not merely to give priority to the most
beneficial individual projects but to provide the most benefits to the highway system of which
each project is a part.

Most of the technical material that follows is detailed or descriptive design information.
Design guidelines are included for freeways, arterials, collectors, and local roads, in both urban
and rural locations, paralleling the functional classification used in highway planning. The book
is organized into functional chapters to stress the relationship between highway design and
highway function. An explanation of functional classification is included in Chapter 1.

These guidelines are intended to provide operation efficiency, comfort, safety, and
convenience for the motorist. The design concepts presented herein were also developed with
consideration for environmental quality. The effects of the various environmental impacts can
and should be mitigated by thoughtful design processes. This principle, coupled with that of
aesthetic consistency with the surrounding terrain and urban setting, is intended to produce
highways that are safe and efficient for users, acceptable to non-users, and in harmony with the
environment.

This publication supersedes the 1994 AASHTO publication of the same name. Because the
concepts presented could not be completely covered in one book, references to additional
literature are given at the end of each chapter.
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CHAPTER 1
HIGHWAY FUNCTIONS

SYSTEMS AND CLASSIFICATIONS

The classification of highways into different operational systems, functional classes, or
geometric types is necessary for communication among engineers, administrators, and the general
public. Different classification schemes have been applied for different purposes in different rural
and urban regions. Classification of highways by design types based on the major geometric
features (e.g., freeways and conventional streets and highways) is the most helpful one for
highway location and design procedures. Classification by route numbering (e.g., U.S., State,
County) is the most helpful for traffic operations. Administrative classification (e.g., National
Highway System or Non-National Highway System) is used to denote the levels of government
responsible for, and the method of financing, highway facilities. Functional classification, the
grouping of highways by the character of service they provide, was developed for transportation
planning purposes. Comprehensive transportation planning, an integral part of total economic and
social development, uses functional classification as an important planning tool. The emergence
of functional classification as the predominant method of grouping highways is consistent with
the policies contained in this publication.

THE CONCEPT OF FUNCTIONAL CLASSIFICATION

This section introduces the basic concepts needed for understanding the functional
classification of highway facilities and systems.

Hierarchies of Movements and Components

A complete functional design system provides a series of distinct travel movements. The six
recognizable stages in most trips include main movement, transition, distribution, collection,
access, and termination. For example, Exhibit 1-1 shows a hypothetical highway trip using a
freeway, where the main movement of vehicles is uninterrupted, high-speed flow. When
approaching destinations from the freeway, vehicles reduce speed on freeway ramps, which act as
transition roadways. The vehicles then enter moderate-speed arterials (distributor facilities) that
bring them nearer to the vicinity of their destination neighborhoods. They next enter collector
roads that penetrate neighborhoods. The vehicles finally enter local access roads that provide
direct approaches to individual residences or other terminations. At their destinations the vehicles
are parked at an appropriate terminal facility.

Each of the six stages of a typical trip is handled by a separate facility designed specifically
for its function. Because the movement hierarchy is based on the total amount of traffic volume,
freeway travel is generally highest in the movement hierarchy, followed by distributor arterial
travel, which is in turn higher in the movement hierarchy than travel on collectors and local
access routes.
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Exhibit 1-1. Hierarchy of Movement

Although many trips can be subdivided into all of the six recognizable stages, intermediate
facilities are not always needed. The complete hierarchy of circulation facilities relates especially
to conditions of low-density suburban development, where traffic flows are cumulative on
successive elements of the system. However, it sometimes is desirable to reduce the number of
components in the chain. For instance, a large single traffic generator may fill one or more lanes
of a freeway during certain periods. In this situation, it is expedient to lead traffic directly onto a
freeway ramp without introducing arterial facilities that unnecessarily mix already-concentrated
traffic flows with additional vehicles. This deletion of intermediate facilities does not eliminate
the functional need for the remaining parts of the flow hierarchy or the functional design
components, although it may change their physical characters. The order of movement is still
identifiable.

The failure to recognize and accommodate by suitable design each of the different trip stages
of the movement hierarchy is a prominent cause of highway obsolescence. Conflicts and
congestion occur at interfaces between public highways and private traffic-generating facilities
when the functional transitions are inadequate. Examples are commercial driveways that lead
directly from a relatively high-speed arterial into a parking aisle without intermediate provisions
for transition deceleration and arterial distribution or, more seriously, freeway ramps that lead
directly into or from large traffic generators such as major shopping centers.
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Inadequate acceptance capacity of the distributor arterial or internal circulation deficiencies
within the traffic absorber may lead to traffic backing up onto the freeway. Successful internal
design that provides facilities to accommodate all the intermediate functions between the high-
speed freeway and the terminal parking facility will alleviate such a situation.

In the case of the freeway leading to a large traffic generator, deceleration from rapid
movement on the freeway occurs on the exit ramp. Distribution to various parking areas is then
accomplished by primary distribution-type roads or lanes within the parking facility. These roads
or lanes supplant the distributor arterial function. Collector-type roads or lanes within the parking
facility may then deliver segments of the entering flow to the parking bays. The parking aisle, in
leading to individual parking space terminals, then becomes the equivalent of an access street.
Thus, the principal functions within the hierarchical movement system are recognizable. In
addition, each functional category also is related to a range of vehicle speeds.

The same principles of design are also relevant to terminal facilities that adjoin distributor
arterials or collectors. The functional design of the facility includes each movement stage, with
internal circulation in the terminal design to accommodate the order of movement. The need to
design for all stages of the movement hierarchy varies with the size of the traffic generator. For
relatively small generators, two or more stages may be accommodated on the same internal
facility. For larger traffic generators, each movement stage should have a separate functional
facility.

To determine the number of design components needed, the customary volumes of traffic
handled by public streets of different functional categories can be compared. The volume range
on private internal facilities can be related to the comparable range on public streets. These
volumes may not be directly comparable, inasmuch as the physical space available within a
private facility is smaller and the operational criteria are necessarily quite different. However, the
same principles of flow specialization and movement hierarchy can be applied.

Some further examples may demonstrate how the principles of movement hierarchy are
related to a logical system of classification of traffic generation intensity. At the highest practical
level of traffic generation, a single generator fills an entire freeway, and for this condition,
intermediate public streets could not be inserted between the generator and the freeway, so the
various movement stages should be accommodated internally with appropriate design features. At
the next level of traffic generation a single traffic generator could fill a single freeway lane. It is
then appropriate to construct a freeway ramp for the exclusive use of the generator without
intervening public streets. At still smaller volumes it becomes desirable to combine the traffic
from several generators with additional traffic before the flow arrives at a freeway entrance ramp.
The road performing this function then becomes a collector facility, accumulating these small
flows until a traffic volume that will fill the freeway ramp is reached.

Similar principles can be applied at the distributor arterial level of service. If a given traffic
generator is of sufficient size, an exclusive intersection driveway for that generator is justified. In
other cases an intermediate collector street should combine smaller traffic flows until they reach a
volume that warrants an intersection along the distributor. The same theory can be applied with
regard to the criteria for direct access to the collector street. A moderately sized traffic generator
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usually warrants a direct connection to the collector without an intermediate access street;
however, in a district of single-family residences a local access street should assemble the traffic
from a group of residences and lead it into a collector street at a single point of access. In
practice, direct access to arterials and collectors should be provided from commercial and
residential properties, particularly in established neighborhoods.

In short, each element of the functional hierarchy can serve as a collecting facility for the
next higher element, but an element should be present only where the intermediate collection is
needed to satisfy the spacing needs and traffic volume demands of the next higher facility. By
defining the spacing needs and traffic volume demands for a system element, it is possible to
determine which cases should use the full system and in which cases intermediate elements may
be bypassed.

Functional Relationships

Functional classification thus groups streets and highways according to the character of
service they are intended to provide. This classification recognizes that individual roads and
streets do not serve travel independently. Rather, most travel involves movement through
networks of roads and can be categorized relative to such networks in a logical and efficient
manner. Thus, functional classification of roads and streets is also consistent with categorization
of travel.

A schematic illustration of this basic idea is shown in Exhibit 1-2. In Exhibit 1-2A, lines of
travel desire are straight lines connecting trip origins and destinations (circles). The relative
widths of the lines indicate the relative amounts of travel desire. The relative sizes of the circles
indicate the relative trip generating and attracting power of the places shown. Because it is
impractical to provide direct-line connections for every desire line, trips should be channelized on

Exhibit 1-2. Channelization of Trips
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a limited road network in the manner shown in Exhibit 1-2B. Heavy travel movements are
directly served or nearly so the smaller movements are channeled into somewhat indirect paths.
The facilities in Exhibit 1-2 are labeled local access, collector, and arterial, which are terms that
describe their functional relationships. In this scheme the functional hierarchy is also seen to be
related to the hierarchy of trip distances served by the network.

A more complete illustration of a functionally classified rural network is shown in
Exhibit 1-3. The arterial highways generally provide direct service between cities and larger
towns, which generate and attract a large proportion of the relatively longer trips. Roads of the
intermediate functional category (collectors) serve small towns directly, connecting them to the
arterial network. Roads of this category collect traffic from the local roads, which serve
individual farms and other rural land uses or distribute traffic to these local roads from the
arterials.

Exhibit 1-3. Schematic Illustration of a Functionally Classified Rural
Highway Network

Although this example has a rural setting, the same basic concepts also apply in urban and
suburban areas. A similar hierarchy of systems can be defined; however, because of the high
intensity of land use and travel, specific travel generation centers are more difficult to identify. In
urban and suburban areas additional considerations, such as the spacing of intersections, become
more important in defining a logical and efficient network. A schematic illustration of a
functionally classified suburban street network is shown in Exhibit 1-4.
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Exhibit 1-4. Schematic Illustration of a Portion of a Suburban Street Network

Access Needs and Controls

The two major considerations in classifying highway and street networks functionally are
access and mobility. The conflict between serving through movement and providing access to a
dispersed pattern of trip origins and destinations necessitates the differences and gradations in the
various functional types. Regulated limitation of access is needed on arterials to enhance their
primary function of mobility.

Conversely, the primary function of local roads and streets is to provide access
(implementation of which causes a limitation of mobility). The extent and degree of access
control is thus a significant factor in defining the functional category of a street or highway.

Allied to the idea of traffic categorization is the dual role that the highway and street
network plays in providing (1) access to property and (2) travel mobility. Access is a fixed need
for every area served by the highway system. Mobility is provided at varying levels of service.
Mobility can incorporate several qualitative elements, such as riding comfort and absence of
speed changes, but the most basic factor is operating speed or trip travel time.

Exhibit 1-2 shows that the concept of traffic categorization leads logically not only to a
functional hierarchy of road classes but also to a similar hierarchy of relative travel distances
served by these road classes. The hierarchy of travel distances can be related logically to
functional specialization in meeting the property access and travel mobility needs. Local rural
facilities emphasize the land access function. Arterials for main movement or distribution
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emphasize the high level of mobility for through movement. Collectors offer approximately
balanced service for both functions. This scheme is illustrated conceptually in Exhibit 1-5.

Further discussion of the various degrees of access control appropriate to street and highway
development is provided in the section on “Access Control and Access Management” in
Chapter 2.

Exhibit 1-5. Relationship of Functionally Classified Systems in Serving
Traffic Mobility and Land Access

FUNCTIONAL SYSTEM CHARACTERISTICS

This section contains definitions and characteristics of highway facilities in urban and rural
settings based on their functional classifications. It presents information, in revised form, from the
Federal Highway Administration publication Highway Functional Classification: Concepts,
Criteria, and Procedures (1).

Definitions of Urban and Rural Areas

Urban and rural areas have fundamentally different characteristics with regard to density and
types of land use, density of street and highway networks, nature of travel patterns, and the way
in which these elements are related. Consequently, urban and rural functional systems are
classified separately.
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Urban areas are those places within boundaries set by the responsible State and local
officials having a population of 5,000 or more. Urban areas are further subdivided into urbanized
areas (population of 50,000 and over) and small urban areas (population between 5,000 and
50,000). For design purposes, the population forecast for the design year should be used. (For
legal definition of urban areas, see Section 101 of Title 23, U.S. Code.)

Rural areas are those areas outside the boundaries of urban areas.

Functional Categories

The roads making up the functional systems differ for urban and rural areas. The hierarchy
of the functional systems consists of principal arterials (for main movement), minor arterials
(distributors), collectors, and local roads and streets; however, in urban areas there are relatively
more arterials with further functional subdivisions of the arterial category whereas in rural areas
there are relatively more collectors with further functional subdivisions of the collector category.

Functional Systems for Rural Areas

Rural roads consist of facilities outside of urban areas. The names provided for the
recognizable systems are principal arterials (roads), minor arterials (roads), major and minor
collectors (roads), and local roads.

Rural Principal Arterial System

The rural principal arterial system consists of a network of routes with the following service
characteristics:

1. Corridor movement with trip length and density suitable for substantial statewide or
interstate travel.

2. Movements between all, or virtually all, urban areas with populations over 50,000 and a
large majority of those with populations over 25,000.

3. Integrated movement without stub connections except where unusual geographic or
traffic flow conditions dictate otherwise (e.g., international boundary connections or
connections to coastal cities).

In the more densely populated states, this class of highway includes most (but not all)
heavily traveled routes that might warrant multilane improvements in the majority of states; the
principal arterial system includes most (if not all) existing rural freeways.

The principal arterial system is stratified into the following two design types: (1) freeways
and (2) other principal arterials.
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Rural Minor Arterial System

The rural minor arterial road system, in conjunction with the rural principal arterial system,
forms a network with the following service characteristics:

1. Linkage of cities, larger towns, and other traffic generators (such as major resort areas)
that are capable of attracting travel over similarly long distances.

2. Integrated interstate and intercounty service.

3. Internal spacing consistent with population density, so that all developed areas of the
state are within reasonable distances of arterial highways.

4. Corridor movements consistent with items (1) through (3) with trip lengths and travel
densities greater than those predominantly served by rural collector or local systems.

Minor arterials therefore constitute routes, the design of which should be expected to provide
for relatively high travel speeds and minimum interference to through movement.

Rural Collector System

The rural collector routes generally serve travel of primarily intracounty rather than
statewide importance and constitute those routes on which (regardless of traffic volume)
predominant travel distances are shorter than on arterial routes. Consequently, more moderate
speeds may be typical. To define rural collectors more clearly, this system is subclassified
according to the following criteria:

• Major Collector Roads. These routes (1) serve county seats not on arterial routes, larger
towns not directly served by the higher systems, and other traffic generators of
equivalent intracounty importance, such as consolidated schools, shipping points,
county parks, and important mining and agricultural areas; (2) link these places with
nearby larger towns or cities, or with routes of higher classifications; and (3) serve the
more important intracounty travel corridors.

• Minor Collector Roads. These routes should (1) be spaced at intervals consistent with
population density to accumulate traffic from local roads and bring all developed areas
within reasonable distances of collector roads; (2) provide service to the remaining
smaller communities; and (3) link the locally important traffic generators with their
rural hinterland.

Rural Local Road System

The rural local road system, in comparison to collectors and arterial systems, primarily
provides access to land adjacent to the collector network and serves travel over relatively short
distances. The local road system constitutes all rural roads not classified as principal arterials,
minor arterials, or collector roads.
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Extent of Rural Systems

The functional criteria for road systems have been expressed herein primarily in qualitative
rather than quantitative terms. Because of varying geographic conditions (e.g., population
densities, spacing between and sizes of cities, and densities and patterns of road networks),
criteria on sizes of population centers, trip lengths, traffic volumes, and route spacings do not
apply to all systems in all States. However, the results of classification studies conducted in many
States show considerable consistency (when expressed in percentages of the total length of rural
roads) in the relative extents of the functional systems.

Highway systems developed by using these criteria are generally expected, in all States
except Alaska and Hawaii, to fall within the percentage ranges shown in Exhibit 1-6. The higher
values of the ranges given in Exhibit 1-6 apply to States having less extensive total road networks
relative to the population density. In States having more extensive total road networks relative to
the population density, the lower values are applicable. The range of percentages of rural
collectors represents the total length of both major and minor collector roads and applies to the
statewide rural roadway totals the percentages in particular counties may vary considerably from
the statewide average. Areas having an extensive regular grid pattern of roads usually have a
smaller percentage of collectors than areas within which geographic conditions have imposed a
restricted or less regular pattern of road development.

Systems Percentage of Total Rural Road Length

Principal arterial system 2–4%
Principal arterial plus minor arterial system 6–12%, with most States falling in 7–10% range

Collector road 20–25%
Local road system 65–75%

Exhibit 1-6. Typical Distribution of Rural Functional Systems

Functional Highway Systems in Urbanized Areas

The four functional highway systems for urbanized areas are urban principal arterials
(streets), minor arterials (streets), collectors (streets), and local streets. The differences in the
nature and intensity of development in rural and urban areas warrant corresponding differences in
urban system characteristics relative to the correspondingly named rural systems.

Urban Principal Arterial System

In every urban environment, one system of streets and highways can be identified as
unusually significant in terms of the nature and composition of travel it serves. In small urban
areas (population under 50,000), these facilities may be very limited in number and extent, and
their importance may be derived primarily from the service provided to through travel. In
urbanized areas, their importance also derives from service to rurally oriented traffic, but equally
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or even more importantly, from service for major circulation movements within these urbanized
areas.

The urban principal arterial system serves the major centers of activity of urbanized areas,
the highest traffic volume corridors, and the longest trip desires and carries a high proportion of
the total urban area travel even though it constitutes a relatively small percentage of the total
roadway network. The system should be integrated both internally and between major rural
connections.

The principal arterial system carries most of the trips entering and leaving the urban area, as
well as most of the through movements bypassing the central city. In addition, significant intra-
area travel, such as between central business districts and outlying residential areas, between
major inner-city communities, and between major suburban centers, is served by this class of
facility. Frequently, the principal arterial system carries important intra-urban as well as intercity
bus routes. Finally, in urbanized areas, this system provides continuity for all rural arterials that
intercept the urban boundary.

Because of the nature of the travel served by the principal arterial system, almost all fully
and partially controlled access facilities are usually part of this functional class. However, this
system is not restricted to controlled-access routes. To preserve the identification of controlled-
access facilities, the principal arterial system should be stratified as follows: (1) interstate,
(2) other freeways, and (3) other principal arterials (with partial or no control of access).

The spacing of urban principal arterials is closely related to the trip-end density
characteristics of particular portions of the urban areas. Although no firm spacing rule applies in
all or even in most circumstances, the spacing between principal arterials (in larger urban areas)
may vary from less than 1.6 km [1 mi] in the highly developed central business areas to 8 km [5
mi] or more in the sparsely developed urban fringes.

For principal arterials, service to abutting land is subordinate to travel service to major traffic
movements. Only facilities within the subclass of other principal arterials are capable of
providing any direct access to land, and such service should be purely incidental to the primary
functional responsibility of this class of roads.

Urban Minor Arterial Street System

The minor arterial street system interconnects with and augments the urban principal arterial
system. It accommodates trips of moderate length at a somewhat lower level of travel mobility
than principal arterials do. This system distributes travel to geographic areas smaller than those
identified with the higher system.

The minor arterial street system includes all arterials not classified as principal. This system
places more emphasis on land access than the higher system does and offers lower traffic
mobility. Such a facility may carry local bus routes and provide intracommunity continuity but
ideally does not penetrate identifiable neighborhoods. This system includes urban connections to
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rural collector roads where such connections have not been classified as urban principal arterials
for internal reasons.

The spacing of minor arterial streets may vary from 0.2 to 1.0 km [0.1 to 0.5 mi] in the
central business district to 3 to 5 km [2 to 3 mi] in the suburban fringes but is normally not more
than 2 km [1 mi] in fully developed areas.

Urban Collector Street System

The collector street system provides both land access service and traffic circulation within
residential neighborhoods and commercial and industrial areas. It differs from the arterial system
in that facilities on the collector system may penetrate residential neighborhoods, distributing
trips from the arterials through the area to their ultimate destinations. Conversely, the collector
street also collects traffic from local streets in residential neighborhoods and channels it into the
arterial system. In the central business district, and in other areas of similar development and
traffic density, the collector system may include the entire street grid. The collector street system
may also carry local bus routes.

Urban Local Street System

The local street system comprises all facilities not in one of the higher systems. It primarily
permits direct access to abutting lands and connections to the higher order systems. It offers the
lowest level of mobility and usually contains no bus routes. Service to through-traffic movement
usually is deliberately discouraged.

Length of Roadway and Travel on Urban Systems

Exhibit 1-7 contains the typical distribution of travel volume and length of roadway of the
functional systems for urbanized areas. Systems developed for urbanized areas using the criteria
herein usually fall within the percentage ranges shown.

Range

Systems Travel volume (%) Length (%)

Principal arterial system 40–65 5–10
Principal arterial plus minor arterial street system 65–80 15–25
Collector road 5–10 5–10
Local road system 10–30 65–80

Exhibit 1-7. Typical Distribution of Urban Functional Systems
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Functional Classification as a Design Type

This text has utilized the functional classification system as a design type of highway. Two
major difficulties arise from this usage. The first major problem involves freeways. A freeway is
not a functional class in itself but is normally classified as a principal arterial. It does, however,
have unique geometric criteria that demand a separate design designation apart from other
arterials. Therefore, a separate chapter on freeways has been included along with chapters on
arterials, collectors, and local roads and streets. The addition of the universally familiar term
“freeway” to the basic functional classes seems preferable to the adoption of a complete separate
system of design types.

The second major difficulty is that, in the past, geometric design criteria and capacity levels
have traditionally been based on a classification of traffic volume ranges. Under such a system,
highways with comparable traffic volumes are constructed to the same criteria and provide
identical levels of service, although there may be considerable difference in the functions they
serve.

Under a functional classification system, design criteria and level of service vary according
to the function of the highway facility. Volumes serve to further refine the design criteria for each
class.

Arterials are expected to provide a high degree of mobility for the longer trip length.
Therefore, they should provide a high operating speed and level of service. Since access to
abutting property is not their major function, some degree of access control is desirable to
enhance mobility. The collectors serve a dual function in accommodating the shorter trip and
feeding the arterials. They should provide some degree of mobility and also serve abutting
property. Thus, an intermediate design speed and level of service is appropriate. Local roads and
streets have relatively short trip lengths, and, because property access is their main function, there
is little need for mobility or high operating speeds. This function is reflected by use of a lower
design speed and level of service.

The functional concept is important to the designer. Even though many of the geometric
design values could be determined without reference to the functional classification, the designer
should keep in mind the overall purpose that the street or highway is intended to serve. This
concept is consistent with a systematic approach to highway planning and design.

The first step in the design process is to define the function that the facility is to serve. The
level of service needed to fulfill this function for the anticipated volume and composition of
traffic provides a rational and cost-effective basis for the selection of design speed and geometric
criteria within the ranges of values available to the designer. The use of functional classification
as a design type should appropriately integrate the highway planning and design process.
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CHAPTER 2
DESIGN CONTROLS AND CRITERIA

INTRODUCTION

This chapter discusses those characteristics of vehicles, pedestrians, and traffic that act as
criteria for the optimization or improvement in design of the various highway and street
functional classes.

DESIGN VEHICLES

General Characteristics

Key controls in geometric highway design are the physical characteristics and the
proportions of vehicles of various sizes using the highway.  Therefore, it is appropriate to
examine all vehicle types, establish general class groupings, and select vehicles of representative
size within each class for design use. These selected vehicles, with representative weight,
dimensions, and operating characteristics, used to establish highway design controls for
accommodating vehicles of designated classes, are known as design vehicles. For purposes of
geometric design, each design vehicle has larger physical dimensions and a larger minimum
turning radius than most vehicles in its class. The largest design vehicles are usually
accommodated in freeway design.

Four general classes of design vehicles have been established, including:  (1) passenger cars,
(2) buses, (3) trucks, and (4) recreational vehicles. The passenger-car class includes passenger
cars of all sizes, sport/utility vehicles, minivans, vans, and pick-up trucks. Buses include inter-city
(motor coaches), city transit, school, and articulated buses. The truck class includes single-unit
trucks, truck tractor-semitrailer combinations, and truck tractors with semitrailers in combination
with full trailers. Recreational vehicles include motor homes, cars with camper trailers, cars with
boat trailers, motor homes with boat trailers, and motor homes pulling cars. In addition, the
bicycle should also be considered a design vehicle where bicycle use is allowed on a highway.

Dimensions for 19 design vehicles representing vehicles within these general classes are
given in Exhibit 2-1. In the design of any highway facility, the designer should consider the
largest design vehicle likely to use that facility with considerable frequency or a design vehicle
with special characteristics appropriate to a particular intersection in determining the design of
such critical features as radii at intersections and radii of turning roadways. In addition, as a
general guide, the following may be considered when selecting a design vehicle:

• A passenger car may be selected when the main traffic generator is a parking lot or
series of parking lots.

• A single-unit truck may be used for intersection design of residential streets and park
roads.



Metric
Dimensions (m)

Overall Overhang

Design Vehicle Type Symbol Height Width Length Front Rear WB1 WB2 S T WB3 WB4

Typical
Kingpin

to Center
of Rear

Axle
Passenger Car P 1.3 2.1 5.8 0.9 1.5 3.4 – – – – – –

Single Unit Truck SU 3.4-4.1 2.4 9.2 1.2 1.8 6.1 – – – – – –
Buses

BUS-12 3.7 2.6 12.2 1.8 1.9a 7.3 1.1 – – – – –Inter-city Bus (Motor Coaches)
BUS-14 3.7 2.6 13.7 1.8 2.6a 8.1 1.2 – – – – –

City Transit Bus CITY-BUS 3.2 2.6 12.2 2.1 2.4 7.6 – – – – – –
Conventional School Bus (65 pass.) S-BUS 11 3.2 2.4 10.9 0.8 3.7 6.5 – – – – – –

Large School Bus (84 pass.) S-BUS 12 3.2 2.4 12.2 2.1 4.0 6.1 – – – – – –
Articulated Bus A-BUS 3.4 2.6 18.3 2.6 3.1 6.7 5.9 1.9a 4.0a – – –

Trucks
Intermediate Semitrailer WB-12 4.1 2.4 13.9 0.9 0.8a 3.8 8.4 – – – – 8.4
Intermediate Semitrailer WB-15 4.1 2.6 16.8 0.9 0.6a 4.5 10.8 – – – – 11.4

Interstate Semitrailer WB-19* 4.1 2.6 20.9 1.2 0.8a 6.6 12.3 – – – – 13.0
Interstate Semitrailer WB-20** 4.1 2.6 22.4 1.2 1.4-0.8a 6.6 13.2-13.8 – – – – 13.9-14.5

“Double-Bottom”-Semitrailer/Trailer WB-20D 4.1 2.6 22.4 0.7 0.9 3.4 7.0 0.9b 2.1b 7.0 – 7.0
Triple-Semitrailer/ Trailers WB-30T 4.1 2.6 32.0 0.7 0.9 3.4 6.9 0.9c 2.1c 7.0 7.0 7.0

Turnpike Double-Semitrailer/Trailer WB-33D* 4.1 2.6 34.8 0.7 0.8a 4.4 12.2 0.8d 3.1d 13.6 – 13.0
Recreational Vehicles

Motor Home MH 3.7 2.4 9.2 1.2 1.8 6.1 – – – – – –
Car and Camper Trailer P/T 3.1 2.4 14.8 0.9 3.1 3.4 – 1.5 5.8 – – –

Car and Boat Trailer P/B – 2.4 12.8 0.9 2.4 3.4 – 1.5 4.6 – – –
Motor Home and Boat Trailer MH/B 3.7 2.4 16.2 1.2 2.4 6.1 – 1.8 4.6 – – –

Farm Tractorf TR 3.1 2.4-3.1 4.9g – – 3.1 2.7 0.9 2.0 – – –
Note: Since vehicles are manufactured in U.S. Customary dimensions and to provide only  one physical size for each design vehicle, the values shown in the design vehicle drawings have been soft

converted from numbers listed in feet, and then the numbers in this table have been rounded to the nearest tenth of a meter.
* = Design vehicle with 14.63 m trailer as adopted in 1982 Surface Transportation Assistance Act (STAA).
** = Design vehicle with 16.16 m trailer as grandfathered in with 1982 Surface Transportation Assistance Act (STAA).
a = Combined dimension is 5.91 m and articulating section is 1.22 m wide.
b = Combined dimension is typically 3.05 m.
c = Combined dimension is typically 3.05 m.
d = Combined dimension is typically 3.81 m.
e = This is overhang from the back axle of the tandem axle assembly.
f = Dimensions are for a 150-200 hp tractor excluding any wagon length.
g = To obtain the total length of tractor and one wagon, add 5.64 m to tractor length.  Wagon length is measured from front of drawbar to rear of wagon, and drawbar is 1.98 m long.

• WB1, WB2, and WB4 are the effective vehicle wheelbases, or distances between axle groups, starting at the front and working towards the back of each unit.
• S is the distance from the rear effective axle to the hitch point or point of articulation.
• T is the distance from the hitch point or point of articulation measured back to the center of the next axle or center of tandem axle assembly.

Exhibit 2-1.  Design Vehicle Dimensions
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US Customary
Dimensions (ft)

Overall Overhang

Design Vehicle Type Symbol Height Width Length Front Rear WB1 WB2 S T WB3 WB4

Typical
Kingpin

to Center
of Rear

Axle
Passenger Car P 4.25 7 19 3 5 11 – – – – – –

Single Unit Truck SU 11-13.5 8.0 30 4 6 20 – – – – – –
Buses

BUS-40 12.0 8.5 40 6 6.3a 24 3.7 – – – – –Inter-city Bus (Motor Coaches)
BUS-45 12.0 8.5 45 6 8.5a 26.5 4.0 – – – – –

City Transit Bus CITY-BUS 10.5 8.5 40 7 8 25 – – – – – –
Conventional School Bus (65 pass.) S-BUS 36 10.5 8.0 35.8 2.5 12 21.3 – – – – – –

Large School Bus (84 pass.) S-BUS 40 10.5 8.0 40 7 13 20 – – – – – –
Articulated Bus A-BUS 11.0 8.5 60 8.6 10 22.0 19.4 6.2a 13.2a – – –

Trucks
Intermediate Semitrailer WB-40 13.5 8.0 45.5 3 2.5a 12.5 27.5 – – – – 27.5
Intermediate Semitrailer WB-50 13.5 8.5 55 3 2a 14.6 35.4 – – – – 37.5

Interstate Semitrailer WB-62* 13.5 8.5 68.5 4 2.5a 21.6 40.4 – – – – 42.5

Interstate Semitrailer WB-65** or
WB-67

13.5 8.5 73.5 4 4.5-2.5a 21.6 43.4-45.4 – – – – 45.5-47.5

“Double-Bottom”-Semitrailer/Trailer WB-67D 13.5 8.5 73.3 2.33 3 11.0 23.0 3.0b 7.0b 23.0 – 23.0
Triple-Semitrailer/ Trailers WB-100T 13.5 8.5 104.8 2.33 3 11.0 22.5 3.0c 7.0c 23.0 23.0 23.0

Turnpike Double-Semitrailer/Trailer WB-109D* 13.5 8.5 114 2.33 2.5e 14.3 39.9 2.5d 10.0d 44.5 – 42.5
Recreational Vehicles

Motor Home MH 12 8 30 4 6 20 – – – – – –
Car and Camper Trailer P/T 10 8 48.7 3 10 11 – 5 19 – – –

Car and Boat Trailer P/B – 8 42 3 8 11 – 5 15 – – –
Motor Home and Boat Trailer MH/B 12 8 53 4 8 20 – 6 15 – – –

Farm Tractorf TR 10 8-10 16g – – 10 9 3 6.5 – – –
* = Design vehicle with 48 ft trailer as adopted in 1982 Surface Transportation Assistance Act (STAA).
** = Design vehicle with 53 ft trailer as grandfathered in with 1982 Surface Transportation Assistance Act (STAA).
a = Combined dimension is 19.4 ft and articulating section is 4 ft wide.
b = Combined dimension is typically 10.0 ft.
c = Combined dimension is typically 10.0 ft.
d = Combined dimension is typically 12.5 ft.
e = This is overhang from the back axle of the tandem axle assembly.
f = Dimensions are for a 150-200 hp tractor excluding any wagon length.
g = To obtain the total length of tractor and one wagon, add 18.5 ft to tractor length.  Wagon length is measured from front of drawbar to rear of wagon, and drawbar is 6.5 ft long.

• WB1, WB2, and WB4 are the effective vehicle wheelbases, or distances between axle groups, starting at the front and working towards the back of each unit.
• S is the distance from the rear effective axle to the hitch point or point of articulation.
• T is the distance from the hitch point or point of articulation measured back to the center of the next axle or center of tandem axle assembly.

Exhibit 2-1.  Design Vehicle Dimensions (Continued)
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• A city transit bus may be used in the design of state highway intersections with city
streets that are designated bus routes and that have relatively few large trucks using
them.

• Depending on expected usage, a large school bus (84 passengers) or a conventional
school bus (65 passengers) may be used for the design of intersections of highways with
low-volume county highways and township/local roads under 400 ADT. The school bus
may also be appropriate for the design of some subdivision street intersections.

• The WB-20 [WB-65 or 67] truck should generally be the minimum size design vehicle
considered for intersections of freeway ramp terminals with arterial crossroads and for
other intersections on state highways and industrialized streets that carry high volumes
of traffic and/or that provide local access for large trucks.

In addition to the 19 design vehicles, dimensions for a typical farm tractor are shown in
Exhibit 2-1, and the minimum turning radius for a farm tractor with one wagon is shown in
Exhibit 2-2. Turning paths of design vehicles can be determined from the dimensions shown in
Exhibit 2-1 and 2-2 and through the use of commercially available computer programs.

Minimum Turning Paths of Design Vehicles

Exhibits 2-3 through 2-23 present the minimum turning paths for 19 typical design vehicles.
The principal dimensions affecting design are the minimum centerline turning radius (CTR), the
out-to-out track width, the wheelbase, and the path of the inner rear tire. Effects of driver
characteristics (such as the speed at which the driver makes a turn) and of the slip angles of
wheels are minimized by assuming that the speed of the vehicle for the minimum turning radius is
less than 15 km/h [10 mph].

The boundaries of the turning paths of each design vehicle for its sharpest turns are
established by the outer trace of the front overhang and the path of the inner rear wheel. This turn
assumes that the outer front wheel follows the circular arc defining the minimum centerline
turning radius as determined by the vehicle steering mechanism. The minimum radii of the
outside and inside wheel paths and the centerline turning radii (CTR) for specific design vehicles
are given in Exhibit 2-2.

Trucks and buses generally require more generous geometric designs than do passenger
vehicles. This is largely because trucks and buses are wider and have longer wheelbases and
greater minimum turning radii, which are the principal vehicle dimensions affecting horizontal
alignment and cross section. Single-unit trucks and buses have smaller minimum turning radii
than most combination vehicles, but because of their greater offtracking, the longer combination
vehicles need greater turning path widths.   Exhibit 2-11 defines the turning characteristics of a
typical tractor/semitrailer combination. Exhibit 2-12 defines the lengths of tractors commonly
used in tractor/semitrailer combinations.

A combination truck is a single-unit truck with a full trailer, a truck tractor with a
semitrailer, or a truck tractor with a semitrailer and one or more full trailers. Because combination
truck sizes and turning characteristics vary widely, there are several combination truck design
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Metric

Design
Vehicle
Type

Pas-
senger

Car

Single
Unit

Truck
Inter-city Bus
(Motor Coach)

City
Transit

Bus

Conven-
tional

School
Bus (65
pass.)

Large 2

School
Bus (84
pass.)

Articu-
lated Bus

Intermed-
iate Semi-

trailer

Intermed-
iate Semi-

trailer
Symbol P SU BUS-12 BUS-14 CITY-BUS S-BUS11 S-BUS12 A-BUS WB-12 WB-15

Minimum
Design
Turning
Radius

(m)

7.3 12.8 13.7 13.7 12.8 11.9 12.0 12.1 12.2 13.7

Center-
line1

Turning
Radius
(CTR)

6.4 11.6 12.4 12.4 11.5 10.6 10.8 10.8 11.0 12.5

Minimum
Inside
Radius

(m)

4.4 8.6 8.4 7.8 7.5 7.3 7.7 6.5 5.9 5.2

Design
Vehicle
Type

Interstate
Semi-trailer

“Double
Bottom”
Combina-

tion

Triple
Semi-
trailer/
trailers

Turnpike
Double
Semi-
trailer/
trailer

Motor
Home

Car and
Camper
Trailer

Car and
Boat

Trailer

Motor
Home

and Boat
Trailer

Farm
Tractor
w/One
Wagon

Symbol WB-19* WB-20**
or WB-20 WB-20D WB-30T WB-33D* MH P/T P/B MH/B TR/W

Minimum
Design
Turning
Radius

(m)

13.7 13.7 13.7 13.7 18.3 12.2 10.1 7.3 15.2 5.5

Center-
line1

Turning
Radius
(CTR)

12.5 12.5 12.5 12.5 17.1 11.0 9.1 6.4 14.0 4.3

Minimum
Inside
Radius

(m)

2.4 1.3 5.9 3.0 4.5 7.9 5.3 2.8 10.7 3.2

Note: Numbers in table have been rounded to the nearest tenth of a meter.
* = Design vehicle with 14.63 m trailer as adopted in 1982 Surface Transportation Assistance Act (STAA).
** = Design vehicle with 16.16 m trailer as grandfathered in with 1982 Surface Transportation Assistance Act (STAA).
1 = The turning radius assumed by a designer when investigating possible turning paths and is set at the centerline of

the front axle of a vehicle.  If the minimum turning path is assumed, the CTR approximately equals the minimum
design turning radius minus one-half the front width of the vehicle.

2 = School buses are manufactured from 42 passenger to 84 passenger sizes.  This corresponds to wheelbase
lengths of 3,350 mm to 6,020 mm, respectively. For these different sizes, the minimum design turning radii vary
from 8.78 m to 12.01 m and the minimum inside radii vary from 4.27 m to 7.74 m.

3 = Turning radius is for 150-200 hp tractor with one 5.64 m long wagon attached to hitch point.  Front wheel drive is
disengaged and without brakes being applied.

Exhibit 2-2.  Minimum Turning Radii of Design Vehicles
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US Customary

Design
Vehicle
Type

Pas-
senger

Car

Single
Unit

Truck
Inter-city Bus
(Motor Coach)

City
Transit

Bus

Conven-
tional

School
Bus (65
pass.)

Large 2

School
Bus (84
pass.)

Articu-
lated Bus

Intermed-
iate Semi-

trailer

Intermed-
iate Semi-

trailer
Symbol P SU BUS-40 BUS-45 CITY-BUS S-BUS36 S-BUS40 A-BUS WB-40 WB-50

Minimum
Design
Turning
Radius

(ft)

24 42 45 45 42.0 38.9 39.4 39.8 40 45

Center-
line1

Turning
Radius
(CTR)

21 38 40.8 40.8 37.8 34.9 35.4 35.5 36 41

Minimum
Inside
Radius

(ft)

14.4 28.3 27.6 25.5 24.5 23.8 25.4 21.3 19.3 17.0

Design
Vehicle
Type

Interstate Semi-
trailer

“Double
Bottom”
Combina-

tion

Triple
Semi-
trailer/
trailers

Turnpike
Double
Semi-
trailer/
trailer

Motor
Home

Car and
Camper
Trailer

Car and
Boat

Trailer

Motor
Home

and Boat
Trailer

Farm3

Tractor
w/One
Wagon

Symbol WB-62* WB-65**
or WB-67 WB-67D WB-100T WB-109D* MH P/T P/B MH/B TR/W

Minimum
Design
Turning
Radius

(m)

45 45 45 45 60 40 33 24 50 18

Center-
line1

Turning
Radius
(CTR)

41 41 41 41 56 36 30 21 46 14

Minimum
Inside
Radius

(m)

7.9 4.4 19.3 9.9 14.9 25.9 17.4 8.0 35.1 10.5

* = Design vehicle with 48 ft trailer as adopted in 1982 Surface Transportation Assistance Act (STAA).
** = Design vehicle with 53 ft trailer as grandfathered in with 1982 Surface Transportation Assistance Act (STAA).
1 = The turning radius assumed by a designer when investigating possible turning paths and is set at the centerline of

the front axle of a vehicle.  If the minimum turning path is assumed, the CTR approximately equals the minimum
design turning radius minus one-half the front width of the vehicle.

2 = School buses are manufactured from 42 passenger to 84 passenger sizes.  This corresponds to wheelbase
lengths of 132 in to 237 in, respectively. For these different sizes, the minimum design turning radii vary from
28.8 ft to 39.4 ft and the minimum inside radii vary from 14.0 ft to 25.4 ft.

3 = Turning radius is for 150-200 hp tractor with one 18.5 ft long wagon attached to hitch point.  Front wheel drive is
disengaged and without brakes being applied.

Exhibit 2-2.  Minimum Turning Radii of Design Vehicles (Continued)
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Exhibit 2-3.  Minimum Turning Path for Passenger Car (P) Design Vehicle
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Exhibit 2-4.  Minimum Turning Path for Single-Unit (SU) Truck Design Vehicle
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Exhibit 2-5.  Minimum Turning Path for Intercity Bus (BUS-12 [BUS-40]) Design Vehicle
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Exhibit 2-6.  Minimum Turning Path for Intercity Bus (BUS-14 [BUS-45]) Design Vehicle
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Exhibit 2-7.  Minimum Turning Path for City Transit Bus (CITY-BUS) Design Vehicle
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Exhibit 2-8.  Minimum Turning Path for Conventional School Bus (S-BUS-11 [S-BUS-36])
Design Vehicle
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Exhibit 2-9.  Minimum Turning Path for Large School Bus (S-BUS-12 [S-BUS-40])
Design Vehicle
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Exhibit 2-10.  Minimum Turning Path for Articulated Bus (A-BUS) Design Vehicle
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Definitions:
1. Turning radius—The circular arc formed by the turning path radius of the front outside tire of a vehicle.

This radius is also described by vehicle manufacturers as the “turning curb radius.”

2. CTR—The turning radius of the centerline of the front axle of a vehicle.
3. Offtracking—The difference in the paths of the front and rear wheels of a tractor/semitrailer as it

negotiates a turn.  The path of the rear tires of a turning truck does not coincide with that of the front
tires, and this effect is shown in the drawing above.

4. Swept path width—The amount of roadway width that a truck covers in negotiating a turn and is equal
to the amount of offtracking plus the width of the tractor unit.  The most significant dimension affecting
the swept path width of a tractor/semitrailer is the distance from the kingpin to the rear trailer axle or
axles.  The greater this distance is, the greater the swept path width.

5. Steering angle—The maximum angle of turn built into the steering mechanism of the front wheels of a
vehicle. This maximum angle controls the minimum turning radius of the vehicle.

6. Tractor/trailer angle—The angle between adjoining units of a tractor/semitrailer when the combination
unit is placed into a turn; this angle is measured between the longitudinal axes of the tractor and trailer
as the vehicle turns.  The maximum tractor/trailer angle occurs when a vehicle makes a 180° turn at the
minimum turning radius; this angle is reached slightly beyond the point where maximum swept path
width is achieved.

Exhibit 2-11.  Turning Characteristics of a Typical Tractor-Semitrailer Combination Truck
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Exhibit 2-12.  Lengths of Commonly Used Truck Tractors
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Exhibit 2-13.  Minimum Turning Path for Intermediate Semitrailer (WB-12 [WB-40])
Design Vehicle
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Exhibit 2-14.  Minimum Turning Path for Intermediate Semitrailer (WB-15 [WB-50])
Design Vehicle
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Exhibit 2-15.  Minimum Turning Path for Interstate Semitrailer (WB-19 [WB -62])
Design Vehicle
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Exhibit 2-16.  Minimum Turning Path for Interstate Semitrailer
(WB-20 [WB -65 and WB-67]) Design Vehicle
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Exhibit 2-17.  Minimum Turning Path for Double-Trailer Combination
(WB-20D [WB-67D]) Design Vehicle
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Exhibit 2-18.  Minimum Turning Path for Triple-Trailer Combination
(WB-30T [WB-100T]) Design Vehicle
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Exhibit 2-19.  Minimum Turning Path for Turnpike-Double Combination
(WB-33D [WB-109D]) Design Vehicle
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Exhibit 2-20.  Minimum Turning Path for Motor Home (MH) Design Vehicle
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Exhibit 2-21.  Minimum Turning Path for Passenger Car and Camper Trailer (P/T)
Design Vehicle
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Exhibit 2-22.  Minimum Turning Path for Passenger Car and Boat Trailer (P/B)
Design Vehicle
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Exhibit 2-23.  Minimum Turning Path for Motor Home and Boat Trailer (MH/B)
Design Vehicle
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vehicles. These combination trucks are identified by the designation WB, together with the wheel
base or another length dimension in both metric and U.S. customary units. The combination truck
design vehicles are: (1) the WB-12 [WB-40] design vehicle representative of intermediate size
tractor-semitrailer combinations, (2) the WB-15 [WB-50] design vehicle representative of a
slightly larger intermediate size tractor-semitrailer combination commonly in use, (3) the WB-19
[WB-62] design vehicle representative of larger tractor semitrailer combinations allowed on
selected highways by the Surface Transportation Assistance Act of 1982, (4) the WB-20 [WB-65
or WB-67] design vehicle representative of a larger tractor-semitrailer allowed to operate on
selected highways by “grandfather” rights under the Surface Transportation Assistance Act of
1982, (5) the WB-20D [WB-67D] design vehicle representative of a tractor-semitrailer/full trailer
(doubles or twin trailer) combination commonly in use, (6) the WB-30T [WB-100T] design
vehicle representative of tractor-semitrailer/full trailer/full trailer combinations (triples)
selectively in use, and (7) the WB-33D [WB-109D] design vehicle representative of larger
tractor-semitrailer/full trailer combinations (turnpike double) selectively in use. Although
turnpike doubles and triple trailers are not permitted on many highways, their occurrence does
warrant inclusion in this publication.

The minimum turning radii and transition lengths shown in the exhibits are for turns at less
than 15 km/h [10 mph]. Longer transition curves and larger curve radii are needed for roadways
with higher speeds. The radii shown are considered appropriate minimum values for use in
design, although skilled drivers might be able to turn with a slightly smaller radius.

The dimensions of the design vehicles take into account recent trends in motor vehicle sizes
manufactured in the United States and represent a composite of vehicles currently in operation.
However, the design vehicle dimensions are intended to represent vehicle sizes that are critical to
geometric design and thus are larger than nearly all vehicles belonging to their corresponding
vehicle classes.

The turning paths shown in Exhibits 2-3 through 2-10 and Exhibits 2-13 through 2-23 were
derived by using commercially available computer programs.

The P design vehicle, with the dimensions and turning characteristics shown in Exhibit 2-3,
represents a larger passenger car.

The SU design vehicle represents a larger single-unit truck.  The control dimensions indicate
the minimum turning path for most single-unit trucks now in operation (see Exhibit 2-4). On
long-distance facilities serving large over-the-road truck traffic or inter-city buses (motor
coaches), the design vehicle should generally be either a combination truck or an inter-city bus
(see Exhibit 2-5 or Exhibit 2-6).

For intra-city or city transit buses, a design vehicle designated as CITY-BUS is shown in
Exhibit 2-7. This design vehicle has a wheel base of 7.62 m [25 ft] and an overall length of
12.20 m [40 ft]. Buses serving particular urban areas may not conform to the dimensions shown
in Exhibit 2-7. For example, articula ted buses, which are now used in certain cities, are longer
than a conventional bus, with a permanent hinge near the vehicle’s center that allows more
maneuverability. Exhibit 2-10 displays the critical dimensions for the A-BUS design vehicle.



Design Controls and Criteria

43

Also, due to the importance of school buses, two design vehicles designated as S-BUS 11
[S-BUS 36] and S-BUS 12 [S-BUS 40] are shown in Exhibits 2-8 and 2-9, respectively. The
larger design vehicle is an 84-passenger bus and the smaller design vehicle is a 65-passenger bus.
The highway designer should also be aware that for certain buses the combination of ground
clearance, overhang, and vertical curvature of the roadway may present problems in hilly areas.

Exhibits 2-13 through 2-19 show dimensions and the minimum turning paths of the design
vehicles that represent various combination trucks. For local roads and streets, the WB-15
[WB-50] or WB-12 [WB-40] is often considered an appropriate design vehicle. The larger
combination trucks are appropriate for design of facilities that serve over-the-road trucks.

Exhibits 2-20 through 2-23 indicate minimum turning paths for typical recreational vehicles.

In addition to the vehicles shown in Exhibits 2-3 through 2-10 and Exhibits 2-13 through
2-23, other vehicles may be used for selected design applications, as appropriate. With the advent
of computer programs that can derive turning path plots, the designer can determine the path
characteristics of any selected vehicle if it differs from those shown (1).

Vehicle Performance

Acceleration and deceleration rates of vehicles are often critical parameters in determining
highway design. These rates often govern the dimensions of such design features as intersections,
freeway ramps, climbing or passing lanes, and turnout bays for buses. The following data are not
meant to depict average performance for specific vehicle classes but rather lower performance
vehicles suitable for design application, such as a low-powered (compact) car and a loaded truck
or bus.

Based on its acceleration and deceleration performance, the passenger car seldom controls
design. From Exhibits 2-24 and 2-25, it is obvious that relatively rapid accelerations and
decelerations are possible, although they may be uncomfortable for the vehicle’s passengers.
Also, due to the rapid changes being made in vehicle operating characteristics, current data on
acceleration and deceleration may soon become outdated. In addition, refer to the NCHRP
Report 400, Determination of Stopping Sight Distances (2). Exhibit 2-24 is based on NCHRP
Report 270 (3).

When a highway is located in a recreational area, the performance characteristics of
recreational vehicles should be considered.

Vehicular Pollution

Pollutants emitted from motor vehicles and their impact on land uses adjacent to highways
are factors affecting the highway design process. As each vehicle travels along the highway, it
emits pollutants into the atmosphere and transmits noise to the surrounding area. The highway
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Exhibit 2-24.  Acceleration of Passenger Cars, Level Conditions
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Exhibit 2-25.  Deceleration Distances for Passenger Vehicles Approaching Intersections

designer should recognize these impacts and evaluate them in selecting appropriate transportation
alternatives. Many factors affect the rate of pollutant emission from vehicles, including vehicle
mix, vehicle speed, ambient air temperature, vehicle age distribution, and percentage of vehicles
operating in a cold mode.

In addition to air pollution, the highway designer should also consider noise pollution. Noise
is unwanted sound, a subjective result of sounds that intrude on or interfere with activities such as
conversation, thinking, reading, or sleeping. Thus, sound can exist without people—noise cannot.

Motor vehicle noise is generated by the mechanical operation of the vehicle and its
equipment, by its aerodynamics, by the action of its tires on the pavement, and, in metropolitan
areas, by the short-duration sounds of brake squeal, exhaust backfires, horns, and, in the case of
emergency vehicles, sirens.

Trucks and passenger cars are the major noise-producing vehicles on the nation’s highways.
Motorcycles are also a factor to be considered because of the rapid increase in their numbers in
recent years. Modern passenger cars are relatively quiet, particularly at the lower cruising speeds,
but exist in such numbers as to make their total noise contribution significant. While noise
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produced by passenger cars increases dramatically with speed, steep grades have little influence
on passenger car noise.

For passenger cars, noise produced under normal operating conditions is primarily from the
engine exhaust system and the tire-roadway interaction. Constant highway speeds provide much
the same noise reading whether or not a car’s engine is operating, because the noise is principally
produced by the tire-roadway interaction with some added wind noise. For conditions of
maximum acceleration, the engine system noise is predominant.

Trucks, particularly heavy diesel-powered trucks, present the most difficult noise problem on
the highway, with the development of more powerful engines generally increasing noise. Truck
noise levels are not greatly influenced by speed, however, because the factors (including
acceleration noise) that are not directly affected by speed usually make up a major portion of the
total noise. In contrast, steep grades can cause an increase in noise levels for large trucks.

Truck noise has several principal components originating from such sources as exhaust,
engine gears, fans, and air intake. At higher speeds, tire-roadway interaction and wind noise add
to the problem. As in passenger cars, the noise produced by large diesel trucks is primarily from
the engine exhaust system and the tire-roadway interaction. For trucks, however, engine exhaust
noise tends to dominate tire-roadway interaction for most operating conditions, particularly
during acceleration.

The quality of noise varies with the number and operating conditions of the vehicles while
the directionality and amplitude of the noise vary with highway design features. The highway
designer should therefore be concerned with how highway location and design influence the
vehicle noise perceived by persons residing or working nearby. The perceived noise level
decreases as the distance to the highway from a residence or workplace increases.

DRIVER PERFORMANCE

Introduction

An appreciation of driver performance is essential to proper highway design and operation.
The suitability of a design rests as much on how safely and efficiently drivers are able to use the
highway as on any other criterion. When drivers use a highway designed to be compatible with
their capabilities and limitations, their performance is aided. When a design is incompatible with
the capabilities of drivers, the chance for driver errors increase, and crashes or inefficient
operation may result.

This section provides information about driver performance useful to highway engineers in
designing and operating highways. It describes drivers in terms of their performance—how they
interact with the highway and its information system and why they make errors.

The material draws extensively from A User’s Guide to Positive Guidance (4), which
contains information on driver attributes, driving tasks, and information handling by the driver.
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Where positive guidance is applied to design, competent drivers, using well-designed highways
with appropriate information displays, can perform safely and efficiently. Properly designed and
operated highways, in turn, provide positive guidance to drivers. In addition, Transportation
Research Record 1281 entitled Human Factors and Safety Research Related to Highway Design
and Operations (5), provides background information.

Older Drivers

At the start of the 20th century, approximately 4 percent of America’s population was 65
years of age or older. This group, which accounted for 15 percent of the driving population in
1986, and is expected to increase to 22 percent by the year 2030.

Older drivers and pedestrians are a significant and rapidly growing segment of the highway
user population with a variety of age-related diminished capabilities. As a group, they have the
potential to adversely affect the highway system’s safety and efficiency. There is agreement that
older road users require mobility and that they should be accommodated by the design and
operational characteristics of a highway to the extent practical.

Older drivers have special needs that should be considered in highway design and traffic
control. For example, for every decade after age 25, drivers need twice the brightness at night to
receive visual information. Hence, by age 75, some drivers may need 32 times the brightness they
did at age 25.

Research findings show that enhancements to the highway system to improve its usability
for older drivers and pedestrians can also improve the system for all users. Thus, designers and
engineers should be aware of the capabilities and needs of older road users and consider
appropriate measures to aid their performance. A Federal Highway Administration report, entitled
Older Driver Highway Design Handbook:  Recommendations and Guidelines (6), provides
information on how geometric design elements and traffic control devices can be modified to
better meet the needs and capabilities of older road users.

The Driving Task

The driving task depends on drivers receiving and using information correctly. The
information received by drivers as they travel is compared with the information they already
possess. Decisions are then made by drivers based on the information available to them and
appropriate control actions are taken.

Driving encompasses a number of discrete and interrelated activities. When grouped by
performance, the components of the driving task fall into three levels: control, guidance, and
navigation. These activities are ordered on scales of complexity of task and importance for safety.
Simple steering and speed control are at one end of the scale (control). Road-following and safe-
path maintenance in response to road and traffic conditions are at midlevel of the scale
(guidance). At the other end of the scale are trip planning and route following (navigation).
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The driving task may be complex and demanding, and several individual activities may need
to be performed simultaneously, requiring smooth and efficient processing and integration of
information. Driving often occurs at high speeds, under time pressure, in unfamiliar locations,
and under adverse environmental conditions. The driving task may at other times be so simple
and undemanding that a driver becomes inattentive. The key to safe, efficient driver performance
in this broad range of driving situations is error-free information handling.

Driver errors result from many driver, vehicle, roadway, and traffic factors. Some driver
errors occur because drivers may not always recognize what particular roadway traffic situations
are require of them, because situations may lead to task overload or inattentiveness, and because
deficient or inconsistent designs or information displays may cause confusion. Driver errors may
also result from pressures of time, complexity of decisions, or profusion of information. Control
and guidance errors by drivers may also contribute directly to crashes. In addition, navigational
errors resulting in delay contribute to inefficient operations and may lead indirectly to crashes.

The Guidance Task

Of the three major components of the driving task, highway design and traffic operations
have the greatest effect on guidance. An appreciation of the guidance component of the driving
task is needed by the highway designer to aid driver performance.

Lane Placement and Road Following

Lane placement and road-following decisions, including steering and speed control
judgments, are basic to vehicle guidance. Drivers use a feedback process to follow alignment and
grade within the constraints of road and environmental conditions. Obstacle-avoidance decisions
are integrated into lane placement and road-following activities. This portion of the guidance task
level is continually performed both when no other traffic is present (singularly) or when it is
shared with other activities (integrated).

Car Following

Car following is the process by which drivers guide their vehicles when following another
vehicle. Car-following decisions are more complex than road-following decisions because they
involve speed-control modifications. In car following, drivers need to constantly modify their
speed to maintain safe gaps between vehicles. To proceed safely, they have to assess the speed of
the lead vehicle and the speed and position of other vehicles in the traffic stream and continually
detect, assess, and respond to changes.
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Passing Maneuvers

The driver decision to initiate, continue, or complete a passing maneuver is even more
complex than the decisions involved in lane placement or car following. Passing decisions require
modifications in road- and car-following and in speed control. In passing, drivers must judge the
speed and acceleration potential of their own vehicle, the speed of the lead vehicle, the speed and
rate of closure of the approached vehicle, and the presence of an acceptable gap in the traffic
stream.

Other Guidance Activities

Other guidance activities include merging, lane changing, avoidance of pedestrians, and
response to traffic control devices. These activities also require complex decisions, judgments,
and predictions.

The Information System

Each element that provides information to drivers is part of the information system of the
highway. Formal sources of information are the traffic control devices specifically designed to
display information to drivers. Informal sources include such elements as roadway and roadside
design features, pavement joints, tree lines, and traffic. Together, the formal and informal sources
provide the information drivers need to drive safely and efficiently. Formal and informal sources
of information are interrelated and must reinforce and augment each other to be most useful.

Traffic Control Devices

Traffic control devices provide guidance and navigation information that often is not
otherwise available or apparent. Such devices include regulatory, warning, and guide signs, and
other route guidance information. Other traffic control devices, such as markings and delineation,
display additional information that augments particular roadway or environmental features. These
devices help drivers perceive information that might otherwise be overlooked or difficult to
recognize. Information on the appropriate use of traffic control devices is presented in the Manual
on Uniform Traffic Control Devices (7).

The Roadway and its Environment

Selection of speeds and paths is dependent on drivers being able to see the road ahead.
Drivers must see the road directly in front of their vehicles and far enough in advance to perceive
with a high degree of accuracy the alignment, profile gradeline, and related aspects of the
roadway. The view of the road also includes the environment immediately adjacent to the
roadway. Such appurtenances as shoulders and roadside obstacles (including sign supports,
bridge piers, abutments, guardrail, and median barriers) affect driving behavior and, therefore,
should be clearly visible to the driver.



AASHTO—Geometric Design of Highways and Streets

50

Information Handling

Drivers use many of their senses to gather information. Most information is received visually
by drivers from their view of the roadway alignment, markings, and signs. However, drivers also
detect changes in vehicle handling through instinct. They do so, for example, by feeling road
surface texture through vibrations in the steering wheel and hearing emergency vehicle sirens.

Throughout the driving task, drivers perform several functions almost simultaneously. They
look at information sources, make numerous decisions, and perform necessary control actions.
Sources of information (some needed, others not) compete for their attention. Needed information
should be in the driver’s field of view, available when and where needed, available in a usable
form, and capable of capturing the driver’s attention.

Because drivers can only attend to one visual information source at a time, they integrate the
various information inputs and maintain an awareness of the changing environment through an
attention-sharing process. Drivers sample visual information obtained in short-duration glances,
shifting their attention from one source to another. They make some decisions immediately, and
delay others, through reliance on judgment, estimation, and prediction to fill in gaps in available
information.

Reaction Time

Information takes time to process. Drivers’ reaction times increase as a function of decision
complexity and the amount of information to be processed. Furthermore, the longer the reaction
time, the greater the chance for error. Johannson and Rumar (8) measured brake reaction time for
expected and unexpected events. Their results show that when an event is expected, reaction time
averages about 0.6 s, with a few drivers taking as long as 2 s. With unexpected events, reaction
times increased by 35 percent. Thus, for a simple, unexpected decision and action, some drivers
may take as long as 2.7 s to respond. A complex decision with several alternatives may take
several seconds longer than a simple decision. Exhibit 2-26 shows this relationship for median-
case drivers, whereas Exhibit 2-27 shows this relationship for 85th-percentile drivers. The figures
quantify the amount of information to be processed in bits. Long processing times decrease the
time available to attend to other tasks and increase the chance for error.

Highway designs should take reaction times into account. It should be recognized that
drivers vary in their responses to particular events and take longer to respond when decisions are
complex or events are unexpected. Clear sight lines and adequate decision sight distance provide
a margin for error.
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Exhibit 2-26.  Median Driver Reaction Time to Expected and Unexpected Information
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Exhibit 2-27.  85th-Percentile Driver Reaction Time to Expected and
Unexpected Information
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Primacy

Primacy relates the relative importance to safety of competing information. Control and
guidance information is important because the related errors may contribute directly to crashes.
Navigation information has a lower primacy because errors may lead to inefficient traffic flow,
but are less likely to lead to crashes. Accordingly, the design should focus the drivers’ attention
on the safety-critical design elements and high-priority information sources. This goal may be
achieved by providing clear sight lines and good visual quality.

Expectancy

Driver expectancies are formed by the experience and training of drivers. Situations that
generally occur in the same way, and successful responses to these situations, are incorporated
into each driver’s store of knowledge. Expectancy relates to the likelihood that a driver will
respond to common situations in predictable ways that the driver has found successful in the past.
Expectancy affects how drivers perceive and handle information and modify the speed and nature
of their responses.

Reinforced expectancies help drivers respond rapidly and correctly. Unusual, unique, or
uncommon situations that violate driver expectancies may cause longer response times,
inappropriate responses, or errors.

Most highway design features are sufficiently similar to create driver expectancies related to
common geometric, operational, and route characteristics. For example, because most freeway
interchanges have exits on the right side of the road, drivers generally expect to exit from the
right. This aids performance by enabling rapid and correct responses when exits on the right are
to be negotiated. There are, however, instances where expectancies are violated. For example, if
an exit ramp is on the left, then the right-exit expectancy is incorrect, and response times may be
lengthened or errors committed.

One of the most important ways to aid driver performance is to develop designs in
accordance with prevalent driver expectancies. Unusual design features should be avoided, and
design elements should be applied consistently throughout a highway segment. Care should also
be taken to maintain consistency from one segment to another. When drivers obtain the
information they expect from the highway and its traffic control devices, their performance tends
to be error free. Where they do not get what they expect, or get what they do not expect, errors
may result.

Driver Error

A common characteristic of many high-crash locations is that they place large or unusual
demands on the information-processing capabilities of drivers. Inefficient operation and crashes
usually occur where the driver’s chances for information-handling errors are high. At locations
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where information-processing demands on the driver are high, the possibility of error and
inappropriate driver performance increases.

Errors Due to Driver Deficiencies

Many driving errors are caused by deficiencies in a driver’s capabilities or temporary states,
which, in conjunction with inappropriate designs or difficult traffic situations, may produce a
failure in judgment. For example, insufficient experience and training may contribute to a driver’s
inability to recover from a skid. Similarly, inappropriate risk taking may lead to errors in gap
acceptance while passing (9). In addition, poor glare recovery may cause older drivers to miss
information at night (10).

Adverse psychophysiological states also lead to driver failures. These include decreased
performance caused by alcohol and drugs, for which a link to crashes has been clearly
established. The effects of fatigue, caused by sleep deprivation from extended periods of driving
without rest or prolonged exposure to monotonous environments, or both, also contribute to
crashes (11).

It is not generally possible for a design or an operational procedure to reduce errors caused
by innate driver deficiencies. However, designs should be as forgiving as practical to lessen the
consequences of such failures. Errors committed by competent drivers can be reduced by proper
design and operation. Most individuals possess the attributes and skills to drive properly and are
neither drunk, drugged, nor fatigued at the start of their trips. When drivers overextend
themselves, fail to take proper rest breaks, or drive for prolonged periods, they ultimately reach a
less-than-competent state. Fatigued drivers represent a sizable portion of the long-trip driving
population and should therefore be considered in freeway design.

Although opinions among experts are not unanimous, there is general agreement that
advancing age has a deleterious effect on an individual’s perceptual, mental, and motor skills.
These skills are critical factors in vehicular operation. Therefore, it is important for the road
designer to be aware of the needs of the older driver, and where appropriate, to consider these
needs in the roadway design.

Some of the more important information and observations from recent research studies
concerning older drivers is summarized below:

1. Characteristics of the Older Driver. In comparison to younger drivers, older drivers
often exhibit the following operational deficiencies:

• slower information processing
• slower reaction times
• slower decision making
• visual deterioration
• hearing deterioration
• decline in ability to judge time, speed, and distance
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• limited depth perception
• limited physical mobility
• side effects from prescription drugs

2. Crash Frequency. Older drivers are involved in a disproportionate number of crashes
where there is a higher-than-average demand imposed on driving skills. The driving
maneuvers that most often precipitate higher crash frequencies among older drivers
include:

• making left turns across traffic
• merging with high-speed traffic
• changing lanes on congested streets in order to make a turn
• crossing a high-volume intersection
• stopping quickly for queued traffic
• parking

3. Countermeasures. The following countermeasures may help to alleviate the potential
problems of the older driver:

• assess all guidelines to consider the practicality of designing for the 95th- or 99th-
percentile driver, as appropriate, to represent the performance abilities of an older
driver

• improve sight distance by modifying designs and removing obstructions,
particularly at intersections and interchanges

• assess sight triangles for adequacy of sight distance
• provide decision sight distances
• simplify and redesign intersections and interchanges that require multiple

information reception and processing
• consider alternate designs to reduce conflicts
• increase use of protected left-turn signal phases
• increase vehicular clearance times at signalized intersections
• provide increased walk times for pedestrians
• provide wider and brighter pavement markings
• provide larger and brighter signs
• reduce sign clutter
• provide more redundant information such as advance guide signs for street name,

indications of upcoming turn lanes, and right-angle arrows ahead of an intersection
where a route turns or where directional information is needed

• enforce speed limits
• increase driver education

In roadway design, perhaps the most practical measure related to better accommodate older
drivers is an increase in sight distance, which may be accomplished through increased use of
decision sight distance. The gradual aging of the driver population suggests that increased use of
decision sight distance may help to reduce future crash frequencies for older drivers. Where



AASHTO—Geometric Design of Highways and Streets

56

provision of decision sight distance is impractical, increased use of advance warning or guide
signs may be appropriate.

Errors Due to Situation Demands

Drivers often commit errors when they have to perform several highly complex tasks
simultaneously under extreme time pressure (12). Errors of this type usually occur at urban
locations with closely spaced decision points, intensive land use, complex design features, and
heavy traffic. Information-processing demands beyond the drivers’ capabilities may cause
information overload or confuse drivers, resulting in an inadequate understanding of the driving
situation.

Other locations present the opposite situations and are associated with different types of
driver errors. Typically these are rural locations where there may be widely spaced decision
points, sparse land use, smooth alignment, and light traffic. Information demands are thus
minimal, and rather than being overloaded with information, the lack of information and
decision-making demands may result in inattentiveness by drivers. Driving errors may be caused
by a state of decreased vigilance in which drivers fail to detect, recognize, or respond to new,
infrequently encountered, or unexpected design elements or information sources.

Speed and Design

Speed reduces the visual field, restricts peripheral vision, and limits the time available for
drivers to receive and process information. Highways built to accommodate high speeds help
compensate for these limitations by simplifying control and guidance activities, by aiding drivers
with appropriate information, by placing this information within the cone of clear vision, by
eliminating much of the need for peripheral vision, and by simplifying the decisions required and
spacing them farther apart to decrease information-processing demands.

Current freeway designs have nearly reached the goal of allowing drivers to operate at high
speeds in comfort and safety. Control of access to the traveled way reduces the potential for
conflicts by giving drivers a clear path. Clear roadsides have been provided by eliminating
obstructions or designing them to be more forgiving. The modern freeway provides an alignment
and profile that, together with other factors, encourages high operating speeds.

Although improved design has produced significant benefits, it has also created potential
problems. For example, driving at night at high speeds may lead to reduced forward vision
because of the inability of headlights to illuminate objects in the driver’s path in sufficient time
for some drivers to respond (13). In addition, the severity of crashes is generally greater with
increased speed.

Finally, the very fact that freeways succeed in providing safe, efficient transportation can
lead to difficulties. The Institute of Traffic Engineers (14) indicated that “Freeways encourage
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drivers to extend the customary length and duration of their trips. This results in driver fatigue
and slower reaction as well as a reduction in attention and vigilance.”

Thus, extended periods of high-speed driving on highways with low demand for information
processing may not always be conducive to proper information handling by drivers and may
therefore lead to driver fatigue. Highway design should take these possible adverse effects into
account and seek to lessen their consequences. For example, long sections of flat, tangent
roadway should be avoided and flat, curving alignment that follows the natural contours of the
terrain should be used whenever practical. Rest areas spaced at intervals of approximately one
hour or less of driving time have also proved beneficial.

Design Assessment

The preceding sections of this chapter have described the way drivers use information
provided by the highway and its appurtenances. This discussion has shown the interdependence
between design and information display. Both should be assessed in the design of highway
projects. Because drivers “read” the road and the adjacent environment and make decisions based
on what they see (even if traffic control devices making up the formal information system
indicate  inconsistencies with the driver’s view), a highway segment that is inappropriately
designed may not operate safely and efficiently. Conversely, an adequately designed highway
may not operate properly without the appropriate complement of traffic control devices.

Designers should consider how the highway will fit into the existing landscape, how the
highway should be signed, and the extent to which the information system will complement and
augment the proposed design. The view of the road is very important, especially to the unfamiliar
driver. Therefore, consideration should be given to the visual qualities of the road. This can be
accomplished through the use of 3-D computer visualization programs.

Locations with potential for information overload should be identified and corrected. The
adequacy of the sight lines and sight distances should be assessed, and it should be determined
whether unusual vehicle maneuvers are required and whether likely driver expectancies may be
violated.

Potential driver problems can be anticipated before a facility is built by using information
about the driving tasks and possible driver errors to assess the design. When trade-offs are
appropriate, they should be made with the drivers’ capabilities in mind to ensure that the resultant
design is compatible with those capabilities. Properly designed highways that provide positive
guidance to drivers can operate at a high level of safety and efficiency; therefore, designers
should seek to incorporate these principles in highway design.
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TRAFFIC CHARACTERISTICS

General Considerations

The design of a highway and its features should be based upon explicit consideration of the
traffic volumes and characteristics to be served. All information should be considered jointly.
Financing, quality of foundations, availability of materials, cost of right-of-way, and other factors
all have important bearing on the design; however, traffic volumes indicate the need for the
improvement and directly affect the geometric design features, such as number of lanes, widths,
alignments, and grades. It is no more rational to design a highway without traffic information
than it is to design a bridge without knowledge of the weights and numbers of vehicles it is
intended to support. Information on traffic volumes serves to establish the loads for the geometric
highway design.

Traffic data for a road or section of road are generally available or can be obtained from field
studies. The data collected by State or local agencies include traffic volumes for days of the year
and time of the day, as well as the distribution of vehicles by type and weight. The data also
include information on trends from which the designer may estimate the traffic to be expected in
the future.

Volume

Average Daily Traffic

The most basic measure of the traffic demand for a highway is the average daily traffic
(ADT) volume. The ADT is defined as the total volume during a given time period (in whole
days), greater than one day and less than one year, divided by the number of days in that time
period. The current ADT volume for a highway can be readily determined when continuous
traffic counts are available. When only periodic counts are taken, the ADT volume can be
estimated by adjusting the periodic counts according to such factors as the season, month, or day
of week.

Knowledge of the ADT volume is important for many purposes, such as determining annual
highway usage as justification for proposed expenditures or designing the structural elements of a
highway. However, the direct use of ADT volume in the geometric design of highways is not
appropriate except for local and collector roads with relatively low volumes because it does not
indicate traffic volume variations occurring during the various months of the year, days of the
week, and hours of the day. The amount by which the volume of an average day is exceeded on
certain days is appreciable and varied. At typical rural locations, the volume on certain days may
be double the ADT. Thus, a highway designed for the traffic on an average day would be required
to carry a volume greater than the design volume for a considerable portion of the year, and on
many days the volume carried would be much greater than the design volume.
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Peak-Hour Traffic

Traffic volumes for an interval of time shorter than a day more appropriately reflect the
operating conditions that should be used for design. The brief, but frequently repeated, rush-hour
periods are significant in this regard. In nearly all cases, a practical and adequate time period is
one hour.

The traffic pattern on any highway shows considerable variation in traffic volumes during
the various hours of the day and in hourly volumes throughout the year. A key design decision
involves determining which of these hourly traffic volumes should be used as the basis for design.
While it would be wasteful to predicate the design on the maximum peak-hour traffic that occurs
during the year, the use of the average hourly traffic would result in an inadequate design. The
hourly traffic volume used in design should not be exceeded very often or by very much. On the
other hand, it should not be so high that traffic would rarely be sufficient to make full use of the
resulting facility. One guide in determining the hourly traffic volume that is best suited for use in
design is a curve showing variation in hourly traffic volumes during the year.

Exhibit 2-28 shows the relationship between the highest hourly volumes and ADT on rural
arterials. This figure was produced from an analysis of traffic count data covering a wide range of
volumes and geographic conditions. The curves in the chart were prepared by arranging all of the
hourly volumes for one year, expressed as a percentage of ADT, in a descending order of
magnitude. The middle curve is the average for all locations studied and represents a highway
with average fluctuation in traffic flow.

Based on a review of these curves, it is recommended that the hourly traffic volume that
should generally be used in design is the 30th highest hourly volume of the year, abbreviated as
30 HV. The reasonableness of 30 HV as a design control is indicated by the changes that result
from choosing a somewhat higher or lower volume. The curve in Exhibit 2-28 steepens quickly to
the left of the point showing the 30th highest hour volume and indicates only a few more hours
with higher volumes. The curve flattens to the right of the 30th highest hour and indicates many
hours in which the volume is not much less than the 30 HV.

On rural roads with average fluctuation in traffic flow, the 30 HV is typically about 15
percent of the ADT. Whether or not this hourly volume is too low to be appropriate for design
can be judged by the 29 hours during the year when it is exceeded. The maximum hourly volume,
which is approximately 25 percent of the ADT on the graph, exceeds 30 HV by about 67 percent.

Whether the 30 HV is too high for practical economy in design can be judged by the trend in
the hourly volumes lower than the 30th highest hour. The middle curve in Exhibit 2-28 indicates
that the traffic volume exceeds 11.5 percent of the ADT during 170 hours of the year. The lowest
of this range of hourly volumes is about 23 percent less than the 30 HV.
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Exhibit 2-28.  Relation Between Peak-Hour and Average Daily Traffic Volumes on
Rural Arterials

Another fortunate characteristic of 30 HV is that, as a percentage of ADT, it generally varies
only slightly from year to year even though the ADT may change substantially. Increased ADT
generally results in a slight decrease in the percentage of ADT during the 30 HV. Thus, the
percentage of ADT used for determining the 30 HV from current traffic data for a given facility
can generally be used with confidence in computing the 30 HV from an ADT volume determined
for some future year. This consistency between current and future may not apply where there is a
radical change in the use of the land area served by the highway. In cases where the character and
magnitude of future development can be foreseen, the relation of 30 HV to ADT may be based on
experience with other highways serving areas with similar land-use characteristics.

For highway design purposes, the variation in hourly traffic volumes should be measured
and the percentage of ADT during the 30th highest hour determined. Where such measurements
are impractical and only the ADT is known, the 30 HV should be estimated from 30th-hour
percentage factors for similar highways in the same locality, operating under similar conditions.
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On a typical rural arterial, the 30 HV is about 15 percent of ADT, and the maximum hourly
volume is about 25 percent of ADT. As indicated in Exhibit 2-28, the 30 HV at 70 percent of all
locations, except those having unusually high or low fluctuation in traffic flow, is in the range of
12 to 18 percent of the ADT. Likewise the range in maximum hourly volumes for the same
groups of roads varies approximately from 16 to 32 percent of the ADT. These criteria for design
apply to most rural highways. There are highways, however, for which there are unusual or
highly seasonal fluctuations in traffic flow, such as resort roads on which weekend traffic during
a few months of the year far exceeds the traffic during the rest of the year. Seasonal fluctuations
result in high peak-hour volumes relative to ADT, high percentages for high-volume hours, and
low percentages for low-volume hours.

Because the percentage represented by the 30 HV for a road with large seasonal fluctuations
may not be much different from the percentage represented by the 30 HV on most rural roads, the
30 HV criterion may not be appropriate for such roads. A design that results in somewhat less
satisfactory traffic operation during seasonal peaks than on rural roads with normal traffic
fluctuations, will generally be accepted by the public. On the other hand, design should not be so
economical that severe congestion results during peak hours. It may be desirable, therefore, to
choose an hourly volume for design, which is about 50 percent of the volumes expected to occur
during a few highest hours of the design year, whether or not that volume is equal to 30 HV.
Some congestion would be experienced by traffic during peak hours but the capacity would not
be exceeded. A check should be made to ensure that the expected maximum hourly traffic does
not exceed the capacity.

The design hourly volume (DHV) for rural highways, therefore, should generally be the 30
HV of the future year chosen for design. Exceptions may be made on roads with high seasonal
traffic fluctuation, where a different hourly volume may need to be used. The 30-HV criterion
also applies in general to urban areas; however, where the fluctuation in traffic flow is markedly
different from that on rural highways, other hours of the year should be considered as the basis
for design.

In urban areas, an appropriate DHV may be determined from the study of traffic during the
normal daily peak periods. Because of the recurring morning and afternoon peak traffic flow,
there is usually little difference between the 30th and the 200th highest hourly volume. For
typical urban conditions, the highest hourly volume is found during the afternoon work-to-home
travel peak. One approach for determining a suitable DHV is to select the highest afternoon peak
traffic flow for each week and then average these values for the 52 weeks of the year. If the
morning peak-hour volumes for each week of the year are all less than the afternoon peak
volumes, the average of the 52 weekly afternoon peak-hour volumes would have about the same
value as the 26th highest hourly volume of the year. If the morning peaks are equal to the
afternoon peaks, the average of the afternoon peaks would be about equal to the 50th highest
hourly volume.

The volumes represented by the 26th and 50th highest hours of the year are not sufficiently
different from the 30 HV value to affect design. Therefore, in urban design, the 30th highest
hourly volume can also be assumed to be a reasonable representation of daily peak hours during
the year. Exceptions may be appropriate in those areas or locations where recreational or other
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travel is concentrated during particular seasons. At such locations, a distribution of traffic volume
where the hourly volumes are much greater than the 30 HV may result; the 30 HV in such cases
may be inappropriate as the DHV and a higher value should be considered in design. Specific
measurements of traffic volumes should be made and evaluated to determine the appropriate
DHV.

Traffic estimates used for the design of urban streets and highways are usually expressed as
ADT volumes derived from the urban transportation planning process. In recent years, however,
consideration has been given to the development of DHVs by making peak-hour traffic
assignments in lieu of ADT assignments. The availability of the 1980 and 1990 census journey-
to-work information has had a major influence on this latter approach.

In the usual case, future travel demand is determined from the urban transportation planning
process in terms of total daily trips that are assigned to the transportation system. Consideration
of the split between public and private transportation is also incorporated into this process. These
assigned trips constitute the traffic volumes on links of the future street and highway network.

In some instances, these volumes (ADT) are provided directly to highway designers. In
others, they are converted by the operational transportation study staff to directional volumes for
the design hour. From a practical standpoint, the latter approach may be the more desirable
because the transportation study staff is often in a better position to evaluate the effects that the
assumptions inherent in the planning process have on the resulting design volumes.

Two-way DHVs (i.e., the 30 HV, or its equivalent) may be determined by applying a
representative percentage (usually 8 to 12 percent in urban areas) to the ADT. In many cases this
percentage, based on data obtained in a traffic count program, is developed and applied system-
wide; in other cases, factors may be developed for different facility classes or different areas of an
urban region, or both. At least one highway agency has developed regression equations
representing the relationship between peak flow and ADT; different equations are applied,
depending on the number of lanes and the range of the ADT volumes.

Directional Distribution

For two-lane rural highways, the DHV is the total traffic in both directions of travel. In the
design of highways with more than two lanes and on two-lane roads where important
intersections are encountered or where additional lanes are to be provided later, knowledge of the
hourly traffic volume for each direction of travel is essential.

A multilane highway with a high percentage of traffic in one direction during the peak hours
may need more lanes than a highway having the same ADT but with a lesser percentage of
directional traffic. During peak hours on most rural highways, from 55 to 70 percent of the traffic
is traveling in the peak direction, with up to as much as 80 percent occasionally. Directional
distributions of traffic vary enough between sites that two multilane highways carrying equal
traffic may have peak direction volumes that differ by as much as 60 percent. For example,
consider a rural road with a design volume of 4,000 vehicles per hour (vph) for both directions of
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travel combined. If during the design hour, the directional distribution is equally split, or
2,000 vph is one direction, two lanes in each direction may be adequate. If 80 percent of the DHV
is in one direction, at least three lanes in each direction would be needed for the 3,200 vph; and if
a 1,000-vehicles-per-lane criterion is applied, four lanes in each direction would be needed.

The peak-hour traffic distribution by direction of travel is generally consistent from day to
day and from year to year on a given rural road, except on some highways serving recreational
areas. Except for urban highways, the directional distribution of traffic measured for current
conditions may generally be assumed to apply to the DHV for the future year for which the
facility is designed.

The directional distribution of traffic on multilane facilities during the design hour (DDHV)
should be determined by making field measurements on the facility under consideration or on
parallel and similar facilities. In the latter case, the parallel facilities should preferably be those
from which traffic, for the most part, would be diverted to the new highway. The DDHV
applicable for use on multilane facilities may be computed by multiplying the ADT by the
percentage that 30 HV is of the ADT, and then by the percentage of traffic in the peak direction
during the design hour. Thus, if the DHV is 15 percent of the ADT and the directional
distribution at the peak hour is 60:40, the DDHV is 0.15 x 0.60 x ADT, or 9 percent of the ADT.
If the directional ADT is known for only one direction, the ADT is nearly always twice the
directional ADT.

In designing intersections and interchanges, the volumes of all movements occurring during
the design hour should be known. This information is needed for both the morning and evening
peak periods because the traffic pattern may change significantly from one peak hour to the other.
Normally, a design is based on the DHV, which is to be accommodated during the morning rush
hour in one direction and during the evening rush hour in the other direction. Total (two-way)
volumes may be the same during both of these peaks, but the percentage of traffic in the two
directions of travel is reversed. At intersections, the percentage of approaching traffic that turns to
the right and to the left on each intersection leg should be determined separately for the morning
and evening peak periods. This information should be determined from actual counts, from origin
and destination data, or both.

Composition of Traffic

Vehicles of different sizes and weights have different operating characteristics that should be
considered in highway design. Besides being heavier, trucks are generally slower and occupy
more roadway space.  Consequently, trucks have a greater effect on highway traffic operation
than do passenger vehicles. The overall effect on traffic operation of one truck is often equivalent
to several passenger cars. The number of equivalent passenger cars is dependent on the roadway
gradient and, for two-lane highways, on the available passing sight distance. Thus, the larger the
proportion of trucks in a traffic stream, the greater the traffic demand and the greater the highway
capacity needed.
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For uninterrupted traffic flow, as typically found in rural areas, the various sizes and weights
of vehicles, as they affect traffic operation, can be grouped into two general classes:

• Passenger cars—all passenger cars, including mini-vans, vans, pick-up trucks, and
sport/utility vehicles

• Trucks—all buses, single-unit trucks, and combination trucks

For traffic-classification purposes, trucks are normally defined as those vehicles having
manufacturer’s gross vehicle weight (GVW) ratings of 4,000 kg [9,000 lb] or more and having
dual tires on at least one rear axle.

In the passenger-car class, as defined above, most of the vehicles have similar operating
characteristics. In the truck class, operating characteristics vary considerably, particularly in size
and weight/power ratio. Despite this variation in the operating characteristics of trucks, the
average effect of all trucks in a traffic stream is similar on most highways under comparable
conditions. Accordingly, for the geometric design of a highway, it is essential to have traffic data
on vehicles in the truck class. These data generally indicate the major types of trucks and buses as
percentages of all traffic expected to use the highway.

For design purposes, the percentage of truck traffic during the peak hours should be
determined. In rural areas, comprehensive data usually are not available on the distribution of
traffic by vehicle types during the peak hours; however, the percentage of truck traffic during the
peak hours is generally less than the percentage for a 24-hour period. As the peak hour
approaches, the volume of passenger-car traffic generally increases at a greater rate than does the
volume of truck traffic. Most trucks operate steadily throughout the day, and much over-the-road
hauling is done at night and during early morning hours. In the vicinity of major truck and bus
terminals, the scheduling of regular truck and bus runs may result in the concentration of trucks
during certain hours of the day. However, because of the delays caused by other traffic during
peak hours, such schedules generally are made to avoid these hours.

For design of a particular highway, data on traffic composition should be determined by
traffic studies. Truck traffic should be expressed as a percentage of total traffic during the design
hour (in the case of a two-lane highway, as a percentage of total two-way traffic, and in the case
of a multilane highway, as a percentage of total traffic in the peak direction of travel).

Under urban interrupted-flow conditions, the criteria for determining traffic composition
differ from those used elsewhere. At important intersections, the percentage of trucks during the
morning and evening peak hours should be determined separately. Variations in truck traffic
between the various traffic movements at intersections may be substantial and may influence the
appropriate geometric layout. The percentage of trucks may also vary considerably during a
particular hour of the day. Therefore, it is advisable to count trucks for the several peak hours that
are considered representative of the 30th highest or design hour. A convenient value, that appears
appropriate for design use, is the average of the percentages of truck traffic percentages for a
number of weekly peak hours. For highway-capacity analysis purposes, local city-transit buses
should be considered separately from other trucks and buses.
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Projection of Future Traffic Demands

Geometric design of new highways or improvements to existing highways should not
usually be based on current traffic volumes alone, but should consider future traffic volumes
expected to use the facility. A highway should be designed to accommodate the traffic volume
that is likely to occur within the design life of the facility.

It is difficult to define the life of a highway because major segments may have different
lengths of physical life. Each segment is subject to variations in estimated life expectancy for
reasons not readily subject to analysis, such as obsolescence or unexpected radical changes in
land use, with the resulting changes in traffic volumes, patterns, and demands. Right-of-way and
grading may be considered to have a physical life expectancy of 100 years; minor drainage
structures and base courses, 50 years; bridges, 25 to 100 years; resurfacing, 10 years; and
pavement structure, 20 to 30 years, assuming adequate maintenance and no allowance for
obsolescence. Bridge life may vary depending on the cumulative frequency of heavy loads.
Pavement life can vary widely, depending largely on initial expenditures and the repetition of
heavy axle loads.

The assumption of no allowance for functional obsolescence is open to serious debate. The
principal causes of obsolescence are reduction in the traffic operational level of service resulting
from increases in the number of intersections and driveways, and increases in traffic demand
beyond the design capacity. With freeways, which have full access control and no at-grade
crossings, obsolescence due to increased number of intersections and driveways can be
eliminated. On other highway types, obsolescence due to addition of intersections and driveways
is much more difficult to forestall; this occurs particularly in urban and suburban areas, but may
occur in rural areas as well.

It is a moot question whether the design capacity of a highway should be based on its life
expectancy. The decision is greatly influenced by economics. For example, a highway might be
designed for traffic volumes 50 years hence with the expectation that the pavement structure
would be restored in 20 to 25 years. However, if the added cost of a 50-year design over a design
with a 25-year life expectancy is appreciable, it may be imprudent to make a further investment
providing capacity that will not be needed for at least 25 years. The construction cost savings
could be used to construct another currently needed highway project. Furthermore, the cost of
increased maintenance for the larger highway would be avoided for at least 25 years. Also, most
highways are capable of handling higher traffic volumes than their design volume indicates, but
this may cause more inconvenience, such as a reduction in speed and less maneuverability.

For example, a four-lane divided highway with a design ADT of 10,000 or 15,000 vehicles
per day could handle two or three times that design volume depending on several factors
discussed later. Thus, the four-lane divided highway could adequately serve traffic long after the
design year and, in many cases, indefinitely.

In a practical sense, the design volume should be a value that can be estimated with
reasonable accuracy. Many highway engineers believe the maximum design period is in the range
of 15 to 24 years. Therefore, a period of 20 years is widely used as a basis for design. Traffic
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cannot usually be forecast accurately beyond this period on a specific facility because of probable
changes in the general regional economy, population, and land development along the highway,
which cannot be predicted with any degree of assurance.

Estimating traffic volumes for a 20-year design period may not be appropriate for many
reconstruction or rehabilitation projects. These projects may be developed on the basis of a
shorter design period (5 to 10 years) because of the uncertainties of predicting traffic and  funding
constraints.

Speed

Speed is one of the most important factors considered by a traveler in selecting alternative
routes or transportation modes. Travelers assess the value of a transportation facility in moving
people and goods by its convenience and economy, which are directly related to its speed. The
attractiveness of a public transportation system or a new highway are each weighed by the
traveler in terms of time, convenience, and money saved. Hence, the desirability of rapid transit
may well rest with how rapid it actually is. The speed of vehicles on a road or highway depends,
in addition to capabilities of the drivers and their vehicles, upon four general conditions: the
physical characteristics of the highway and the amount of roadside interference, the weather, the
presence of other vehicles, and the speed limitations (established either by law or by traffic
control devices). Although any one of these factors may govern travel speed, the effect of these
general conditions is usually interrelated.

The objective in design of any engineered facility used by the public is to satisfy the public’s
demand for service in a safe and economical manner. The facility should, therefore, accommodate
nearly all demands with reasonable adequacy and also should not fail under severe or extreme
traffic demands. Therefore, highways should be designed to operate at a speed that satisfies
nearly all drivers. Because only a small percentage of drivers travel at extremely high speed, it is
not economically practical to design for them. They can use the highway, of course, but will be
constrained to travel at speeds less than they consider desirable. On the other hand, the speed
chosen for design should not be that used by drivers under unfavorable conditions, such as
inclement weather, because the highway would then be inefficient, and possibly unsafe, for
drivers under favorable conditions, and would not satisfy reasonable public expectations for the
facility.

Operating Speed

Operating speed is the speed at which drivers are observed operating their vehicles during
free-flow conditions. The 85th percentile of the distribution of observed speeds is the most
frequently used measure of the operating speed associated with a particular location or geometric
feature.
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Running Speed

The speed at which an individual vehicle travels over a highway section is known as its
running speed. The running speed is the length of the highway section divided by the running
time required for the vehicle to travel through the section. The average running speed of all
vehicles is the most appropriate speed measure for evaluating level of service and road user costs.
The average running speed is the sum of the distances traveled by vehicles on a highway section
during a specified time period divided by the sum of their running times.

One means of estimating the average running speed for an existing facility where flow is
reasonably continuous is to measure the spot speed at one or more locations. The average spot
speed is the arithmetic mean of the speeds of all traffic as measured at a specified point on the
roadway. For short sections of highway, on which speeds do not vary materially, the average spot
speed at one location may be considered an approximation of the average running speed. On
longer stretches of rural highway, average spot speeds measured at several points, where each
point represents the speed characteristics of a selected segment of highway, may be averaged
(taking relative lengths of the highway segments into account) to provide a better approximation
of the average running speed.

The average running speed on a given highway varies somewhat during the day, depending
primarily on the traffic volume. Therefore, when reference is made to a running speed, it should
be clearly stated whether this speed represents peak hours, off-peak hours, or an average for the
day. Peak and off-peak running speeds are used in design and operation; average running speeds
for an entire day are used in economic analyses.

The effect of traffic volume on average running speed can be determined using the
procedures of the Highway Capacity Manual (HCM) (15). The HCM shows that:

• for freeways and multilane highways, there is a substantial range of flow rates over
which speed is relatively insensitive to the flow rate; this range extends to fairly high
flow rates. Then, as the flow rate per lane approaches capacity, speed decreases
substantially with increasing flow rate.

• for two-lane highways, speed decreases linearly with increasing flow rate over the
entire range of flow rates between zero and capacity.

Design Speed

Design speed is a selected speed used to determine the various geometric design features of
the roadway. The assumed design speed should be a logical one with respect to the topography,
anticipated operating speed, the adjacent land use, and the functional classification of highway.
Except for local streets where speed controls are frequently included intentionally, every effort
should be made to use as high a design speed as practical to attain a desired degree of safety,
mobility, and efficiency within the constraints of environmental quality, economics, aesthetics,
and social or political impacts. Once the design speed is selected, all of the pertinent highway
features should be related to it to obtain a balanced design. Above-minimum design values should
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be used, where practical. Some design features, such as curvature, superelevation, and sight
distance, are directly related to, and vary appreciably with, design speed. Other features, such as
widths of lanes and shoulders and clearances to walls and rails, are not directly related to design
speed, but they do affect vehicle speeds. Therefore, wider lanes, shoulders, and clearances should
be considered for higher design speeds. Thus, when a change is made in design speed, many
elements of the highway design will change accordingly.

The selected design speed should be consistent with the speeds that drivers are likely to
expect on a given highway facility. Where a reason for limiting speed is obvious, drivers are more
apt to accept lower speed operation than where there is no apparent reason. A highway of higher
functional classification may justify a higher design speed than a lesser classified facility in
similar topography, particularly where the savings in vehicle operation and other operating costs
are sufficient to offset the increased costs of right-of-way and construction. A low design speed,
however, should not be selected where the topography is such that drivers are likely to travel at
high speeds. Drivers do not adjust their speeds to the importance of the highway, but to their
perception of the physical limitations of the highway and its traffic.

The selected design speed should fit the travel desires and habits of nearly all drivers
expected to use a particular facility. Where traffic and roadway conditions are such that drivers
can travel at their desired speed, there is always a wide range in the speeds at which various
individuals will choose to operate their vehicles. A cumulative distribution of free-flow vehicle
speeds typically has an S-shape when plotted as the percentage of vehicles versus observed speed.
The selected design speed should be a high-percentile value in this speed distribution curve (i.e.,
inclusive of nearly all of the desired speeds of drivers, wherever practical).

Speed distribution curves illustrate the range of speeds that should be considered in selecting
an appropriate design speed. A design speed of 110 km/h [70 mph] should be used for freeways,
expressways, and other arterial highways in rural areas.

It is desirable that the running speed of a large proportion of drivers be lower than the design
speed. Experience indicates that deviations from this desired goal are most evident and
problematic on sharper horizontal curves. In particular, curves with low design speeds (relative to
driver expectation) are frequently overdriven and tend to have poor safety records. Therefore, it is
important that the design speed used for horizontal curve design be a conservative reflection of
the expected speed on the constructed facility.

Where the physical features of the highway are the principal speed controls and where most
drivers choose to operate near the speed limit, a design speed of 120 km/h [75 mph] would serve
a very high percentage of drivers. On a highway designed for this speed, only a small percentage
of drivers might operate at higher speeds when volume is low and all other conditions are
favorable. However, for a design speed of 80 km/h [50 mph], satisfactory performance could be
expected only on certain types of highways. When a low speed design is selected, it may be
important to have the speed limit enforced during off-peak hours.

On many freeways, particularly in suburban and rural areas, a design speed of 100 km/h
[60 mph] or higher can be provided with little additional cost above that required for a design
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speed of 80 km/h [50 mph]. If the freeway alignment is relatively straight and the character and
location of interchanges permit design for high-speed operation, a design speed of 110 km/h [70
mph] is desirable.

Generally, there is no distinction in design speed between ground-level, elevated, and
depressed freeways. However, the operating characteristics of elevated freeways differ from those
on depressed freeways. On a depressed freeway, traffic exits the freeway on upgrade ramps and
enters the freeway on downgrade ramps, which encourages good operation. By contrast, on an
elevated freeway, traffic exits the freeway on downgrade ramps and enters the freeway on
upgrade ramps, which is less desirable because vehicles entering the elevated freeway on an
ascending grade, particularly loaded trucks, require long distances to reach the running speed of
the freeway. Furthermore, vehicles leaving the elevated freeway on a descending grade need
additional braking distance before reaching  the arterial street, and therefore, may tend to slow
down in the through-traffic lanes in advance of the ramp terminal. Parallel deceleration lanes or
longer ramp lengths and lesser grades are frequently used on elevated freeways to reduce the
likelihood that vehicles will slow in the main lanes. Nevertheless, running speeds on elevated
freeways are apt to be slightly lower than those on similar depressed freeways, especially when
access points are closely spaced. In northern climates, elevated structures are subject to rapid
freezing of precipitation as a result of their exposure; the use of lower superelevation rates may be
appropriate under such conditions. Although speeds on viaducts are less than those on
comparable depressed sections, the difference probably is small. Therefore, design speeds of 80
to 110 km/h [50 to 70 mph] apply to both elevated and depressed freeways.

Given an overall range in design speeds of 20 to 120 km/h [15 to 75 mph] used in geometric
design, it is desirable to select design speeds in increments of 10 km/h [5 mph]. Smaller
increments would result in little distinction in the dimensions of design elements between one
design speed and the next higher design speed; larger increments of 20 to 30 km/h [15 to 20 mph]
would result in too large a difference in the dimensions of design features between any two
design speeds. In some instances, however, there may be an advantage in using intermediate
increments to effect changes in the design speed. Increments in design speed of 10 km/h [5 mph]
should also be used in the design of turning roadways, ramps, and low-speed roads.

Exhibit 2-29 shows the corresponding design speeds in metric and U.S. customary units in
10-km/h [5-mph] increments. This table should be used in converting the units of measurement of
design speeds.

Although the selected design speed establishes the limiting values of curve radius and
minimum sight distance that should be used in design, there should be no restriction on the use of
flatter horizontal curves or greater sight distances where such improvements can be provided as a
part of an economical design. Even in rugged terrain, an occasional tangent or flat curve may be
desirable. Isolated features designed for higher speeds would not necessarily encourage drivers to
speed up, although a succession of such features might. In such cases, the entire section of
highway should be designed for a higher speed. A substantial length of tangent between sections
of curved alignment is also likely to encourage high-speed operation. In such situations, a higher
design speed should be selected for all geometric features, particularly sight distance on crest
vertical curves and across the inside of horizontal curves.
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Metric US Customary

Design speed (km/h) Corresponding design speed (mph)

20 15
30 20
40 25
50 30
60 40
70 45
80 50
90 55

100 60
110 70
120 75
130 80

Exhibit 2-29.  Corresponding Design Speeds in Metric and US Customary Units

A pertinent consideration in selecting design speeds is the average trip length. The longer the
trip, the greater the driver’s desire  to use higher speeds. In the design of a substantial length of
highway, it is desirable to select a uniform design speed. However, changes in terrain and other
physical controls may dictate a change in design speed on certain sections. If so, the introduction
of a lower design speed should not be done abruptly but should be effected over sufficient
distance to permit drivers to gradually change speed before reaching the highway section with the
lower design speed.

Where it is appropriate to reduce horizontal and vertical alignment features, many drivers
may not perceive the lower speed condition ahead, and therefore, it is important that they be
warned well in advance. The changing condition should be indicated by such controls as speed-
zone and curve-speed signs.

On rural highways and on high-type urban facilities, a percentage of vehicles is usually able
to travel at near the free-flow speed governed by geometric design elements; therefore, the
selection of an appropriate design speed is particularly important. However, in many arterial
streets, vehicle speeds during several hours of the day are limited or regulated more by the
presence of large volumes of vehicles and by traffic control devices, rather than by the physical
characteristics of the street. In such cases, the selection of a design speed is less critical to safe
and efficient operation.

During periods of low-to-moderate volume, speeds on arterial streets are governed by such
factors as posted speed limits, midblock turns into and out of driveways, intersectional turns,
traffic signal spacing, and signal timing for progression. When arterial street improvements are
being planned,  factors such as future posted speed limits, physical and economic constraints, and
running speeds likely to be attained during off-peak hours should be considered. All of these
factors should influence the selection of an appropriate design speed.
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Horizontal alignment generally is not the governing factor in restricting speeds on arterial
streets. Proposed improvements generally are patterned to the existing street system, and minor
horizontal alignment changes are commonly made at intersections. The effect of these alignment
changes is usually small because operation through the intersection is regulated by the type of
traffic controls needed to handle the volume of cross and turning traffic. Superelevation may be
provided at curves on urban arterial streets, but the amount of superelevation needed is
determined in a different manner than for open-road rural conditions. Wide pavement areas,
proximity of adjacent development, control of cross slope and profile for drainage, and the
frequency of cross streets and entrances all contribute to the need for lower superelevation rates
on urban arterial streets. The width of lanes, offset to curbs, proximity of poles and trees to the
traveled way, presence of pedestrians within the right-of-way, and nearness of business or
residential buildings, individually or in combination, often limit speeds even on highways with
good alignment and flat profiles. Despite these factors, designers should strive for good alignment
and flat profiles in the design of urban arterial streets, since safety and operating characteristics
can be improved, particularly during off-peak periods. Chapter 3 provides guidance on horizontal
alignment design for low-speed urban conditions.

Topography can materially affect the choice of design speed on arterial streets. Many cities
were developed along watercourses and include areas varying from gently rolling to mountainous
terrain. Streets may have been constructed originally with only minor grading to fit the
topography. Because an arterial street is usually developed to fit the alignment of an existing
street, both through business and residential areas, it generally follows a varying vertical profile.
Once the design speed is selected, appropriate sight distance should be provided at all crests and
across the inside of horizontal curves. Profiles with long, continuous grades should be designed
with proper consideration for the speeds of mass transit and commercial vehicles. Extra lanes on
the upgrades may be needed so that the grade can match other portions of the facility in capacity
and enable vehicles that can proceed at a reasonable speed to pass slower moving vehicles.

Urban arterial streets should be designed and control devices regulated, where practical, to
permit running speeds of 30 to 75 km/h [20 to 45 mph]. Speeds in the lower portion of this range
are applicable to local and collector streets through residential areas and to arterial streets through
more crowded business areas, while the speeds in the higher portion of the range apply to high-
type arterials in outlying suburban areas. For arterial streets through crowded business areas,
coordinated signal control through successive intersections is generally needed to permit
attainment of even the lower speeds. Many cities have substantial lengths of signal controlled
streets that operate at speeds of 20 to 40 km/h [15 to 25 mph].

Under less crowded conditions in suburban areas, it is common on preferred streets to adopt
some form of speed zoning or control to limit high operating speeds. In such areas, pedestrians
along the arterial or vehicles on cross streets, although relatively infrequent, may be exposed to
potential collisions with through drivers. Such through drivers may gradually gain speed as urban
restrictions are left behind or may retain their open-road speeds as they enter the city. Thus,
although through traffic should be expedited to the extent practical, it may be equally important to
limit speeds to reduce the risk of crashes and to serve local traffic.
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Posted speed limits, as a matter of policy, are not the highest speeds that might be used by
drivers. Instead, such limits are usually set to approximate the 85th percentile speed of traffic as
determined by measuring the speeds of a sizable sample of vehicles. The 85th-percentile speed is
usually within the “pace” or the 15-km/h [10-mph] speed range used by most drivers. Speed
zones cannot be made to operate properly if the posted speed limit is determined arbitrarily. In
addition, speed zones should be determined from traffic engineering studies, should be consistent
with prevailing conditions along the street and with the cross section of the street, and should be
capable of reasonable enforcement.

Urban arterial streets and highways generally have running speeds of 30 to 70 km/h [20 to
45 mph]. It follows that the appropriate design speeds for arterials should range from 50 to 100
km/h [30 to 60 mph]. The design speed selected for an urban arterial should depend largely on the
spacing of signalized intersections, the selected type of median cross section, the presence or
absence of curb and gutter along the outside edges of the traveled way, and the amount and type
of access to the street. Reconstructed urban arterial highways should generally be designed for an
operating speed of at least 50 km/h [30 mph].

The preceding discussion describes the considerations in selecting an appropriate design
speed. From this discussion, it should be evident that there are important differences between the
design criteria applicable to low- and high-speed designs. Because of these distinct differences,
the upper limit for low-speed design is 70 km/h [45 mph] and the lower limit for high-speed
design is 80 km/h [50 mph].

Traffic Flow Relationships

Traffic flow conditions on roadways can be characterized by the volume flow rate expressed
in vehicles per hour, the average speed in kilometers per hour [miles per hour], and the traffic
density in vehicles per kilometer [vehicles per mile]. These three variables—volume, speed, and
density—are interrelated and have predictable relationships. The generalized relationships
between volume, speed, and density for uninterrupted flow facilities, as presented in the HCM
(15) are shown in Exhibit 2-30. The relationships shown in the exhibit are conceptual in nature
and do not necessarily correspond to the actual relationships used in specific HCM procedures.
For example, the HCM procedures for freeways and multilane highways show that speed does not
vary with volume through most of the low and intermediate volume range, as shown in the
exhibit. The HCM procedures for two-lane highways show that speed varies linearly with volume
throughout the entire volume range from zero to capacity.

Density, the number of vehicles per unit length of roadway, increases as vehicles crowd
closer together. As Exhibit 2-30 shows, when speeds decrease, increased crowding can occur and
drivers can comfortably follow more closely behind other vehicles. Density is used in the HCM
as the measure of quality of traffic service for freeways and multilane highways.

Traffic volumes also vary with density from zero to maximum flow rate, as shown in
Exhibit 2-30. The two points of zero flow in the exhibit represent either no vehicles at all or so
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many vehicles on the roadway that flow has  stopped. The maximum flow is reached at the point
of maximum density.

Exhibit 2-30.  Generalized Speed-Volume-Density Relationships (15)

Interference to traffic flow causes speeds to be reduced, vehicles to travel closer together,
and density to increase. Interference may be caused by weather conditions, cross traffic, disabled
vehicles, crashes, or other conditions. As these conditions cause more interference, the flow rates
within certain limits can still be maintained but with reduced speed, closer vehicle spacing, and
greater density. When interference becomes so great (despite closer vehicle spacing and greater
density) that the average speed drops below that necessary to maintain stable flow, there is a rapid
decrease in speed and traffic flow, and severe congestion occurs.

When traffic on a highway encounters interference that limits or reduces the roadway
capacity in a single area, the result is a ìbottleneck.î  If the flow entering this bottleneck does not
exceed its capacity, flow remains stable and no problems arise. However, when the upstream
section carries more vehicles than the bottleneck can accommodate, a breakdown in traffic flow
results. Speeds are reduced to a crawl and vehicles begin to queue upstream until incoming flow
again falls below the outflow capacity. To avoid bottleneck situations, care should be taken to
design roadways with consistent volume-carrying capacity. The level-of-service concept
discussed in the next section helps in obtaining this consistency.

An intersection is often an unavoidable bottleneck. The capacity on the roadway section
approaching an intersection usually exceeds the intersection capacity. This reduction in capacity
becomes acute when the intersection is controlled by stop signs or traffic signals. At a traffic
signal, vehicles that arrive during the red phase encounter a zero-capacity bottleneck. These
vehicles form a queue until the green phase begins, removing the restraint, and discharging the
queue. If the incoming volume is too high, not all vehicles in the queue can be discharged during
the green phase, and there is a continuing buildup of the queue.
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Arrivals at the intersection are generally predictable in urban areas where the approaching
vehicles are platooned by upstream signals. In suburban or rural locations, vehicle arrivals are
often random. This random arrival pattern should be recognized in the design of appropriate cycle
times, turn-lane storage lengths, and approach capacity.

At bottlenecks where the traffic must slow down or stop, each vehicle and its occupants
incur a certain delay. Delay results in loss of time (hence monetary loss) to the vehicle’s
occupants, increased fuel consumption, and additional air pollution.

HIGHWAY CAPACITY

General Characteristics

The term “capacity” is used to express the maximum hourly rate at which persons or
vehicles can reasonably be expected to traverse a point (i.e., a uniform section of a lane or a
roadway) during a given time period under prevailing roadway and traffic conditions. The range
of traffic flow on a highway can vary from very light volumes to volumes that equal the capacity
of the facility as defined above. In the generic sense, the term also encompasses broader relations
between highway characteristics and conditions, traffic composition and flow patterns, and the
relative degree of congestion at various traffic volumes. Highway capacity issues in this broad
sense are discussed below.

The following sections provide a brief overview of the principles and major factors
concerning highway design capacity. To determine the capacity for a particular highway design,
the designer should refer to the most recent edition of the Highway Capacity Manual (HCM) (15)
for guidance. The HCM is used as the basic reference for the following discussion.

Application

Highway capacity analysis serves three general purposes, including:

• Transportation planning studies—Highway capacity analysis is used in these studies
to assess the adequacy or sufficiency of existing highway networks to service current
traffic. In addition, it is used to estimate the time in the future when traffic growth may
overtake the capacity of a highway or perhaps reach a level of congestion below
capacity that is considered undesirable.

• Highway design—A knowledge of highway capacity is essential to properly fit a
planned highway to traffic demands. Highway capacity analysis is used both to select
the highway type and to determine dimensions such as the number of lanes and the
minimum lengths for weaving sections.

• Traffic operational analyses—Highway capacity analysis is used in these analyses for
many purposes, but especially for identifying bottleneck locations (either existing or
potential). It is also used in preparing estimates of operational improvements that may
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be expected to result from prospective traffic control measures or from spot alterations
in the highway geometry.

The traffic data for these uses varies with the degree of accuracy needed. For traffic-
operational analyses, in which the success of minor improvements may be measured in terms of a
few vehicles per hour, a high degree of precision is desirable. For highway design, a much lower
order of precision suffices because the traffic data are frequently estimated for a period 10 to 20
years in the future and involve not only approximations of traffic volumes but also
approximations of such factors as traffic composition and movement patterns. The discussion
below shows the appropriate level of detail to ensure a reasonable balance between the design of
the highway and the estimated future traffic. Such an analysis ensures that future operating
conditions will not fall below an acceptable level. If a greater accuracy than is available from the
suggested procedures is needed, refer to the HCM and other reports on traffic operational
analysis.

Capacity as a Design Control

Design Service Flow Rate Versus Design Volume

The design volume is the volume of traffic projected to use a particular facility during the
design year, which is usually 10 to 20 years in the future. Design volumes are estimated in the
planning process and are often expressed as the expected traffic volume during a specified design
hour. The derivation of the DHV has been discussed earlier in this chapter in the section on
“Traffic Characteristics.”

Design service flow rate is the maximum hourly flow rate of traffic that a highway with
particular design features would be able to serve without the degree of congestion falling below a
pre-selected level, as described below.

A major objective in designing a highway is to create a facility with dimensions and
alignment that can serve the design service flow rate, which should be at least as great as the flow
rate during the peak 15-minute period of the design hour, but not so great as to represent an
extravagance in the design. Where this objective is accomplished, a well-balanced, economical
highway facility will result.

Measures of Congestion

Three key considerations in geometric design are the roadway design, the traffic using the
roadway, and the degree of congestion on the roadway. The first two considerations can be
measured in exact units. For example, the roadway either is or is not a highway with full control
of access, its cross-section dimensions can be expressed in meters [feet], and the steepnesses of
its grades can be expressed as a percentage. Likewise, traffic flow can be expressed as the number
of vehicles per unit of time, traffic composition can be expressed as the percentage of vehicles of
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each class, and the peaking characteristics and directional distribution of traffic can also be
quantified.

A scale of values for expressing the degree of congestion is, however, a much more elusive
measure. Numerous measures of the overall service provided by a roadway section have been
suggested, including safety, freedom to maneuver, the ratio of traffic volume to capacity (v/c),
operating speed, average running speed, and others. In the case of signalized intersections, the
stopped delay encountered by motorists is a commonly used measure of congestion.

For uninterrupted traffic flow (i.e., flow not influenced by signalized intersections), traffic
operational conditions are defined by using three primary measures: speed, volume (or rate of
flow), and density. Density describes the proximity of vehicles to one another and reflects the
freedom to maneuver within the traffic stream. It is the most critical parameter describing traffic
operations with uninterrupted flow. As density increases from zero, the rate of flow also increases
because more vehicles are on the roadway. While this is happening, speed begins to decline (due
to the vehicle interactions). This decline is virtually negligible at low densities and flow rates.
However, as density continues to increase, a point is reached at which speed declines noticeably.
A maximum rate of flow is eventually reached at which the high density of traffic results in
markedly decreased speeds and a reduced flow rate. This maximum rate of flow for any given
facility is defined as its capacity. As capacity is approached, flow becomes more unstable because
available gaps in the traffic stream become fewer and fewer. At capacity, there are no usable gaps
in the traffic stream, and any conflict from vehicles entering or leaving the facility, or from
internal lane changing maneuvers, creates a disturbance that cannot be effectively damped or
dissipated. Thus, operation at or near capacity is difficult to maintain for long periods of time
without the formation of upstream queues, and forced or breakdown flow becomes almost
unavoidable. For this reason, most facilities are designed to operate at volumes less than their
capacity.

For interrupted flow, such as that occurring on streets where traffic is controlled by signals,
the highway user is not as concerned with attaining a high travel speed as with avoiding lengthy
stops at intersections or a succession of stops at several intersections. Average stopped-time delay
is the principal measure of effectiveness used in evaluating signalized intersections. Stopped-time
delay, which is used because it is reasonably easy to measure and is conceptually simple, is a
characteristic of intersection operations that is closely related to motorist perceptions of quality of
traffic flow.

Relation Between Congestion and Traffic Flow Rate

Congestion does not necessarily signify a complete stoppage of traffic flow. Rather it can be
thought of as a restriction or interference to normal free flow. For any given class of highway,
congestion increases with an increase in flow rate until the flow rate is almost equal to the
facility’s capacity, at which point congestion becomes acute. The gradual increase in congestion
with increase in flow rate is apparent no matter what measure is used as an index of congestion.
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The relationship between running speed and traffic flow rate for freeways, multilane
highways, and two-lane highways has been discussed earlier in this chapter in the section on
“Running Speed.”  As the traffic flow rate approaches a facility’s capacity, as defined in the
HCM (15), any minor disruption in the free flow of traffic may cause traffic on a roadway to
operate on a stop-and-go basis, with a resulting decrease in traffic flow rate that can be served.

Highway sections where the paths of traffic must merge and diverge within relatively short
distances are called “weaving sections.”  Average running speed, and hence the degree of
congestion, is a function not only of the volume of traffic involved in the weaving (crossing)
movements but also of the distance within which the weaving maneuvers must be completed.
(Weaving is addressed under a separate subsection later in this chapter.)

On arterial streets within the urban environment, average running speed varies only slightly
with changes in traffic flow rate. However, delay at signalized intersections may increase
dramatically as flow rates approach capacity. Therefore, greater degrees of congestion occur, and
this results in reduced overall travel speeds, higher average travel times, and traffic spill-backs
into upstream intersections.

Acceptable Degrees of Congestion

From the standpoint of the highway user, it would be preferable for each user to have an
exclusive right to the highway at the time the motorist finds occasion or need to use it. Moreover,
a motorist would prefer that all highways be of types that would permit speeds far in excess of
those normally afforded by urban surface streets. However, users recognize that if others are to
share in the costs of transportation facilities, they are also entitled to share in their use. Therefore,
they will readily accept a moderate amount of congestion. Just what degree of congestion the
motoring public is willing to accept as reasonable remains a matter of conjecture, but it is known
to vary with a number of factors.

The average motorist understands in a general sense that corrective measures to alleviate
congestion may be more costly in some instances than in others. As a result, motorists will
generally accept a higher degree of congestion in those areas where improvements can be made
only at a substantial cost. Also, motorists are more willing to accept a higher degree of restraint in
short trips than they are in long trips, but motorists are generally not satisfied with the type of
operation that occurs when the volume of traffic approaches the facility’s capacity.

From a highway administrator’s point of view, the degree of congestion that highway users
experience is geared to the availability of resources. Historically, funds have never been sufficient
to meet all needs, causing severe strain in improving highways rapidly enough to prevent the
traffic demand from exceeding the capacity of the facility.

The appropriate degree of congestion that should be used in planning and designing highway
improvements is determined by weighing the desires of the motorists against the resources
available for satisfying these desires. The degree of congestion that should not be exceeded
during the design year on a proposed highway can be realistically assessed by: (1) determining
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the operating conditions that the majority of motorists will accept as satisfactory, (2) determining
the most extensive highway improvement that the governmental jurisdiction considers practical,
and (3) reconciling the demands of the motorist and the general public with the finances available
to meet those demands.

This reconciliation of desires with available resources is an administrative process of high
importance. The decision should first be made as to the degree of congestion that should not be
exceeded during the design period. The appropriate design for a particular facility (such as
number of lanes) can then be estimated from the concepts discussed in the following sections.

Principles for Acceptable Degrees of Congestion

No scientific method exists for deciding the maximum degree of congestion that might be
accepted as a basis for design. This decision lends itself neither to a modeling technique nor to the
insertion of coefficients into a computer program. Nevertheless, some principles or guidelines
that should aid in arriving at such decisions are itemized and discussed on the following pages.

1. The highway should be so designed that, when it is carrying the design volume, the
traffic demand will not exceed the capacity of the facility even during short intervals of
time.

Conditions can become intolerable for the motorist when the traffic demand exceeds the
capacity of the street or highway. Moreover, when stop-and-go traffic develops due to congestion
on highways (other than those controlled by signals), the flow rate that can be served by the
highway is drastically reduced. Stoppages will occur if the capacity is exceeded even for short
intervals of time. Because traffic does not flow uniformly throughout a full hour, allowance
should be made for peaking within the hour. This allowance is made in the HCM procedures with
an adjustment known as the “peak hour factor,” which is discussed later in this chapter.

Where traffic is controlled by signals at intersections, the relationship between delay and
capacity may be extremely complex. It is possible to have unacceptably large delays and long
queues where traffic demand approaches 75 to 85 percent of capacity. The reverse is also
possible—an intersection approach where traffic demand equals capacity may have low delays if
the signal cycle is short and/or if signal progression is possible.

2. The design volume per lane should not exceed the rate at which traffic can dissipate
from a standing queue.

This principle is applicable primarily to freeways and other high-type multilane highways.
For example, if traffic on a freeway lane is stopped even momentarily, it cannot recover at a rate
equal to the capacity of a freely flowing lane. If the traffic demand exceeds the rate at which cars
can depart from the head of a standing queue, the queue will increase in length rather than
dissipate, even after the cause of the stoppage is removed. The rate at which vehicles can depart
from a standing queue is estimated by various authorities as being within the range of 1,500 to
1,800 passenger cars per lane per hour.
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3. Drivers should be afforded some choice of speed. The latitude in choice of speed should
be related to the length of trip.

This principle is applicable to all types of streets and highways. The degree of freedom that
should be afforded is a subjective determination. On congested freeways with average speeds of
about 100 km/h [60 mph], for example, the range of speeds between the slowest and fastest driver
would typically be about 25 km/h [15 mph]. This may be satisfactory for short trips.

For longer trips, higher average speeds may be warranted, perhaps 10 km/h [5 mph] higher
than for short trips in densely developed areas. An average speed of 110 km/h [70 mph] or more
can be achieved on freeways with low to moderate traffic volumes. However, the high cost of
construction of urban freeways and the impact on the surrounding neighborhoods usually works
against achieving an operating speed this high except in suburban areas, as discussed further
under Principle  6 below.

4. Operating conditions should be such that they provide a degree of freedom from driver
tension that is related to or consistent with the length and duration of the trip.

This principle may appear to be a corollary of the previous principle. However, Principle 3
represents tensions stemming from impatience, whereas this one deals with tensions that develop
from driving in a dense traffic stream at speeds that an individual driver may consider to be too
fast for comfort but over which that driver is powerless to exercise control. If the driver reduces
speed, this induces others to pass and cut in front of them, thereby reducing the gap that the driver
was seeking to enlarge. Freeway travel at speeds of 65 to 100 km/h [40 to 60 mph] under very
high-density conditions is a rather tense experience to many and is one that should not be endured
if avoidable. Presently, no research data exist to support any recommendations as to the
maximum length of time that drivers can or should endure travel under high-density conditions,
but it is commonly accepted that tensions build up with continued exposure.

Driver tensions associated with freeway densities of 26 passenger cars per kilometer per lane
[42 passenger cars per mile per lane] or less are generally considered acceptable for trips within
most metropolitan areas. For long trips the mental concentration that is required and the tensions
that develop while driving in such heavy traffic are excessive; consequently, lower volumes
should be used for designing freeways that serve relatively long trips.

5. There are practical limitations that preclude the design of an ideal freeway.

An ideal section of freeway would have wide lanes and shoulders on tangent alignment with
no restrictions in lateral clearance. Such a freeway would be capable of carrying the capacity
specified for basic freeway segments in the HCM (15). More often than not, it is necessary to
compromise design features to fit the freeway (or other arterial) within attainable right-of-way, to
economize on certain features such as curvature or lengths of speed-change lanes, or to locate
interchanges closer to each other than would be desirable. It is usually not practical to design a
section of freeway with uniform capacity throughout its length.
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6. The attitude of motorists toward adverse operating conditions is influenced by their
awareness of the construction and right-of-way costs that might be necessary to provide
better service.

Highway users will accept poor operating conditions if they perceive that the highway is the
best design that can be reasonably provided at the particular location. They recognize in a general
way that highways are extremely costly in densely developed areas with high land values, in
difficult terrain, and at major obstacles to be crossed, such as navigable streams or harbors.
Consequently, they will accept poorer operating conditions where highway costs are high than
where there is no apparent reason for deficiencies that can be corrected at moderate expense.
Because construction costs are frequently much higher in large cities than in small cities, the net
result is that this principle tends to offset Principle 3 insofar as the effect of trip length within
densely developed areas is concerned.

Reconciliation of Principles for Acceptable Degrees of Congestion

As noted above, the capacities  for the base conditions presented in the HCM (15) may not
be obtainable or desirable on specific highway facilities, depending on the design and desired use
of the highway. These principles point to the broad general conclusions that are summarized
below.

Freeways. For short trips, tolerance to congestion is governed to a considerable extent by
driving tensions. Loss of travel time is of secondary importance, except that complete stoppages,
or stop-and-go driving, may be intolerable. These considerations suggest that the density of traffic
on urban freeways preferably should not exceed 26 passenger cars per kilometer per lane
[42 passenger cars per mile per lane]. Furthermore, if density does not exceed this level, little
difficulty from momentary stoppages will result, and minor design restrictions will have no
noticeable adverse effect on operating conditions.

For longer trips in metropolitan areas, travel time becomes more important to the user.
Driver tensions associated with densities of 26 passenger cars per kilometer per lane [42
passenger cars per mile per lane], while not unbearable, are decidedly unpleasant. No criteria are
available for fixing upon any definite value, but indications point to 20 passenger cars per
kilometer per lane [30 passenger cars per mile per lane] as resulting in an acceptable degree of
congestion.

For rural freeways, travel speed is the dominant consideration. On the basis of past
experience, a density of 13 passenger cars per kilometer per lane [20 passenger cars per mile per
lane] will permit desirable operations in rural areas.

Other Multilane Highways. Except where traffic is controlled by signals, measures of
congestion on other multilane highways are similar to those for freeways. Where the interference
with traffic from marginal development is slight, the traffic densities that result in acceptable
degrees of congestion on freeways may also be served by other multilane highways. This
situation is notably true in rural areas. In urban areas, the traffic volumes that can be served on
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other multilane highways, at acceptable levels of congestion, are generally somewhat lower than
those for freeways, as will be discussed subsequently in this chapter.

Factors Other Than Traffic Volume That
Affect Operating Conditions

The ability of a highway to serve traffic efficiently and effectively is influenced by the
characteristics of the traffic and by the design features of the highway.

Highway Factors

Few highways have ideal designs. Although most modern freeways have adequate cross-
sectional dimensions, many are not ideal with respect to design speed, weaving section design,
and ramp terminal design. Inadequacies in these features will result in inefficient use of the
remaining portions of the freeway.

On other classes of multilane highways, intersections, even though unsignalized, often
interfere with the free-flow operation of traffic. Development adjacent to the highway with
attendant driveways and interference from traffic entering and leaving the through-traffic lanes
cause a loss in efficiency and lead to congestion and safety problems at relatively low volumes.
The adverse effect, although readily apparent, can be difficult to quantify (16). Sharp curves and
steep grades cannot always be avoided, and it is sometimes appropriate to compromise on cross-
sectional dimensions. All of these conditions combine to cause the effects of congestion to be felt
at lower traffic volumes than would be the case for highways designed with ideal features and
protected by full access control or by access management.

For urban streets with signalized intersections at relatively close intervals, the traffic
volumes that could otherwise be served are reduced because a portion of each signal cycle must
be assigned exclusively to the crossing highway.

For a highway that is deficient in some of its characteristics and where the traffic stream is
composed of a mixture of vehicle classes rather than passenger cars only, compensatory
adjustment factors need to be applied to the traffic flow rates used as design values for ideal
highway conditions. These adjustments are necessary to determine the volume of mixed traffic
that can be served under minimum acceptable operating conditions on the highway under
consideration.

The HCM (15) identifies significant highway features that may have an adverse effect on
operating conditions. The HCM provides factors and outlines procedures for determining the
traffic volumes that can be served by highways that are not ideal in all respects. Features that
could result in a highway being less than ideal in its operational characteristics include narrow
lanes and shoulders, steep grades, low design speed, and the presence of intersections, ramp
terminals, and weaving sections. The HCM should be referred to for a discussion of these features
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and their effects on operating conditions. However, the HCM discussion concerning horizontal
alignment, weaving sections, and ramp terminals is supplemented and amplified below.

Alignment

For traffic traveling at any given speed, the better the roadway alignment, the more traffic it
can carry. It follows that congestion will generally be perceived at lower volumes if the design
speed is low than if the design speed is high. The highway should be subdivided into sections of
consistent geometric design characteristics for analysis using the HCM techniques. A single
limiting curve or steep grade in an otherwise gentle alignment will thus be identified as the
critical feature limiting roadway capacity.

Weaving Sections

Weaving sections are highway segments where the pattern of traffic entering and leaving at
contiguous points of access results in vehicle paths crossing each other. Where the distance in
which the crossing is accomplished is relatively short in relation to the volume of weaving traffic,
operations within the highway section will be congested. Some reduction in operating efficiency
through weaving sections can be tolerated by highway users if the reduction is minor and the
frequency of occurrence is not high. It is generally accepted that a reduction in operating speed of
about 10 km/h [5 mph] below that for which the highway as a whole operates can be considered a
tolerable degree of congestion for weaving sections.

Operating conditions within weaving sections are affected by both the length and width of
the section as well as by the volume of traffic in the several movements. These relationships are
discussed later in this chapter and in the HCM.

Ramp Terminals

Ramps and ramp terminals are features that can adversely influence operating conditions on
freeways if the demand for their use is excessive or if their design is deficient. When congestion
develops at freeway ramp junctions, some through vehicles avoid the outside lane of the freeway,
thereby adding to the congestion in the remaining lanes. Thus, if there are only two lanes in one
direction, the efficiency per lane is not as high on the average as that for three or more lanes in
one direction.

The loss in efficiency is a function of the volume of traffic entering or leaving ramps, the
distance between points of entry and exit, and the geometric layout of the terminals. Too little is
known of these separate variables to permit a quantitative assessment of their effect when taken
individually. Their combined effect is accounted for by levying a uniform assessment against the
outside lane, regardless of the causes or extent of interference at individual locations.

Apart from the effect on through traffic, traffic that uses ramps is exposed to a different form
of congestion, which does not lend itself to measurement in terms of travel speed, delay, or driver
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tension. The degree of congestion for a ramp is related to the total volume of traffic in the outside
lane of the freeway in the vicinity of the ramp junction (i.e., the combined volume of through
traffic using the outside lane and the volume of traffic using the ramp).

The HCM provides procedures for estimating volumes of through traffic in the outside lane
of a freeway just upstream of an entrance or an exit ramp for various combinations of highway
and traffic conditions.

Traffic Factors

Traffic streams are usually composed of a mixture of vehicles: passenger cars, trucks, buses,
and, occasionally, recreational vehicles and bicycles. Furthermore, traffic does not flow at a
uniform rate throughout the hour, day, season, or year. Consideration should be given to these
two variables, composition of traffic and fluctuations in flow, in deciding upon volumes of traffic
that will result in acceptable degrees of congestion (see the subsequent discussion on “Levels of
Service”) and also upon the period of time over which the flow should extend.

The effect of trucks and buses on highway congestion is discussed in the HCM (15).
Detailed procedures are provided for converting volumes of mixed traffic to equivalent volumes
of passenger cars. These passenger-car equivalency (PCE) factors used in the HCM differ
substantially between facility types.

Peak Hour Factor

The accepted unit of time for expressing flow rate is a 1-hour period. It is customary to
design highways with a sufficient number of lanes and with other features that will enable the
highway to accommodate the forecasted DHV for the design year, which is frequently 20 years
from the date of construction.

Because flow is not uniform throughout an hour, there are certain periods within an hour
during which congestion is worse than at other times. The HCM considers operating conditions
prevailing during the most congested 15-minute period of the hour to establish the service level
for the hour as a whole. Accordingly, the total hourly volume that can be served without
exceeding a specified degree of congestion is equal to or less than four times the maximum 15-
minute count.

The factor used to convert the rate of flow during the highest 15-minute period to the total
hourly volume is the peak hour factor (PHF). The PHF may be described as the ratio of the total
hourly volume to the number of vehicles during the highest 15-minute period multiplied by 4.
The PHF is never greater than 1.00 and is normally within the range of 0.75 to 0.95. Thus, for
example, if the maximum flow rate that can be served by a certain freeway without excessive
congestion is 4,200 vehicles per hour during the peak 15-minute period, and further, if the PHF is
0.80, the total hourly volume that can be accommodated at that service level is 3,360 vehicles, or
80 percent of the traffic flow rate, during the most congested 15-minute period.



AASHTO—Geometric Design of Highways and Streets

84

Levels of Service

Techniques and procedures for adjusting operational and highway factors to compensate for
conditions that are other than ideal are found in the HCM (15). It is desirable that the results of
these procedures be made adaptable to highway design.

The HCM defines the quality of traffic service provided by specific highway facilities under
specific traffic demands by means of a level of service. The level of service characterizes the
operating conditions on the facility in terms of traffic performance measures related to speed and
travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. The levels
of service range from level-of-service A (least congested) to level-of-service F (most congested).
Exhibit 2-31 shows the general definitions of these levels of service. The specific definitions of
level of service differ by facility type. The HCM presents a more thorough discussion of the
level-of-service concept.

Level of service General operating conditions

A Free flow
B Reasonably free flow
C Stable flow
D Approaching unstable flow
E Unstable flow
F Forced or breakdown flow

NOTE: Specific definitions of levels-of-service A through F vary by facility
type and are presented in the HCM (15).

Exhibit 2-31.  General Definitions of Levels of Service

The division points between levels-of-service A through F were determined subjectively.
Furthermore, the HCM contains no recommendations for the applicability of the levels of service
in highway design. Choice of an appropriate level of service for design is properly left to the
highway designer. The guidance in the preceding discussion should enable the designer to link
the appropriate degrees of congestion to specific levels of service. The relationship between
highway type and location and the level of service appropriate for design is summarized in
Exhibit 2-32. This relationship is derived from the criteria for acceptable degrees of congestion,
as outlined earlier in this discussion.

As may be fitting to the conditions, highway agencies should strive to provide the highest
level of service practical. For example, in heavily developed sections of metropolitan areas,
conditions may make the use of level-of-service D appropriate for freeways and arterials;
however, this level should be used sparingly and at least level-of-service C should be sought.
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Appropriate level of service for specified combinations of
area and terrain type

Functional
class Rural level Rural rolling

Rural
mountainous

Urban and
suburban

Freeway B B C C
Arterial B B C C
Collector C C D D
Local D D D D

Exhibit 2-32.  Guidelines for Selection of Design Levels of Service

Design Service Flow Rates

The traffic flow rates that can be served at each level of service are termed “service flow
rates.”  Once a particular level of service has been identified as applicable for design, the
corresponding service flow rate logically becomes the design service flow rate, implying that if
the traffic flow rate using the facility exceeds that value, operating conditions will fall below the
level of service for which the facility was designed.

Once a level of service has been selected, it is desirable that all elements of the roadway are
designed consistent to this level. This consistency of design service flow rate results in near-
constant freedom of traffic movement and operating speed, and flow interruptions due to
bottlenecks can be avoided.

The HCM supplies the analytical base for design calculations and decisions, but the designer
should use his or her judgment to select the appropriate level of service. Exhibit 2-32 provides
guidance that may be used by designers in selecting an appropriate level of service. For certain
recreational routes or for environmental or land use planning reasons, the designer may possibly
select a design service flow rate less than the anticipated demand.

Whether designing an intersection, interchange, arterial, or freeway, the selection of the
desired level of service should be carefully weighed because the traffic operational adequacy of
the roadway is dependent on this choice.

Weaving Sections

Weaving sections occur where one-way traffic streams cross by merging and diverging
maneuvers. The principal types of weaving sections are illustrated in Exhibit 2-33. Weaving
sections are designed, checked, and adjusted so that the level of service is consistent with the
remaining highway. The design level of service of a weaving section is dependent on its length,
number of lanes, acceptable degree of congestion, and relative volumes of individual movements.
Large-volume weaving movements usually result in considerable friction and reduction in speed
of all traffic. Further, there is a definite limit to the amount of traffic that can be handled on a
given weaving section without undue congestion. This limiting volume is a function of the
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distribution of traffic between the weaving movements, the length of weaving section, and the
number of lanes.

Weaving sections may be considered as simple or multiple. Exhibit 2-34A  shows a simple
weaving section in which a single entrance is followed by a single exit. A multiple-weaving
section consists of two or more overlapping weaving sections. A multiple weave may also be
defined as that portion of a one-way roadway that has two consecutive entrances followed closely
by one or more exits, or one entrance followed closely by two or more exits, as shown in
Exhibit 2-34B. Multiple weaving sections occur frequently in urban areas where there is need for
collection and distribution of high concentrations of traffic. For further information concerning
the operation and analysis of simple and multiple weaving sections, refer to the HCM.

The weaving section should have a length and number of lanes based on the appropriate
level of service, as given in Exhibit 2-32. The HCM presents an equation for predicting the
average running speed of weaving and non-weaving traffic based on roadway and traffic
conditions. Level-of-service criteria for weaving sections are based on these average running
speeds.

Multilane Highways Without Access Control

Multilane highways may be treated as similar to freeways if major crossroads are infrequent,
or if many of the crossroads are grade separated, and if adjacent development is sparse so as to
generate little interference. Even on those highways where such interference is currently only
marginal, the designer should consider the possibility that by the design year the interference may
be extensive unless access to the highway is well managed. In most cases, the designer should
assume that extensive crossroad and business improvements are likely over the design life of the
facility.

Where there are major crossroads or where adjacent development results in more than slight
interference, the facility should be treated as a multilane highway without access control.

Arterial Streets and Urban Highways

It is often difficult to establish design service flow rates for arterial streets and urban
highways because the level of service provided by such facilities does not remain stable with the
passage of time and tends to deteriorate in an unpredictable manner. However, if the principles of
access management are applied initially to the street or highway, a high level of operations can be
maintained over time (16, 17, 18). The capacity of an arterial is generally dominated by the
capacity of its individual signalized intersections. The level of service for a section of an arterial
is defined by the average overall travel speed for the section.
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Exhibit 2-33.  Weaving Sections

Exhibit 2-34.  Simple and Multiple Weaving Sections
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Intersections

Design capacities of intersections are affected by a very large number of variables. To the
extent that these variables can be predicted for the design year, design capacities can be estimated
by procedures for signalized and unsignalized intersections given in the HCM. The design and
spacing of signalized intersections should also be coordinated with traffic signal design and
phasing.

Pedestrians and Bicycles

The level of service for pedestrian and bicycle facilities can be evaluated using procedures
presented in the HCM.

ACCESS CONTROL AND ACCESS MANAGEMENT

General Conditions

Regulating access is called “access control.”  It is achieved through the regulation of public
access rights to and from properties abutting the highway facilities. These regulations generally
are categorized as full control of access, partial control of access, access management, and
driveway/entrance regulations. The principal advantages of controlling access are the
preservation or improvement of service and safety.

The functional advantage of providing access control on a street or highway is the
management of the interference with through traffic. This interference is created by vehicles or
pedestrians entering, leaving, and crossing the highway.  Where access to a highway is managed,
entrances and exits are located at points best suited to fit traffic and land-use needs and are
designed to enable vehicles to enter and leave safely with minimum interference from through
traffic. Vehicles are prevented from entering or leaving elsewhere so that, regardless of the type
and intensity of development of the roadside areas, a high quality of service is preserved and
crash potential is lessened. Conversely, on streets or highways where there is no access
management and roadside businesses are allowed to develop haphazardly, interference from the
roadside can become a major factor in reducing the capacity, increasing the crash potential, and
eroding the mobility function of the facility.

Access control techniques can be implemented with two basic legal powers: police power
and eminent domain. This first power allows a state to restrict individual actions for the public
welfare. Police power provides sufficient authority for most access control techniques associated
with highway operations, driveway location, driveway design, and access denials. The second
power allows a state to take property for public use provided an owner is compensated for his
loss. A State may need to use eminent domain when building local service roads, buying abutting
property, acquiring additional right-of-way, and taking access rights. However, an agency usually
has the power to deny direct access through the use of police power when reasonable alternative
access is available.
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Generally, States have adequate power to manage access to a highway as long as reasonable
access is provided to abutting property. However, providing reasonable access does not
necessarily mean providing direct access to the state highway system. Coordinating access
policies into a clear and definitive regulation facilitates the use of police power. Because
authority and interpretations vary from state to state, each State should evaluate its particular
legal powers for controlling access. Certain techniques may not be legally feasible in a state that
has neither the policy nor precedent to uphold them.

Full control of access means that preference is given to through traffic by providing access
connections by means of ramps with only selected public roads and by prohibiting crossings at
grade and direct private driveway connections.

With partial control of access, preference is given to through traffic to a degree. Access
connections, which may be at-grade or grade-separated, are provided with selected public roads,
and private driveways. Generally, full or partial access control is accomplished by legally
obtaining the access rights from the abutting property owners (usually at the time of purchase of
the right-of-way) or by the use of frontage roads.

Access management involves providing (or managing) access to land development while
simultaneously preserving the flow of traffic on the surrounding road system in terms of safety,
capacity, and speed (17). Access management applies to all types of roads and streets. It calls for
setting access policies for various types of roadway, keying designs to these policies, having the
access policies incorporated into legislation, and having the legislation upheld in the courts.

Access management views the highway and its surrounding activities as part of a single
system. Individual parts of the system include the activity center and its circulation systems,
access to and from the center, the availability of public transportation, and the roads serving the
center. All parts are important and interact with each other. The goal is to coordinate the planning
and design of each activity center to preserve the capacity of the overall system and to allow
efficient access to and from the activities.

Access management extends traffic engineering principles to the location, design, and
operation of access roads that serve activities along streets and highways. It also includes
evaluating the suitability of a site for different types of development from an access standpoint
and is, in a sense, a new element of roadway design.

Driveway/entrance regulations may be applied even though no control of access is obtained.
Each abutting property is permitted access to the street or highway; however, the location,
number, and geometric design of the access points are governed by the regulations.

Access management addresses the basic questions of when, where, and how access should
be provided or denied, and what legal or institutional changes are needed to enforce these
decisions. In a broad context, access management is resource management, since it is a way to
anticipate and prevent congestion and to improve traffic flow.
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Key elements of access management include: defining the allowable access and access
spacings for various classes of highways, providing a mechanism for granting variances when
reasonable access cannot otherwise be provided, and establishing means of enforcing policies and
decisions. These key elements, along with appropriate design policies, should be implemented
through a legal code that provides a systematic and supportable basis for making access
decisions. The code should provide a common basis for decisions for both the public and private
sectors.

Basic Principles of Access Management

The following principles define access management techniques:

• Classify the road system by the primary function of each roadway. Freeways emphasize
movement and provide complete control of access. Local streets emphasize property
access rather than traffic movement. Arterial and collector roads must serve a
combination of both property access and traffic movement.

• Limit direct access to roads with higher functional classifications. Direct property
access should be denied or limited along higher class roadways, whenever reasonable
access can be provided to a lower class roadway.

• Locate traffic signals to emphasize through traffic movements. Signalized access points
should fit into the overall signal coordination plan for traffic progression.

• Locate driveways and major entrances to minimize interference with traffic operations.
Driveways and entrances should be located away from other intersections to minimize
crashes, to reduce traffic interference, and to provide for adequate storage lengths for
vehicles turning into entrances.

• Use curbed medians and locate median openings to manage access movements and
minimize conflicts.

The extent of access management depends upon the location, type and density of
development, and the nature of the highway system. Access management actions involve both the
planning and design of new roads and the retrofitting of existing roads and driveways.

Access Classifications

Access classification is the foundation of a comprehensive access management program. It
defines when, where, and how access can be provided between public highways and private
driveways or entrances. Access classification relates the allowable access to each type of highway
in conjunction with its purpose, importance, and functional characteristics.

The functional classification system provides the starting point in assigning highways to
different access categories. Modifying factors include existing land development, driveway
density, and geometric design features, such as the presence or absence of a raised-curb median.
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An access classification system defines the type and spacing of allowable access for each
class of road. Direct access may be denied, limited to right turns in and out, or allowed for all or
most movements depending upon the specific class and type of road. Spacing of signals in terms
of distance between signals or through band width (progression speed) is also specified.
Examples of access classification schemes are presented in NCHRP Report 348, Access
Management Guidelines for Activity Centers (17).

Methods of Controlling Access

Public agencies can manage and control access by means of statutes, land-use ordinances,
geometric design policies, and driveway regulations.

• Control by the transportation agency:  Every State and local transportation agency has
the basic statutory authority to control all aspects of highway design to protect public
safety, health, and welfare. The extent to which an agency can apply specific policies
for driveways/entrances, traffic signal locations, land use controls, and denial of direct
access is specifically addressed by legislation and, to some degree, by the State courts.

• Land-use ordinances:  Land-use control is normally administered by local
governments. Local zoning ordinances and subdivision requirements can specify site
design, setback distances, type of access, parking restrictions, and other elements that
influence the type, volume, and location of generated traffic.

• Geometric design:  Geometric design features, such as the use of raised-curb medians,
the spacing of median openings, use of frontage roads, closure of median openings, and
raised-curb channelization at intersections, all assist in controlling access.

• Driveway regulations:  Agencies may develop detailed access and driveway/entrance
policies by guidelines, regulations, or ordinances, provided specific statutory authority
exists. Guidelines usually need no specific authority, but are weak legally. Cities can
pass ordinances implementing access management policies. Likewise, state agencies
may develop regulations when authorized by legislation. Regulations can deny direct
access to a road if reasonable, alternative access is provided, but they cannot “take
away” access rights.

Benefits of Controlling Access

Highways with full access control consistently experience only 25 to 50% of the crash rates
observed on roadways without access control. These rates are defined in terms of crashes per
million vehicle kilometers [miles] of travel. Freeways limit the number and variety of events to
which drivers must respond and thus lower crash rates result.

The safety and operating benefits of controlling access to a highway have long been
recognized and well documented. As access density increases, there is a corresponding increase
in crashes and travel times.
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A study on congestion by the Texas Transportation Institute has reported a 5- to 8-km/h
reduction in speed for every added signal per kilometer [2- to 3-mph speed reduction for every
added signal per mile] (19). A research study on the impact of access management found that
through vehicles in the curb or right lane approximated 20% of the right turns desiring to enter a
development (18).

As the number of driveways along a highway increases, the crash rate also increases. The
effect of driveway and business frequency on crash rates is shown in Exhibit 2-35 through 2-37.
As the number of business and access points increases along a roadway, there is a corresponding
increase in crash rates. This contrasts sharply with freeway crash rates that remain the same or
even decrease slightly over time.

The generalized effects of access spacing on traffic crashes were derived from a literature
synthesis and an analysis of 37,500 crashes (18). This study’s analysis shows the relative increase
in crash rates that can be expected as the total driveway density increases. Increasing the access
frequency from 10 to 30 access points per kilometer [20 to 50 access points per mile] will result
in almost a doubling of the crash rate. Each additional access point per kilometer increases the
crash rate about 5 percent; thus, each additional access point per mile increases the crash rate
about 3 percent.

Exhibits 2-35 and 2-36 show crash rates by access frequency and type of median for
urban/suburban and rural roads, respectively. Crash rates rise for each type of median treatment
with an increase in access frequency. Non-traversable medians generally have a lower crash rate
than two-way left-turn lanes and undivided roadway sections for all access densities. However, as
discussed in Chapter 7, provision of non-traversable medians will eliminate left-turn movements
at some intersections and driveways, but may increase U-turn volumes at other locations on the
same road or may divert some traffic to other roads. The safety consequences of increased U-turn
volumes or diverted traffic may not be reflected in Exhibits 2-35 and 2-36.

For urban/suburban roads, representative crash rates for combinations of signalized and
unsignalized access density are shown in Exhibit 2-37. This figure indicates that crash rates rise
with increases in either unsignalized or signalized access density.

In summary, some degree of access control or access management should be included in the
development of any street or highway, particularly on a new facility where the likelihood of
commercial development exists. The type of street or highway to be built should be coordinated
with the local land-use plan to ensure that the desired type of access can be maintained through
local zoning ordinances or subdivision regulations. The control of access may range from
minimal driveway regulations to full control of access. Thus, the extent and degree of access
management that is practical is a significant factor in defining the type of street or highway.
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Exhibit 2-35.  Estimated Crash Rates by Type of MedianóUrban and Suburban
Areas (18)
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Exhibit 2-36.  Estimated Crash Rates by Type of Median—Rural Areas (18)
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Exhibit 2-37.  Estimated Crash Rates by Unsignalized and Signalized Access Density—
Urban and Suburban Areas (18)
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THE PEDESTRIAN

General Considerations

Interactions of pedestrians with traffic are a major consideration in highway planning and
design. Pedestrians are a part of every roadway environment, and attention should be paid to their
presence in rural as well as urban areas. The urban pedestrian, being far more prevalent, more
often influences roadway design features than the rural pedestrian does. Because of the demands
of vehicular traffic in congested urban areas, it is often very difficult to make adequate provisions
for pedestrians. Yet provisions should be made, because pedestrians are the lifeblood of our urban
areas, especially in the downtown and other retail areas. In general, the most successful shopping
sections are those that provide the most comfort and pleasure for pedestrians. Pedestrian facilities
include sidewalks, crosswalks, traffic control features, and curb cuts (depressed curbs and ramped
sidewalks) and ramps for the older walkers and persons with mobility impairments. Pedestrian
facilities also include bus stops or other loading areas, sidewalks on grade separations, and the
stairs, escalators, or elevators related to these facilities. The Americans with Disabilities Act
Accessibility Guidelines (ADAAG) (23) must be considered when designing roadways where
pedestrian traffic is expected.

General Characteristics

To effectively plan and design pedestrian facilities, it is necessary to understand the typical
pedestrian. The pedestrian most likely will not walk over 1.5 km [1 mi] to work or over 1.0 km
[0.5 mi] to catch a bus, and about 80 percent of the distances traveled by the pedestrian will be
less than 1.0 km [0.5 mi] (24). The typical pedestrian is a shopper about 50 percent of the time
that he or she is a pedestrian and a commuter only about 11 percent of the time. As a
consequence, pedestrian volumes peak at about noon rather than at the peak commuter times.
Pedestrian volumes are influenced by such transient conditions as weather or, in specific
locations, advertised sales. Hourly fluctuations in pedestrian volumes on a city street can be found
in the AASHTO Guide for the Planning, Design, and Operation of Pedestrian Facilities (25).

Pedestrian actions are less predictable than those of motorists. Many pedestrians consider
themselves outside the law in traffic matters, and in many cases, pedestrian regulations are not
fully enforced. This makes it difficult to design a facility for safe and orderly pedestrian
movements.

Pedestrians tend to walk in a path representing the shortest distance between two points.
Therefore, crossings in addition to those at corners and signalized intersections may be
appropriate at particular locations.

Pedestrians also have a basic resistance to changes in grade or elevation when crossing
roadways and tend to avoid using special underpass or overpass pedestrian facilities. Also,
pedestrian underpasses may be potential crime areas, lessening their usage.
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A pedestrian’s age is an important factor that may explain behavior that leads to collisions
between motor vehicles and pedestrians. Very young pedestrians are often careless in traffic from
either ignorance or exuberance, whereas older pedestrians may be affected by limitations in
sensory, perceptual, cognitive, or motor skills. Pedestrian collisions can also be related to the lack
of sidewalks, which may force pedestrians to share the traveled way with motorists. Therefore,
sidewalk construction should be considered as part of any urban/suburban street improvement.

The following have been suggested as measures with the potential to aid older pedestrians
and road users:

• Use simple designs that minimize crossing widths and minimize the use of more
complex elements such as channelization and separate turning lanes. Where these
features are appropriate, assess alternative designs that will assist older pedestrians,
such as 3.3-m [11-ft] lane widths.

• Assume lower walking speeds.
• Provide median refuge islands of sufficient width at wide intersections.
• Provide lighting and eliminate glare sources at locations that demand multiple

information gathering and processing.
• Consider the traffic control system in the context of the geometric design to assure

compatibility and to provide adequate advance warning or guide signs for situations that
could surprise or adversely affect the safety of older drivers or pedestrians.

• Use enhanced traffic control devices.
• Provide oversized, retroreflective signs with suitable legibility.
• Consider increasing sign letter size and retroreflectivity to accommodate individuals

with decreased visual acuity.
• Use properly located signals with large signal indications.
• Provide enhanced markings and delineation.
• Use repetition and redundancy in design and in signing.

For further information on older pedestrians and drivers, refer to the FHWA publication
entitled Older Driver Highway Design Handbook: (Recommendations and Guidelines) (6).

Walking Speeds

Because pedestrians have a broad range of walking speeds, the speeds at which they may
cross a street is significant in design. Average pedestrian walking speeds range from
approximately 0.8 to 1.8 m/s [2.5 to 6.0 ft/sec]. The Manual on Uniform Traffic Control Devices
(MUTCD) (7) uses a normal walking speed of 1.2 m/s [4.0 ft/s]. Older people will generally walk
at speeds in the lower end of this range.

Walking speeds are faster at midblock locations than at intersections, are faster for men than
for women, and are affected by steep grades. Air temperature, time of day, trip purpose, and ice
and snow all affect pedestrian walking speeds. Age is the most common cause of slower walking
speeds, and in areas where there are many older people, a speed of 0.9 m/s [2.8 ft/s] should be
considered for use in design.
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Walkway Capacities

Walking speeds decrease as the pedestrian density of the walkway increases. As with
roadway capacities, there is an optimum speed and density under which the walkway will carry
the largest volume. The effective width used for walkway calculations should be reduced where
parking meters, hydrants, newsstands, litter barrels, utility poles, or similar obstructions preclude
the use of the full walkway. Walkway capacity calculations for sidewalks, stairs, and the effect of
traffic signals involve differing procedures as discussed below. For a more detailed analysis of
walkway design and capacities, see the AASHTO Guide for the Planning, Design, and Operation
of Pedestrian Facilities (25) and the current edition of the Highway Capacity Manual (15).

Sidewalks

Levels of service have been developed to quantify the relative mobility of the pedestrian and
his or her conflicts with other pedestrians that influence walking speed, maneuvering room, and
the feeling of comfort (26). As in the level-of-service concept for motor vehicle traffic discussed
earlier in this chapter and in the HCM (15), levels of service (A to F) reflect increasing crowding
and decreasing freedom of movement. These levels of service are based on the available area per
person and are defined as follows (27):

Level-of-service A allows each person to choose a desired walking speed and to avoid
conflicts with other pedestrians.

At Level-of-service B, pedestrians begin to be aware of other pedestrians.

Level-of-service C requires minor adjustments to speed and direction by pedestrians to avoid
conflicts.

At Level-of-service D, freedom to select individual walking speed and bypass other
pedestrians is restricted. Frequent changes in speed and position are required.

Level-of-service E provides for very crowded walking, at times reduced to shuffling, making
reverse or cross-traffic flow very difficult. The speed of virtually all pedestrians is reduced.

At Level-of-service F, a person is likely to be standing stationary in a waiting area or is able
to walk only by shuffling. There is frequent, unavoidable contact with other pedestrians.

Computations of walkway capacity should use walkway widths that are reduced about
500 mm [18 in] if there are adjacent walls, with an additional 500 mm [18 in] if window shoppers
are expected. Street hardware such as parking meters and poles also reduces the available
walkway width.
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Intersections

When pedestrians encounter an intersection, there is a major interruption in pedestrian flow.
The sidewalk should provide sufficient storage area for those waiting to cross as well as an area
for pedestrian cross traffic to pass.

Once pedestrians are given the walk indication, the crosswalk width and length become
important. Crosswalks should be wide enough to accommodate the pedestrian flow in both
directions within the duration of the pedestrian signal phase. The wider the street, the longer it
takes a pedestrian to cross and proportionately less green signal time will be available for the
primary street movements. Additionally, the longer the pedestrian crossing time, the longer the
exposure to potential pedestrian/vehicular conflicts.

If the intersection is not signal controlled or if stop signs do not control the through motor
vehicular traffic, pedestrians must wait for suitable gaps in the traffic to cross. The wider the
street, the longer the gaps must be to afford safe pedestrian crossing times. Under urban
conditions, pedestrian crossing times may be reduced by using narrower lanes or by providing
raised-curb medians. However, traffic safety and reasonable roadway and intersection capacity
requirements should still be met when considering reduced crossing times.

Reducing Pedestrian-Vehicular Conflicts

When designing urban highways with substantial pedestrian-vehicular conflicts, the
following are some measures that could be considered to help reduce these conflicts and may
increase the efficient operation of the roadway: (1) eliminate left and/or right turns, (2) prohibit
free-flow right-turn movements, (3) prohibit right turn on red, (4) convert from two-way to one-
way street operation, (5) provide separate signal phases for pedestrians, (6) eliminate selected
crosswalks, and (7) provide for pedestrian grade separations. These and other pedestrian
considerations are detailed in subsequent chapters and in the AASHTO Guide for the Planning,
Design, and Operation of Pedestrian Facilities (25).

Characteristics of Persons With Disabilities

Consideration of persons with disabilities in highway design can greatly enhance the
mobility of this sector of our society. To adequately provide for persons with disabilities, the
designer must be aware of the range of disabilities to expect so that the design can appropriately
accommodate them. The designer is cautioned to adequately review all local and national
guidelines to assure proper compliance with applicable rules and regulations (26). For further
details, see the section on “Sidewalk Curb Ramps” in Chapter 4, as well as the AASHTO Guide
for the Planning, Design, and Operation of Pedestrian Facilities (25) and the ADAAG (23).
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Mobility Impairments

Ambulatory difficulties include persons who walk without assistive devices, but with
difficulty, to persons who require aid from braces, canes, or crutches, to persons who use
wheelchairs. Stairs, curbs, and raised channelizing islands are the major roadway obstructions to
these pedestrians. Design modifications should provide ramps rather than stairs or curbs. The
front wheels of a wheelchair are very sensitive to obstacles; any bump may impair the progress of
a wheelchair and may increase the possibility that a user will be propelled out of the wheelchair.

Visual Impairments

Pedestrians with visual impairments need special consideration. Intersections are the most
complicated transportation element for visually impaired people. Complicated crossings such as
those at channelized intersections can be improved by installing guide strips. Sidewalk curb cuts
for wheelchairs make it difficult for visually impaired pedestrians to locate the curb line. Adding
a 600-mm [2-ft] detectable warning strip at the bottom of the sidewalk ramp that meets the design
specifications of the ADAAG (23) will benefit people with visual impairments. Because the
visually impaired often rely on the sound of traffic when crossing intersections, caution should be
used when considering exclusive turn phases or other unusual traffic movements.

Developmental Impairments

Many people with developmental impairments are unable to drive and, therefore, often travel
as pedestrians. To help ensure correct responses from these pedestrians, including young children,
pedestrian signals or other pedestrian-related facilities should be simple, straightforward, and
consistent in their meaning.

BICYCLE FACILITIES

The bicycle has become an important element for consideration in the highway design
process. Fortunately, the existing street and highway system provides most of the mileage needed
for bicycle travel. While many highway agencies allow bicycles on partially access controlled
facilities, most highway agencies do not allow bicycles on fully access controlled facilities unless
no other alternative route is available.

Improvements such as the following, which generally are of low to moderate cost, can
considerably enhance the safety of a street or highway and provide for bicycle traffic:

• paved shoulders
• wider outside traffic lanes (4.2 m [14 ft] minimum), if no shoulders exist
• bicycle-safe drainage grates
• adjusting manhole covers to the grade
• maintaining a smooth, clean riding surface
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At certain locations or in certain corridors, it is appropriate to further supplement the existing
highway system by providing specifically designated bikeways (for either exclusive or non-
exclusive bicycle use). To provide adequately for bicycle traffic, the designer should be familiar
with bicycle dimensions, operating characteristics, and needs. These factors determine acceptable
turning radii, grades, and sight distance. In many instances, design features of separate bike
facilities are controlled by the adjoining roadway and by the design of the highway itself. For
further guidance, refer to the latest edition of the AASHTO Guide for Development of Bicycle
Facilities (28) and other current research (29).

SAFETY

Attention to highway safety has been emphasized by the Congress of the United States as
well as other national committees concerned with safety. In July 1973, after hearings on highway
safety, design, and operations were conducted by subcommittees of the House Committee on
Public Works, the following mandate was published by the Committee:

Whose responsibility is it to see that maximum safety is incorporated into our motor
vehicle transportation system?  On this, the subcommittee is adamant. It is the
responsibility of Government and specifically those agencies that, by law, have been
given that mandate. This responsibility begins with the Congress and flows through
the Department of Transportation, its Federal Highway Administration, the State
Highway Departments and safety agencies, and the street and highway units of
counties, townships, cities, and towns. There is no retreating from this mandate,
either in letter or in spirit (30).

This emphasis by Congress on safety has also been evidenced by passage of the Highway
Safety Act of 1966, and from the Federal Highway Administration (FHWA) by adoption of the
AASHTO publications, Highway Design and Operational Practices Related to Highway Safety
(30) and Highway Safety Design and Operations Guide (31). Other safety resources include the
report entitled Enhancing Highway Safety in an Age of Limited Resources (32), which resulted
from the TRB-conducted symposium sponsored by AASHTO and others in 1981.

Crashes seldom result from a single cause—usually several influences affect the situation at
any given time. These influences can be separated into three groups:  the human element, the
vehicle element, and the highway element. Although this policy is primarily concerned with
highway characteristics and design, the role of psychological factors is ever present. An error in
perception or judgment or a faulty action on the driver’s part can easily lead to a crash.

Highways should be designed to minimize driver decisions and to reduce unexpected
situations. The number of crashes increases with an increase in the number of decisions required
of the driver. Uniformity in highway design features and traffic control devices plays an
important role in reducing the number of required decisions, and by this means, the driver
becomes aware of what to expect on a certain type of highway.
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The most significant design factor contributing to safety is the provision of full access
control. Full access control reduces the number, frequency, and variety of events to which drivers
must respond. The beneficial effect of this element has been documented in reports of a
cooperative research study (33) of the FHWA and 39 state highway agencies. One of the principal
findings of this study is that highways without access control invariably had higher crash rates
than those with access control. This study showed that crash, injury, and fatality rates on
Interstate highways are between 30 and 76 percent of comparable rates of conventional highways
that existed before the Interstate highways were opened to traffic. No other single design element
can claim comparable reductions.

Research has demonstrated a relationship between crashes and number of access points on a
roadway (18, 19, 34). Relationships of this type have been illustrated in Exhibits 2-35 through
2-37.

The principle of full access control is invaluable as a means for preserving the capacity of
arterial highways and of minimizing crash potential; however, this principle does not have
universal application. Highways without control of access are essential as land service facilities,
and the design features and operating characteristics of these highways need to be carefully
planned so that they will reduce conflicts and minimize the interference between vehicles and still
meet the needs of highway users.

Speed is often a contributing factor in crashes, but its role must be related to actual
conditions at a crash site to be understood. It is improper to conclude that any given speed is safer
than another for all combinations of the many kinds of drivers, vehicles, highways, and local
conditions. For a highway with particularly adverse roadway conditions, a relatively low speed
may result in fewer crashes than a high speed, but this does not necessarily mean that all potential
crashes can be eliminated by low speeds. Likewise, vehicles traveling on good roads at relatively
high speed may have lower crash involvement rates than vehicles traveling at lower speeds, but it
does not necessarily follow that yet a higher speed would be even safer.

The safest speed for any highway depends on design features, road conditions, traffic
volumes, weather conditions, roadside development, spacing of intersecting roads, cross-traffic
volumes, and other factors. Crashes are not related as much to speed as to the range in speeds
from the highest to the lowest. Regardless of the average speed on a main rural highway, the
greater a driver’s deviation from this average speed, either lower or higher, the greater the
probability that the driver will be involved in crashes. Thus, design features that reduce the
variance in speed of vehicles (such as flat grades, speed-change lanes, grade separations, and
good signing and marking) contribute to highway safety. Normally, crashes involving vehicles
traveling at high speed are more severe than those at low speed.

When designing a highway, consideration should be given to the type and characteristics of
the drivers expected to use the highway. Trip purposes (such as recreation, commuting to work,
and through travel) are factors affecting the design to some extent.  Trip purposes are related to
the mix of vehicle types likely to use the highway, ranging from all passenger vehicles to a high
percentage of heavy commercial vehicles. Where trips of one type predominate, the facility
should be designed to fit the specific needs of that type of trip.
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A study on the effect of the Interstate highway system on crashes found a lower crash rate on
four-lane divided highways than on four-lane undivided highways (35). This study was developed
from data for highways within Interstate highway corridors during periods before and after
opening new sections of Interstate highways to traffic.

A highway with a median width of 15 m [50 ft] or more has a very low incidence of head-on
collisions caused by vehicles crossing the median. A median width of 23 to 30 m [75 to 100 ft] on
freeways is very desirable as a means of reducing cross-median collisions. On a divided highway
with partial access control (i.e., an expressway) or where no access control exists, the width of
median should also take into account the operation of at-grade intersections.

With narrower medians, median barriers will eliminate head-on collisions, but at the cost of
some increase in same-direction crashes because recovery space is decreased. Properly designed
median barriers minimize vehicle damage and lessen the crash severity. However, if a narrow
median with a median barrier is proposed on a high-speed highway, the design should include
adequate shoulder widths in the median for emergency stops and emergency vehicle use.

Another study relating crashes to shoulder width, alignment, and grade found that crash rates
on sections with curves or grades were much higher than on level tangent highway sections. This
study also found that crash rates were highest on roads having combinations of sharp curves and
steep grades (36). This study, which was limited to rural two-lane roads, lends strong support to
the postulate that straight, level rural roads without intersections or significant numbers of private
driveways are the safest highways within their general class. The few crashes that occur on
straight, level, rural roads without intersections do not represent a stable source of information,
however. There are wide variations between similar roadway sections and between different years
for the same section. An apparent correlation between a geometric design element such as
shoulder width, for example, and crash rates is almost certain to be clouded by random variations
of the crash pattern.

Zegeer (37) developed relationships between the geometric design of horizontal curves and
their safety performance. This research addresses the relationship to safety of both length and
radius of horizontal curves.

Crashes are likely to occur where drivers are called upon to make decisions under
circumstances where their vehicles are unable to respond properly, for example, where a truck is
descending a grade. It would be logical to expect more crashes on grades and curves than on level
tangent highways where driver decisions are needed less frequently and vehicles are fully
responsive. However, design with tangent alignment can be overdone.

On extremely long tangents, drivers have a tendency to completely relax, especially after
driving on a congested highway before entering a freeway. On some freeways, there has been
concern over the number of crashes that occur when the driver apparently goes to sleep. It is
considered highly desirable to provide gentle curvature and to avoid a fixed cross section for long
tangent sections of roadway. This can be achieved by varying the median width, using
independent roadway alignments, and taking advantage of the terrain, wherever practical. In
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addition, rumble strips can be added to shoulders to reduce run-off-the-road crashes caused by
drivers falling asleep at the wheel.

As the design of alignment, grade, and traveled-way cross section has improved, roadside
design has also become increasingly important. Crashes involving single vehicles running off the
road constitute more than one-half of all fatal crashes on freeways.

When a vehicle leaves the roadway, the driver no longer has the ability to fully control the
vehicle. Any object in or near the path of the vehicle becomes a potential contributing factor to
crash severity. The concept of the safer or forgiving roadside should not be viewed as a by-
product of the application of safety criteria to each element but as a planned segment of the total
engineering for the highway. The AASHTO publication Highway Safety Design and Operation
Guide (31) presents an overview of the AASHTO policies in this area; these policies are reflected
throughout this book in the criteria for specific geometric design elements.

Basic to the concept of the forgiving roadside is the provision of a clear recovery area.
Studies have indicated that on high-speed highways, a relatively level traversable width of
approximately 9 m [30 ft] from the edge of the traveled way permits about 80 percent of the
vehicles leaving the highway to safely stop or return to the roadway. Even though the 9-m [30-ft]
width is not a “magic number” and the application of engineering judgment is necessary, the 9-m
[30-ft] width has been used extensively as a guide for recovery zones.

In roadside design, two major elements should be controlled by the designer: roadside slopes
and unyielding obstacles. NCHRP Report 247 (38) discusses the effectiveness of clear recovery
areas. The AASHTO Roadside Design Guide (39) also discusses the effects that slope and other
topographic features have on the effectiveness of recovery areas. On existing highways,
AASHTO recommends the following priorities for treatment of roadside obstacles:

• Remove the obstacle or redesign it so it can be safely traversed.
• Relocate the obstacle to a point where it is less likely to be struck.
• Reduce severity of impacts with the obstacle by using an appropriate breakaway device.
• Redirect a vehicle by shielding the obstacle with a longitudinal traffic barrier and/or

crash cushion.
• Delineate the obstacle if the above alternatives are not appropriate.

The design of guardrails and barrier systems has become a subject of considerable research.
AASHTO Roadside Design Guide (39) and NCHRP Report 350 (40) are some of many published
reports that deal with this subject. These publications note that the treatment of end sections on
guardrail or a barrier is of particular concern.

Highway designers should recognize the dynamic developments currently under way in the
entire area of roadside design. Although this publication has attempted to present the most current
information available on roadside design, ongoing research and implementation projects will
undoubtedly offer newer and better results in the future. Highway designers should endeavor to
use the most current acceptable information in their designs.
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Communication with the motorist is probably one of the most complex problems for the
designer. One of the best available tools concerning motorist communication is the MUTCD (7),
which presents national criteria for uniform application of signing, signalization, painted
channelization, and pavement markings for all highways in the United States. A primary message
of the MUTCD is the importance of uniformity.

Highway users are dependent on traffic control devices (signs, markings, and signals) for
information, warning, and guidance. So great is the dependence of highway users on such
information that uniform, high-quality traffic control devices are necessary for safe, efficient use
and public acceptance of any highway regardless of its excellence in width, alignment, and
structural design.

All traffic control devices should have the following characteristics: (1) fulfill an important
need, (2) command attention, (3) convey a clear, simple meaning, (4) command respect of road
users, and (5) provide adequate response time. In addition, devices that control or regulate traffic
must be sanctioned by law.

Four basic attributes of traffic control devices are essential to ensure that these devices are
effective: design, placement, maintenance, and uniformity. Consideration should be given to
these attributes during the design of a highway to ensure that the required number of devices can
be kept to a minimum and that those that are needed can be properly placed.

The operation of a motor vehicle takes considerable concentration, particularly in congested
areas. A driver should be able to operate his or her vehicle with minimum distractions.
Advertising or other roadside signs should not be placed where they would interfere with or
confuse the meaning of standard traffic control devices. Advertising signs with bright colors or
flashing lights are especially objectionable in this respect. Lights shining toward a driver can be
blinding, partially or fully, for varying periods of time, depending on individual eye capability.
Bright lights, in effect, can form a curtain hiding what is ahead and can thus put motorists and
pedestrians at risk.

A large proportion of crashes on rural highways occur at intersections. Several studies have
been made at intersections with varying conditions, and the results vary according to conditions
studied. Factors to be considered in designing an intersection are total traffic volume, amount of
cross traffic, turning movements, type of highway, type of traffic control needed, design of the
crossroad sight distance, and the utilization of islands and channelization.

Various studies indicate improvements in safety at intersections can be accomplished by
channelizing intersections, providing appropriate sight distances (including stopping, decision,
and intersection sight distance), and providing safety refuge islands and sidewalks for pedestrians,
lighting, signing, and traffic control devices. These concepts have been incorporated in the
geometric design guidelines presented in this policy.

A viable safety evaluation and improvement program is a vital part of the overall highway
improvement program. The identification of potential safety problems, the evaluation of the
effectiveness of alternative solutions, and the programming of available funds for the most
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effective improvements are of primary importance. The safety of the traveling public should be
reflected throughout the highway program: in spot safety projects, in rehabilitation projects, in the
construction of new highways, and elsewhere. Highway Design and Operational Practices
Related to Highway Safety (30) and Highway Safety Design and Operations Guide (31) provide a
number of important recommendations on safety as part of a total highway program.

ENVIRONMENT

A highway necessarily has wide-ranging effects in addition to providing traffic service to
users. It is essential that the highway be considered as an element of the total environment. The
term “environment,” as used here refers to the totality of humankind’s surroundings: social,
physical, natural, and synthetic. It includes the human, animal, and plant communities and the
forces that act on all three. The highway can and should be located and designed to complement
its environment and serve as a catalyst to environmental improvement.

The area surrounding a proposed highway is an interrelated system of natural, synthetic, and
sociologic variables. Changes in one variable within this system cannot be made without some
effect on other variables. The consequences of some of these effects may be negligible, but others
may have a strong and lasting impact on the environment, including the sustenance and quality of
human life. Because highway location and design decisions have an effect on the development of
adjacent areas, it is important that environmental variables be given full consideration. Also, care
should be exercised to ensure that applicable local, state, and federal environmental requirements
are met.

ECONOMIC ANALYSIS

Highway economics is concerned with the cost of a proposed improvement and the benefits
resulting from it. The AASHTO Manual on User Benefit Analysis of Highway and Bus-Transit
Improvements (41) may be used to perform economic analyses of proposed highway
improvements.
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CHAPTER 3
ELEMENTS OF DESIGN

INTRODUCTION

The alignment of a highway or street produces a great impact on the environment, the fabric
of the community, and the highway user. The alignment is comprised of a variety of elements
joined together to create a facility that serves the traffic in a safe and efficient manner, consistent
with the facility’s intended function. Each alignment element should complement others to
produce a consistent, safe, and efficient design.

The design of highways and streets within particular functional classes is treated separately
in later chapters. Common to all classes of highways and streets are several principal elements of
design. These include sight distance, superelevation, traveled way widening, grades, horizontal
and vertical alignments, and other elements of geometric design. These alignment elements are
discussed in this chapter, and, as appropriate, in the later chapters pertaining to specific highway
functional classes.

SIGHT DISTANCE

General Considerations

A driver’s ability to see ahead is of the utmost importance in the safe and efficient operation
of a vehicle on a highway. For example, on a railroad, trains are confined to a fixed path, yet a
block signal system and trained operators are needed for safe operation. On the other hand, the
path and speed of motor vehicles on highways and streets are subject to the control of drivers
whose ability, training, and experience are quite varied. For safety on highways, the designer
should provide sight distance of sufficient length that drivers can control the operation of their
vehicles to avoid striking an unexpected object in the traveled way. Certain two-lane highways
should also have sufficient sight distance to enable drivers to occupy the opposing traffic lane for
passing other vehicles without risk of a crash. Two-lane rural highways should generally provide
such passing sight distance at frequent intervals and for substantial portions of their length. By
contrast, it is normally of little practical value to provide passing sight distance on two-lane urban
streets or arterials. The proportion of a highway’s length with sufficient sight distance to pass
another vehicle and interval between passing opportunities should be compatible with the design
criteria established in the subsequent chapter pertaining to the functional classification of the
specific highway or street.

Four aspects of sight distance are discussed below: (1) the sight distances needed for
stopping, which are applicable on all highways; (2) the sight distances needed for the passing of
overtaken vehicles, applicable only on two-lane highways; (3) the sight distances needed for
decisions at complex locations; and (4) the criteria for measuring these sight distances for use in
design. The design of alignment and profile to provide sight distances and that satisfy the
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applicable design criteria are described later in this chapter. The special conditions related to sight
distances at intersections are discussed in Chapter 9.

Stopping Sight Distance

Sight distance is the length of the roadway ahead that is visible to the driver. The available
sight distance on a roadway should be sufficiently long to enable a vehicle traveling at or near the
design speed to stop before reaching a stationary object in its path. Although greater lengths of
visible roadway are desirable, the sight distance at every point along a roadway should be at least
that needed for a below-average driver or vehicle to stop.

Stopping sight distance is the sum of two distances: (1) the distance traversed by the vehicle
from the instant the driver sights an object necessitating a stop to the instant the brakes are
applied; and (2) the distance needed to stop the vehicle from the instant brake application begins.
These are referred to as brake reaction distance and braking distance, respectively.

Brake Reaction Time

Brake reaction time is the interval from the instant that the driver recognizes the existence of
an obstacle  on the roadway ahead that necessitates braking to the instant that the driver actually
applies the brakes. Under certain conditions, such as emergency situations denoted by flares or
flashing lights, drivers accomplish these tasks almost instantly. Under most other conditions, the
driver must not only see the object but must also recognize it as a stationary or slowly moving
object against the background of the roadway and other objects, such as walls, fences, trees,
poles, or bridges. Such determinations take time, and the amount of time needed varies
considerably with the distance to the object, the visual acuity of the driver, the natural rapidity
with which the driver reacts, the atmospheric visibility, the type and the condition of the roadway,
and nature of the obstacle . Vehicle speed and roadway environment probably also influence
reaction time. Normally, a driver traveling at or near the design speed is more alert than one
traveling at a lesser speed. A driver on an urban street confronted by innumerable potential
conflicts with parked vehicles, driveways, and cross streets is also likely to be more alert than the
same driver on a limited-access facility where such conditions should be almost nonexistent.

The study of reaction times by Johansson and Rumar (1) referred to in Chapter 2 was based
on data from 321 drivers who expected to apply their brakes. The median reaction-time value for
these drivers was 0.66 s, with 10 percent using 1.5 s or longer. These findings correlate with those
of earlier studies in which alerted drivers were also evaluated. Another study (2) found 0.64 s as
the average reaction time, while 5 percent of the drivers needed over 1 s. In a third study (3), the
values of brake reaction time ranged from 0.4 to 1.7 s. In the Johansson and Rumar study (1),
when the event that required application of the brakes was unexpected, the drivers’ response
times were found to increase by approximately 1 s or more; some reaction times were greater than
1.5 s. This increase in reaction time substantiated earlier laboratory and road tests in which the
conclusion was drawn that a driver who needed 0.2 to 0.3 s of reaction time under alerted
conditions would need 1.5 s of reaction time under normal conditions.
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Minimum brake reaction times for drivers could thus be at least 1.64 s and 0.64 s for alerted
drivers as well as 1 s for the unexpected event. Because the studies discussed above used simple
prearranged signals, they represent the least complex of roadway conditions. Even under these
simple conditions , it was found that some drivers took over 3.5 s to respond. Because actual
conditions on the highway are generally more complex than those of the studies, and because
there is wide variation in driver reaction times, it is evident that the criterion adopted for use
should be greater than 1.64 s. The brake reaction time used in design should be large enough to
include the reaction times needed by nearly all drivers under most highway conditions. Both
recent research (4) and the studies documented in the literature (1, 2, 3) show that a 2.5-s brake
reaction time for stopping sight situations encompasses the capabilities of most drivers, including
those of older drivers. The recommended design criterion of 2.5 s for brake reaction time exceeds
the 90th percentile of reaction time for all drivers and has been used in the development of
Exhibit 3-1.

A brake reaction time of 2.5 s is considered adequate for conditions that are more complex
than the simple conditions used in laboratory and road tests, but it is not adequate for the most
complex conditions encountered in actual driving. The need for greater reaction time in the most
complex conditions encountered on the roadway, such as those found at multiphase at-grade
intersections and at ramp terminals on through roadways, can be found later in this chapter in the
section on “Decision Sight Distance.”

Braking Distance

The approximate braking distance of a vehicle on a level roadway traveling at the design
speed of the roadway may be determined from the following equation:

Metric US Customary

2

039.0
a
V

d =
2

075.1
a
V

d = ( 3-1 )

where:

d = braking distance, m;
V = design speed, km/h;
a = deceleration rate, m/s2

where:

d = braking distance, ft;
V = design speed, mph;
a = deceleration rate, ft/s2

Studies documented in the literature (4) show that most drivers decelerate at a rate greater
than 4.5 m/s2 [14.8 ft/s2] when confronted with the need to stop for an unexpected object in the
roadway. Approximately 90 percent of all drivers decelerate at rates greater than 3.4 m/s2

[11.2 ft/s2]. Such decelerations are within the driver’s capability to stay within his or her lane and
maintain steering control during the braking maneuver on wet surfaces. Therefore, 3.4 m/s2

[11.2 ft/s2] (a comfortable deceleration for most drivers) is recommended as the deceleration
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Stopping sight distance Stopping sight distance

Design
speed
(km/h)

Brake
reaction
distance

(m)

Braking
distance
on level

(m)
Calculated

(m)
Design

(m)

Design
speed
(mph)

Brake
reaction
distance

(ft)

Braking
distance
on level

(ft)
Calculated

(ft)
Design

(ft)
20 13.9 4.6 18.5 20 15 55.1 21.6 76.7 80
30 20.9 10.3 31.2 35 20 73.5 38.4 111.9 115
40 27.8 18.4 46.2 50 25 91.9 60.0 151.9 155
50 34.8 28.7 63.5 65 30 110.3 86.4 196.7 200
60 41.7 41.3 83.0 85 35 128.6 117.6 246.2 250
70 48.7 56.2 104.9 105 40 147.0 153.6 300.6 305
80 55.6 73.4 129.0 130 45 165.4 194.4 359.8 360
90 62.6 92.9 155.5 160 50 183.8 240.0 423.8 425

100 69.5 114.7 184.2 185 55 202.1 290.3 492.4 495
110 76.5 138.8 215.3 220 60 220.5 345.5 566.0 570
120 83.4 165.2 248.6 250 65 238.9 405.5 644.4 645
130 90.4 193.8 284.2 285 70 257.3 470.3 727.6 730

75 275.6 539.9 815.5 820
80 294.0 614.3 908.3 910

Note:  Brake reaction distance predicated on a time of 2.5 s; deceleration rate of 3.4 m/s2 [11.2 ft/s2] used to determine
calculated sight distance.

Exhibit 3-1.  Stopping Sight Distance
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threshold for determining stopping sight distance. Implicit in the choice of this deceleration
threshold is the assessment that most vehicle braking systems and the tire-pavement friction
levels of most roadways are capable of providing a deceleration of at least 3.4 m/s2 [11.2 ft/s2].
The friction available on most wet pavement surfaces and the capabilities of most vehicle braking
systems can provide braking friction that exceeds this deceleration rate.

Design Values

The sum of the distance traversed during the brake reaction time and the distance to brake
the vehicle to a stop is the stopping sight distance. The computed distances for wet pavements
and for various speeds at the assumed conditions are shown in Exhibit 3-1 and were developed
from the following equation:

Metric US Customary

2

039.0278.0
a
V

Vtd +=
2

075.147.1
a
V

Vtd += ( 3-2 )

where:

t = brake reaction time, 2.5 s;
V = design speed, km/h;
a = deceleration rate, m/s2

where:

t = brake reaction time, 2.5 s;
V = design speed, mph;
a = deceleration rate, ft/s2

Stopping sight distances exceeding those shown in Exhibit 3-1 should be used as the basis
for design wherever practical. Use of longer stopping sight distances increases the margin of
safety for all drivers and, in particular, for those who operate at or near the design speed. To
ensure that new pavements will have initially, and will retain, friction coefficients comparable to
the deceleration rates used to develop Exhibit 3-1, pavement designs should meet the criteria
established in the AASHTO Guidelines for Skid Resistant Pavement Design (5).

In computing and measuring stopping sight distances, the height of the driver’s eye is
estimated to be 1,080 mm [3.5 ft] and the height of the object to be seen by the driver is 600 mm
[2.0 ft], equivalent to the taillight height of a passenger car. The application of these eye-height
and object-height criteria is discussed further in the section on “Vertical Alignment” in this
chapter.

Effect of Grade on Stopping

When a highway is on a grade, the equation for braking distance should be modified as
follows:
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In this equation, G is the percent of grade divided by 100, and the other terms are as
previously stated. The stopping distances needed on upgrades are shorter than on level roadways;
those on downgrades are longer. The stopping sight distances for various grades are shown in
Exhibit 3-2. These adjusted sight distance values are computed for wet-pavement conditions
using the same design speeds and brake reaction times used for level roadways in Exhibit 3-1.

On nearly all roads and streets, the grade is traversed by traffic in both directions of travel,
but the sight distance at any point on the highway generally is different in each direction,
particularly on straight roads in rolling terrain. As a general rule, the sight distance available on
downgrades is larger than on upgrades, more or less automatically providing the appropriate
corrections for grade. This may explain why designers do not adjust stopping sight distance
because of grade. Exceptions are one-way roads or streets, as on divided highways with
independent design profiles for the two roadways. For these separate roadways, adjustments for
grade may be needed.

Variation for Trucks

The recommended stopping sight distances are based on passenger car operation and  do not
explicitly consider design for truck operation. Trucks as a whole, especially the larger and heavier
units, need longer stopping distances from a given speed than passenger vehicles. However, there
is one factor that tends to balance the additional braking lengths for trucks with those for
passenger cars. The truck driver is able to see substantially farther beyond vertical sight
obstructions because of the higher position of the seat in the vehicle. Separate stopping sight
distances for trucks and passenger cars, therefore, are not generally used in highway design.

There is one situation in which every effort should be made to provide stopping sight
distances greater than the design values in Exhibit 3-1. Where horizontal sight restrictions occur
on downgrades, particularly at the ends of long downgrades where truck speeds closely approach
or exceed those of passenger cars, the greater height of eye of the truck driver is of little value,
even when the horizontal sight obstruction is a cut slope. Although the average truck driver tends
to be more experienced than the average passenger car driver and quicker to recognize potential
risks, it is desirable under such conditions to provide stopping sight distance that exceeds the
values in Exhibits 3-1 or 3-2.
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Metric US Customary
Stopping sight distance (m) Stopping sight distance (ft)

Downgrades Upgrades Downgrades Upgrades
Design
speed
(km/h) 3% 6% 9% 3% 6% 9%

Design
speed
(mph) 3% 6% 9% 3% 6% 9%

20 20 20 20 19 18 18 15 80 82 85 75 74 73
30 32 35 35 31 30 29 20 116 120 126 109 107 104
40 50 50 53 45 44 43 25 158 165 173 147 143 140
50 66 70 74 61 59 58 30 205 215 227 200 184 179
60 87 92 97 80 77 75 35 257 271 287 237 229 222
70 110 116 124 100 97 93 40 315 333 354 289 278 269
80 136 144 154 123 118 114 45 378 400 427 344 331 320
90 164 174 187 148 141 136 50 446 474 507 405 388 375

100 194 207 223 174 167 160 55 520 553 593 469 450 433
110 227 243 262 203 194 186 60 598 638 686 538 515 495
120 263 281 304 234 223 214 65 682 728 785 612 584 561
130 302 323 350 267 254 243 70 771 825 891 690 658 631

75 866 927 1003 772 736 704
80 965 1035 1121 859 817 782

Exhibit 3-2.  Stopping Sight Distance on Grades

Decision Sight Distance

Stopping sight distances are usually sufficient to allow reasonably competent and alert
drivers to come to a hurried stop under ordinary circumstances. However, these distances are
often inadequate when drivers must make complex or instantaneous decisions, when information
is difficult to perceive or when unexpected or unusual maneuvers are required. Limiting sight
distances to those needed for stopping may preclude drivers from performing evasive maneuvers,
which often involve less risk and are otherwise preferable to stopping. Even with an appropriate
complement of standard traffic control devices in accordance with the MUTCD (6), stopping
sight distances may not provide sufficient visibility distances for drivers to corroborate advance
warning and to perform the appropriate maneuvers. It is evident that there are many locations
where it would be prudent to provide longer sight distances. In these circumstances, decision
sight distance provides the greater visibility distance that drivers need.

Decision sight distance is the distance needed for a driver to detect an unexpected or
otherwise difficult-to-perceive information source or condition in a roadway environment that
may be visually cluttered, recognize the condition or its potential threat, select an appropriate
speed and path, and initiate and complete the maneuver safely and efficiently (7). Because
decision sight distance offers drivers additional margin for error and affords them sufficient
length to maneuver their vehicles at the same or reduced speed, rather than to just stop, its values
are substantially greater than stopping sight distance.

Drivers need decision sight distances whenever there is a likelihood for error in either
information reception, decision-making, or control actions (8). Examples of critical locations
where these kinds of errors are likely to occur, and where it is desirable to provide decision sight
distance include interchange and intersection locations where unusual or unexpected maneuvers
are required, changes in cross section such as toll plazas and lane drops, and areas of concentrated
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demand where there is apt to be “visual noise” from competing sources of information, such as
roadway elements, traffic, traffic control devices, and advertising signs.

The decision sight distances in Exhibit 3-3: (1) provide values for sight distances that may be
appropriate at critical locations and (2) serve as criteria in evaluating the suitability of the
available sight distances at these locations. Because of the additional safety and maneuvering
space provided, it is recommended that decision sight distances be provided at critical locations
or that critical decision points be moved to locations where sufficient decision sight distance is
available. If it is not practical to provide decision sight distance because of horizontal or vertical
curvature or if relocation of decision points is not practical, special attention should be given to
the use of suitable traffic control devices for providing advance warning of the conditions that are
likely to be encountered.

Metric US Customary
Decision sight distance (m) Decision sight distance (ft)

Avoidance maneuver Avoidance maneuver
Design
speed
(km/h) A B C D E

Design
speed
(mph) A B C D E

50 70 155 145 170 195 30 220 490 450 535 620
60 95 195 170 205 235 35 275 590 525 625 720
70 115 235 200 235 275 40 330 690 600 715 825
80 140 280 230 270 315 45 395 800 675 800 930
90 170 325 270 315 360 50 465 910 750 890 1030

100 200 370 315 355 400 55 535 1030 865 980 1135
110 235 420 330 380 430 60 610 1150 990 1125 1280
120 265 470 360 415 470 65 695 1275 1050 1220 1365
130 305 525 390 450 510 70 780 1410 1105 1275 1445

75 875 1545 1180 1365 1545
80 970 1685 1260 1455 1650

Avoidance Maneuver A:  Stop on rural road—t = 3.0 s
Avoidance Maneuver B:  Stop on urban road—t = 9.1 s
Avoidance Maneuver C:  Speed/path/direction change on rural road—t varies between 10.2

and 11.2 s
Avoidance Maneuver D:  Speed/path/direction change on suburban road—t varies between

12.1 and 12.9 s
Avoidance Maneuver E:  Speed/path/direction change on urban road—t varies between 14.0

and 14.5 s

Exhibit 3-3.  Decision Sight Distance

Decision sight distance criteria that are applicable to most situations have been developed
from empirical data. The decision sight distances vary depending on whether the location is on a
rural or urban road and on the type of avoidance maneuver required to negotiate the location
properly. Exhibit 3-3 shows decision sight distance values for various situations rounded for
design. As can be seen in the exhibit , shorter distances are generally needed for rural roads and
for locations where a stop is the appropriate maneuver.

For the avoidance maneuvers identified in Exhibit 3-3, the pre-maneuver time is increased
above the brake reaction time for stopping sight distance to allow the driver additional time to
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detect and recognize the roadway or traffic situation, identify alternative maneuvers, and initiate a
response at critical locations on the highway (9). The pre-maneuver component of decision sight
distance uses a value ranging between 3.0 and 9.1 s (10).

The braking distance from the design speed is added to the pre-maneuver component for
avoidance maneuvers A and B as shown in Equation (3-4). The braking component is replaced in
avoidance maneuvers C, D, and E with a maneuver distance based on maneuver times between
3.5 and 4.5 s, that decrease with increasing speed (9) in accordance with Equation (3-5).

The decision sight distances for avoidance maneuvers A and B are determined as:

Metric US Customary

2

039.0278.0
a
V

Vtd +=
2

075.147.1
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where:

t = pre-maneuver time, s (see
notes in Exhibit 3-3);

V = design speed, km/h;
a = driver deceleration, m/s2

where:

t = pre-maneuver time, s (see
notes in Exhibit 3-3);

V = design speed, mph;
a = driver deceleration, ft/s2

The decision sight distances for avoidance maneuvers C, D, and E are determined as:

Metric US Customary

Vtd 278.0= Vtd 47.1= ( 3-5 )

 where:

t =  total pre-maneuver and
maneuver time, s (see notes
in Exhibit 3-3);

V = design speed, km/h

 where:

t =  total pre-maneuver and
maneuver time, s (see notes
in Exhibit 3-3);

V = design speed, mph

In computing and measuring decision sight distances, the same 1,080-mm [3.5-ft] eye-height
and 600-mm [2.0-ft] object-height criteria used for stopping sight distance have been adopted.
Although drivers may have to be able to see the entire roadway situation, including the road
surface, the rationale for the 600-mm [2.0-ft] object height is as applicable to decision sight
distance as it is to stopping sight distance.
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Passing Sight Distance for Two-Lane Highways

Criteria for Design

Most roads and many streets are two-lane, two-way highways on which vehicles frequently
overtake slower moving vehicles. Passing maneuvers in which faster vehicles move ahead of
slower vehicles must be accomplished on lanes regularly used by opposing traffic. If passing is to
be accomplished safely , the passing driver should be able to see a sufficient distance ahead, clear
of traffic, to complete the passing maneuver without cutting off the passed vehicle before meeting
an opposing vehicle that appears during the maneuver. When appropriate, the driver can return to
the right lane without completing the pass if he or she sees opposing traffic is too close when the
maneuver is only partially completed. Many passing maneuvers are accomplished without the
driver being able to see any potentially conflicting vehicle at the beginning of the maneuver, but
design should not be based on such maneuvers. Because many cautious drivers would not attempt
to pass under such conditions, design on this basis would reduce the usefulness of the highway.
An alternative to providing passing sight distance is found later in this chapter in the section on
“Passing Lanes.”

Passing sight distance for use in design should be determined on the basis of the length
needed to complete normal passing maneuvers in which the passing driver can determine that
there are no potentially conflicting vehicles ahead before beginning the maneuver. While there
may be occasions to consider multiple passings, where two or more vehicles pass or are passed, it
is not practical to assume such conditions in developing minimum design criteria. Instead, sight
distance should be determined for a single vehicle passing a single vehicle. Longer sight distances
occur in design and such locations can accommodate an occasional multiple passing.

Minimum passing sight distances for design of two-lane highways incorporate certain
assumptions about driver behavior. Actual driver behavior in passing maneuvers varies widely.
To accommodate these variations in driver behavior, the design criteria for passing sight distance
should accommodate the behavior of a high percentage of drivers, rather than just the average
driver. The following assumptions are made concerning driver behavior in passing maneuvers:

1. The overtaken vehicle travels at uniform speed.
2. The passing vehicle has reduced speed and trails the overtaken vehicle as it enters a

passing section.
3. When the passing section is reached, the passing driver needs a short period of time to

perceive the clear passing section and to react to start his or her maneuver.
4. Passing is accomplished under what may be termed a delayed start and a hurried return

in the face of opposing traffic. The passing vehicle accelerates during the maneuver,
and its average speed during the occupancy of the left lane is 15 km/h [10 mph] higher
than that of the overtaken vehicle.

5. When the passing vehicle returns to its lane, there is a suitable clearance length between
it and an oncoming vehicle in the other lane.

Some drivers accelerate at the beginning of a passing maneuver to an appreciably higher
speed and then continue at a uniform speed until the maneuver is completed. Many drivers
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accelerate at a fairly high rate until just beyond the vehicle being passed and then complete the
maneuver either without further acceleration or at reduced speed. For simplicity, such
extraordinary maneuvers are ignored and passing distances are developed with the use of
observed speeds and times that fit the practices of a high percentage of drivers.

The minimum passing sight distance for two-lane highways is determined as the sum of the
following four distances (shown in Exhibit 3-4):

• d1—Distance traversed during perception and reaction time and during the initial
acceleration to the point of encroachment on the left lane.

• d2—Distance traveled while the passing vehicle occupies the left lane.
• d3—Distance between the passing vehicle at the end of its maneuver and the opposing

vehicle.
• d4—Distance traversed by an opposing vehicle for two-thirds of the time the passing

vehicle occupies the left lane, or 2/3 of d2 above.

Exhibit 3-4.  Elements of Passing Sight Distance for Two-Lane Highways

Various distances for the components of passing maneuvers, based on extensive field
observations of driver behavior (11) are presented for four passing speed groups in Exhibit 3-5.
Time and distance values were determined in relation to the average speed of the passing vehicle.
The speeds of the overtaken vehicles were approximately 15 km/h [10 mph] less than the speeds
of the passing vehicles.

Very little change was noted in the passing practices of drivers in a restudy of three of the
original sections despite increased vehicle performance capabilities. A later study (12) of vehicle
passing performance on two-lane highways produced a different set of passing sight distance
values. These values were subsequently reviewed (13) to evaluate minimum passing sight
distances. This evaluation reported the total passing sight distances as seen in Exhibit 3-5 are
greater than those determined in subsequent studies for all speeds except 110 km/h [70 mph].
Thus, the minimum passing sight distances presented in Exhibit 3-7 are generally conservative for
modern vehicles and are used below.



Metric US Customary
Speed range (km/h) Speed range (mph)

50-65 66-80 81-95 96-110 30-40 40-50 50-60 60-70
Average passing speed (km/h) Average passing speed (mph)Component of passing

maneuver 56.2 70.0 84.5 99.8 34.9 43.8 52.6 62.0
Initial maneuver:

a = average accelerationa 2.25 2.30 2.37 2.41 1.40 1.43 1.47 1.50
t1 = time (sec)a 3.6 4.0 4.3 4.5 3.6 4.0 4.3 4.5
d1 = distance traveled 45 66 89 113 145 216 289 366

Occupation of left lane:
t2 = time (sec)a 9.3 10.0 10.7 11.3 9.3 10.0 10.7 11.3
d2 = distance traveled 145 195 251 314 477 643 827 1030

Clearance length:
d3 = distance traveleda 30 55 75 90 100 180 250 300

Opposing vehicle:
d4 = distance traveled 97 130 168 209 318 429 552 687

Total distance, d1 + d2 + d3 + d4 317 446 583 726 1040 1468 1918 2383
a  For consistent speed relation, observed values adjusted slightly.
Note:  In the metric portion of the table, speed values are in km/h, acceleration rates in km/h/s, and distances are

in meters.  In the U.S. customary portion of the table, speed values are in mph, acceleration rates in
mph/sec, and distances are in feet.

Exhibit 3-5.  Elements of Safe Passing Sight Distance for Design of Two-Lane Highways
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Initial maneuver distance (d1). The initial maneuver period has two components, a time for
perception and reaction, and an interval during which the driver brings the vehicle from the
trailing speed to the point of encroachment on the left or passing lane. To a great extent these two
periods overlap. As a passing section of highway comes into the view of a driver desiring to pass,
the driver may begin to accelerate and maneuver his or her vehicle toward the centerline of the
highway while deciding whether or not to pass. Studies show that the average passing vehicle
accelerates at less than its maximum potential, indicating that the initial maneuver period contains
an element of time for perception and reaction. However, some drivers may remain in normal
lane position while deciding to pass. The exact position of the vehicle during initial maneuver is
unimportant because the differences in resulting passing distances are insignificant.

The acceleration rate obtained from the passing study data in the first three speed groups
during the initial maneuver period varied from 2.25 to 2.37 km/h/s [1.41 to 1.47 mph/s]; the
average time varied from 3.7 to 4.3 s; and the average passing speeds were 56.2, 70.0, and
84.5 km/h [34.9, 43.8, and 52.6 mph]. For the 96 to 100 km/h [60 to 70 mph] group, on the basis
of extrapolated data, the average acceleration was assumed to be 2.41 km/h/s [1.50 mph/s]; the
maneuver time, 4.5 s; and the average speed, 99.8 km/h [62.0 mph].

The distance d1 traveled during the initial maneuver period is computed with the following
equation:

Metric US Customary
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where:

ti = time of initial maneuver, s;
a = average acceleration,

km/h/s;
v = average speed of passing

vehicle, km/h;
m = difference in speed of

passed vehicle and passing
vehicle, km/h

where:

ti = time of initial maneuver, s;
a = average acceleration,

mph/s;
v = average speed of passing

vehicle, mph;
m = difference in speed of

passed vehicle and
passing vehicle, mph

The acceleration, time, and distance traveled during the initial maneuver periods in passing
are given in Exhibit 3-5. The d1 line in Exhibit 3-6 shows the distance plotted against the average
speed of the passing vehicle .

Distance while passing vehicle occupies left lane (d2). Passing vehicles were found in the
study to occupy the left lane from 9.3 to 10.4 s. The distance d2 traveled in the left lane by the
passing vehicle is computed with the following equation:
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Metric US Customary

22 278.0 vtd = 22 47.1 vtd = ( 3-7 )

where:

t2 = time passing vehicle
occupies the left lane, s;

v = average speed of passing
vehicle, km/h

where:

t2 = time passing vehicle
occupies the left lane, s;

v = average speed of passing
vehicle, mph

The time and distance traveled while the passing vehicle occupies the left lane are given in
Exhibit 3-5. Distances are plotted against average passing speeds as curve d2 in Exhibit 3-6.

Clearance length (d3). The clearance length between the opposing and passing vehicles at
the end of the passing maneuvers was found in the passing study to vary from 30 to 75 m [100 to
250 ft]. This length, adjusted somewhat for practical consistency, is shown as the clearance length
d3 in Exhibits 3-5 and 3-6.

Distance traversed by an opposing vehicle (d4). Passing sight distance includes the
distance traversed by an opposing vehicle during the passing maneuver, to minimize the chance
that a passing vehicle will meet an opposing vehicle while in the left lane. Conservatively, this
distance should be the distance traversed by an opposing vehicle during the entire time it takes to
pass or during the time the passing vehicle is in the left lane, but such distance is questionably
long. During the first phase of the passing maneuver, the passing vehicle has not yet pulled
abreast of the vehicle being passed, and even though the passing vehicle occupies the left lane, its
driver can return to the right lane if an opposing vehicle is seen. It is unnecessary to include this
trailing time interval in computing the distance traversed by an opposing vehicle. This time
interval, which can be computed from the relative positions of passing and passed vehicle, is
about one-third the time the passing vehicle occupies the left lane, so that the passing sight
distance element for the opposing vehicle is the distance it traverses during two-thirds of the time
the passing vehicle occupies the left lane. The opposing vehicle is assumed to be traveling at the
same speed as the passing vehicle, so d4 = 2d2/3. The distance d4 is shown in Exhibits 3-5 and
3-6.

Design Values

The “total” curve in Exhibit 3-6 is determined by the sum of the elements d1 through d4. For
each passing speed, this total curve indicates the minimum passing sight distance for a vehicle to
pass another vehicle traveling 15 km/h [10 mph] slower, in the face of an opposing vehicle
traveling at the same speed as the passing vehicle. On determination of a likely and logical
relation between average passing speed and the highway design speed, these distances can be
used to express the minimum passing sight distance needed for design purposes.
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Exhibit 3-6.  Total Passing Sight Distance and Its Components—Two-Lane
Highways

The ranges of speeds of the passed and passing vehicles are affected by traffic volume.
When traffic volume is low (level-of-service A), there are few vehicles that need to be passed, but
as the volume increases (level-of-service D or lower) there are few, if any, passing opportunities.
The speed of the passed vehicle has been assumed to be the average running speed at a traffic
volume near capacity. The speed of the passing vehicle is assumed to be 15 km/h [10 mph]
greater. The assumed speeds for passing vehicles in Exhibit 3-7 represent the likely passing
speeds on two-lane highways. Passing sight distances for these passing speeds would
accommodate a majority of the desired passing maneuvers and correspond to the total curve in
Exhibit 3-6. The values in the last column of Exhibit 3-7 are design values for minimum passing
sight distance. In designing a highway these distances should be exceeded as much as practical,
and passing sections should be provided as often as can be done at reasonable cost to provide as
many passing opportunities as practical.

These minimum passing sight distances for design should not be confused with other
distances used as the warrants for placing no-passing zone pavement markings on completed
highways. Such values as shown in the MUTCD (6) are substantially less than design distances



Metric US Customary

Assumed speeds
(km/h) Passing sight distance (m)

Assumed speeds
(mph) Passing sight distance (ft)Design

speed
(km/h)

Passed
vehicle

Passing
vehicle

From
Exhibit 3-6

Rounded for
design

Design
speed
(mph)

Passed
vehicle

Passing
vehicle

From
Exhibit 3-6

Rounded for
design

30 29 44 200 200 20 18 28 706 710
40 36 51 266 270 25 22 32 897 900
50 44 59 341 345 30 26 36 1088 1090
60 51 66 407 410 35 30 40 1279 1280
70 59 74 482 485 40 34 44 1470 1470
80 65 80 538 540 45 37 47 1625 1625
90 73 88 613 615 50 41 51 1832 1835

100 79 94 670 670 55 44 54 1984 1985
110 85 100 727 730 60 47 57 2133 2135
120 90 105 774 775 65 50 60 2281 2285
130 94 109 812 815 70 54 64 2479 2480

75 56 66 2578 2580
80 58 68 2677 2680

Exhibit 3-7.  Passing Sight Distance for Design of Two-Lane Highways
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and are derived for traffic operating-control needs that are based on different assumptions from
those for highway design.

Effect of Grade on Passing Sight Distance

Appreciable grades affect the sight distance needed for passing. Passing is easier for the
vehicle traveling downgrade because the overtaking vehicle can accelerate more rapidly than on
the level and thus can reduce the time of passing. However, the overtaken vehicle can also
accelerate easily so that a situation akin to a racing contest may result.

The sight distances needed to permit vehicles traveling upgrade to pass safely are greater
than those needed on level roads because of reduced acceleration of the passing vehicle (which
increases the time of passing) and the likelihood that opposing traffic may speed up (which
increases the distance traveled by an opposing vehicle during the passing maneuver).
Compensating for this somewhat are the factors that the passed vehicle frequently is a truck that
usually loses some speed on appreciable upgrades and that many drivers are aware of the greater
distances needed for passing upgrade compared with level conditions.

If passing maneuvers are to be performed on upgrades under the same assumptions about the
behavior of the passing and passed vehicles discussed above, the passing sight distance should be
greater than the derived design values. Specific adjustments for design use are unavailable, but
the designer should recognize the desirability of exceeding the values shown in Exhibit 3-7.

Frequency and Length of Passing Sections

Sight distance adequate for passing should be encountered frequently on two-lane highways.
Each passing section along a length of roadway with sight distance ahead equal to or greater than
the minimum passing sight distance should be as long as practical. The frequency and length of
passing sections for highways depend, principally on the topography, the design speed of
highway, and the cost; for streets, the spacing of intersections is the principal consideration.

It is not practical to directly indicate the frequency with which passing sections should be
provided on two-lane highways due to the physical and cost limitations. During the course of
normal design, passing sections are provided on almost all highways and selected streets, but the
designer’s appreciation of their importance and a studied attempt to provide them can usually
ensure others at little or no additional cost. In steep mountainous terrain, it may be more
economical to build intermittent four-lane sections or passing lanes with stopping sight distance
on some two-lane highways, in lieu of two-lane sections with passing sight distance. Alternatives
are discussed later in this chapter in the section on “Passing Lanes.”

The passing sight distances shown in Exhibit 3-7 are sufficient for a single or isolated pass
only. Designs with infrequent passing sections will not assure that opportunities for passing are
available . Even on low-volume roadways, a driver desiring to pass may, on reaching the passing
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section, find vehicles in the opposing lane and thus be unable to use the passing section or at least
may not be able to begin to pass at once.

The importance of frequent passing sections is illustrated by their effect on the level of
service of a two-lane, two-way highway. The procedures in the Highway Capacity Manual (14) to
analyze two-lane, two-way highways base the level-of-service criteria on two measures of
effectiveness—percent time spent following and average travel speed. Both of these criteria are
affected by the lack of passing opportunities. The HCM procedures show, for example, up to a 19
percent increase in the percent time spent following when the directional split is 50/50 and no-
passing zones comprise 40 percent of the analysis length compared to a highway with similar
traffic volumes and no sight restrictions. The effect of restricted passing sight distance is even
more severe for unbalanced flow and where the no-passing zones comprise more than 40 percent
of the length.

There is a similar effect on the average travel speed. As the percent of no-passing zones
increases, there is an increased reduction in the average travel speed for the same demand flow
rate. For example, a demand flow rate of 800 passenger cars per hour incurs a reduction of
3.1 km/h (1.9 mph) when no-passing zones comprise 40 percent of the analysis length compared
to no reduction in speed on a route with unrestricted passing.

The HCM procedures indicate another possible criterion for passing sight distance design on
two-lane highways that are several miles or more in length. The available passing sight distances
along this length can be summarized to show the percentage of length with greater-than-minimum
passing sight distance. Analysis of capacity related to this percentage would indicate whether or
not alignment and profile adjustments are needed to accommodate the design hourly volume
(DHV). When highway sight distances are analyzed over the whole range of lengths within which
passing maneuvers are made, a new design criterion may be evaluated. Where high traffic
volumes are expected on a highway and a high level of service is to be maintained, frequent or
nearly continuous passing sight distances should be provided.

Sight Distance for Multilane Highways

It is not necessary to consider passing sight distance on highways or streets that have two or
more traffic lanes in each direction of travel. Passing maneuvers on multilane roadways are
expected to occur within the limits of the traveled way for each direction of travel. Thus, passing
maneuvers that involve crossing the centerline of four-lane undivided roadways or crossing the
median of four-lane roadways should be prohibited.

Multilane roadways should have continuously adequate stopping sight distance, with
greater-than-design sight distances preferred. Design criteria for stopping sight distance vary with
vehicle speed and are discussed in detail at the beginning of this chapter.
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Criteria for Measuring Sight Distance

Sight distance is the distance along a roadway throughout which an object of specified
height is continuously visible to the driver. This distance is dependent on the height of the
driver’s eye above the road surface, the specified object height above the road surface, and the
height and lateral position of sight obstructions within the driver’s line of sight.

Height of Driver’s Eye

For sight distance calculations for passenger vehicles, the height of the driver’s eye is
considered to be 1,080 mm [3.5 ft] above the road surface. This value is based on a study (4)
found that average vehicle heights have decreased to 1,300 mm [4.25 ft] with a comparable
decrease in average eye heights to 1,080 mm [3.5 ft]. Because of various factors that appear to
place practical limits on further decreases in passenger car heights and the relatively small
increases in the lengths of vertical curves that would result from further changes that do occur,
1,080 mm [3.5 ft] is considered to be the appropriate height of driver’s eye for measuring both
stopping and passing sight distances. For large trucks, the driver eye height ranges from 1,800 to
2,400 mm [5.9 to 7.9 ft]. The recommended value of truck driver eye height for design is
2,330 mm [7.6 ft] above the roadway surface.

Height of Object

For stopping sight distance calculations, the height of object is considered to be 600 mm
[2.0 ft] above the road surface. For passing sight distance calculations, the height of object is
considered to be 1,080 mm [3.5 ft] above the road surface.

Stopping sight distance object. The basis for selection of a 600-mm [2.0-ft] object height
was largely an arbitrary rationalization of the size of object that might potentially be encountered
in the road and of a driver’s ability to perceive and react to such situations. It is considered that an
object 600 mm [2.0 ft] high is representative of an object that involves risk to drivers and can be
recognized by a driver in time to stop before reaching it. Using object heights of less than
600 mm [2.0 ft] for stopping sight distance calculations would result in longer crest vertical
curves without documented safety benefits (4). Object height of less than 600 mm [2.0 ft] could
substantially increase construction costs because additional excavation would be needed to
provide the longer crest vertical curves. It is also doubtful that the driver’s ability to perceive
situations involving risk of collisions would be increased because recommended stopping sight
distances for high-speed design are beyond most drivers’ capabilities to detect small objects (4).

Passing sight distance object. An object height of 1,080 mm [3.5 ft] is adopted for passing
sight distance. This object height is based on a vehicle height of 1,330 mm [4.35 ft], which
represents the 15th percentile of vehicle heights in the current passenger car population, less an
allowance of 250 mm [0.82 ft], which represents a near-maximum value for the portion of the
vehicle height that needs to be visible for another driver to recognize a vehicle as such (15).
Passing sight distances calculated on this basis are also considered adequate for night conditions
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because headlight beams of an opposing vehicle generally can be seen from a greater distance
than a vehicle can be recognized in the daytime. The choice of an object height equal to the driver
eye height makes passing sight distance design reciprocal (i.e., when the driver of the passing
vehicle can see the opposing vehicle, the driver of the opposing vehicle can also see the passing
vehicle).

Sight Obstructions

On a tangent roadway, the obstruction that limits the driver’s sight distance is the road
surface at some point on a crest vertical curve. On horizontal curves, the obstruction that limits
the driver’s sight distance may be the road surface at some point on a crest vertical curve, or it
may be some physical feature outside of the traveled way, such as a longitudinal barrier, a bridge-
approach fill slope, a tree, foliage, or the backslope of a cut section. Accordingly, all highway
construction plans should be checked in both the vertical and horizontal plane for sight distance
obstructions.

Measuring and Recording Sight Distance on Plans

The design of horizontal alignment and vertical profile using sight distance and other criteria
is addressed later in this chapter, including the detailed design of horizontal and vertical curves.
Sight distance should be considered in the preliminary stages of design when both the horizontal
and vertical alignment are still subject to adjustment. By determining the available sight distances
graphically on the plans and recording them at frequent intervals, the designer can appraise the
overall layout and effect a more balanced design by minor adjustments in the plan or profile.
Methods for scaling sight distances on plans are demonstrated in Exhibit 3-8, which also shows a
typical sight distance record that would be shown on the final plans.

Because the view of the highway ahead may change rapidly in a short distance, it is desirable
to measure and record sight distance for both directions of travel at each station. Both horizontal
and vertical sight distances should be measured and the shorter lengths recorded. In the case of a
two-lane highway, passing sight distance should be measured and recorded in addition to
stopping sight distance.

Sight distance charts such as those in Exhibit 3-74 and 3-77 may be used to establish
minimum lengths of vertical curves. Charts similar to Exhibit 3-57 are useful for determining the
radius of horizontal curve or the lateral offset from the traveled way needed to provide the design
sight distance. Once the horizontal and vertical alignments are tentatively established, the most
practical means of examining sight distances along the proposed highway is by direct scaling on
the plans.

Horizontal sight distance on the inside of a curve is limited by obstructions such as
buildings, hedges, wooded areas, high ground, or other topographic features. These are generally
plotted on the plans. Horizontal sight is measured with a straightedge, as indicated in the upper
left portion of Exhibit 3-8. The cut slope obstruction is shown on the worksheets by a line
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Exhibit 3-8.  Scaling and Recording Sight Distances on Plans
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representing the proposed excavation slope at a point 840 mm [2.75 ft] above the road surface
(i.e., the approximate average of 1,080 mm and 600 mm [3.5 ft and 2.0 ft]) for stopping sight
distance and at a point about 1,080 mm [3.5 ft] above the road surface for passing sight distance.
The position of this line with respect to the centerline may be scaled from the plotted highway
cross sections. Preferably, the stopping sight distance should be measured between points on one
traffic lane, and passing sight distance from the middle of one lane to the middle of the other lane.

Such refinement on two-lane highways generally is not necessary and measurement of sight
distance along the centerline or traveled way edge is suitable. Where there are changes of grade
coincident with horizontal curves that have sight-limiting cut slopes on the inside, the line-of-
sight intercepts the slope at a level either lower or higher than the assumed average height. In
measuring sight distance, the error in the use of the assumed 840 or 1,080 mm [2.75 or 3.5 ft]
height usually can be ignored.

Vertical sight distance may be scaled from a plotted profile by the method illustrated at the
right center of Exhibit 3-8. A transparent strip with parallel edges 1,080 mm [3.5 ft] apart and
with a scratched line 600 mm [2.0 ft] from the upper edge, in accordance with the vertical scale,
is a useful tool. The lower edge of the strip is placed on the station from which the vertical sight
distance is desired, and the strip is pivoted about this point until the upper edge is tangent to the
profile. The distance between the initial station and the station on the profile intersected by the
600 mm [2.0 ft] line is the stopping sight distance. The distance between the initial station and the
station on the profile intersected by the lower edge of the strip is the passing sight distance.

A simple sight distance record is shown in the lower part of Exhibit 3-8. Sight distances in
both directions are indicated by arrows and figures at each station on the plan and profile sheet of
the proposed highway. To avoid the extra work of measuring unusually long sight distances that
may occasionally be found, a selected maximum value may be recorded. In the example shown,
all sight distances of more than 1,000 m [3,000 ft] are recorded as 1,000 m+ [3,000 ft+], and
where this occurs for several consecutive stations, the intermediate values are omitted. Sight
distances less than 500 m [1,500 ft] may be scaled to the nearest 10 m [50 ft] and those greater
than 500 m [1,500 ft] to the nearest 50 m [100 ft]. The available sight distances along a proposed
highway also may be shown by other methods. Several States use a sight distance graph, plotted
in conjunction with the plan and profile of the highway, as a means of demonstrating sight
distances. Sight distances can also be easily determined where plans and profiles are drawn using
computer-aided design and drafting (CADD) systems.

Sight distance records for two-lane highways may be used effectively to tentatively
determine the marking of no-passing zones in accordance with criteria given in the MUTCD (6).
Marking of such zones is an operational rather than a design problem. No-passing zones thus
established serve as a guide for markings when the highway is completed. The zones so
determined should be checked and adjusted by field measurements before actual markings are
placed.

Sight distance records also are useful on two-lane highways for determining the percentage
of length of highway on which sight distance is restricted to less than the passing minimum,
which is important in evaluating capacity. With recorded sight distances, as in the lower part of
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Exhibit 3-8, it is a simple process to determine the percentage of length of highway with a given
sight distance or greater.

HORIZONTAL ALIGNMENT

Theoretical Considerations

For balance in highway design all geometric elements should, as far as economically
practical, be designed to provide safe, continuous operation at a speed likely to be observed under
the normal conditions for that roadway. For the most part, this can be achieved through the use of
design speed as an overall design control. The design of roadway curves should be based on an
appropriate relationship between design speed and curvature and on their joint relationships with
superelevation and side friction. Although these relationships stem from the laws of mechanics,
the actual values for use in design depend on practical limits and factors determined more or less
empirically over the range of variables involved. These limits and factors are explained in the
following discussion, as they relate to the determination of logical controls for roadway curve
design.

When a vehicle moves in a circular path, it undergoes a centripetal acceleration that acts
toward the center of curvature. This acceleration is sustained by a component of the vehicle’s
weight related to the roadway superelevation, by the side friction developed between the vehicle’s
tires and the pavement surface, or by a combination of the two. As a matter of conceptual
convenience, centripetal acceleration is sometimes equated to centrifugal force. However, this is
an imaginary force that motorists believe is pushing them outward while cornering when, in fact,
they are truly feeling the vehicle being accelerated in an inward direction. The term “centripetal
acceleration” and its equivalent in horizontal curve design, “lateral acceleration,” are used in this
policy as they are fundamentally correct.

From the laws of mechanics, the basic formula that governs vehicle operation on a curve is:
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  where:

e = rate of roadway superelevation,
percent;

f = side friction (demand) factor;
v = vehicle speed, m/s;
g = gravitational constant, 9.81 m/s2;
V = vehicle speed, km/h;
R = radius of curve, m

  where:

e = rate of roadway superelevation,
percent;

f = side friction (demand) factor;
v = vehicle speed, ft/s;
g = gravitational constant, 32.2 ft/s2;
V = vehicle speed, mph;
R = radius of curve, ft

Equation (3-8), which models the moving vehicle as a point mass, is often referred to as the basic
curve formula.
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When a vehicle travels at constant speed on a curve superelevated so that the f value is zero,
the centripetal acceleration is sustained by a component of the vehicle ’s weight and, theoretically,
no steering force is needed. A vehicle traveling faster or slower than the balance speed develops
tire friction as steering effort is applied to prevent movement to the outside or to the inside of the
curve. On nonsuperelevated curves, travel at different speeds is also possible by utilizing
appropriate amounts of side friction to sustain the varying centripetal acceleration.

General Considerations

From accumulated research and experience, limiting values for superelevation rate (emax) and
side friction demand (fmax) have been established for curve design. Using these established
limiting values in the basic curve formula permits determination of a minimum curve radius for
various design speeds. Use of curves with radii larger than this minimum allows superelevation,
side friction, or both to have values below their respective limits. The amount by which each
factor is below its respective limit is chosen to provide an equitable contribution of each factor
toward sustaining the resultant centripetal acceleration. The methods used to achieve this equity
for different design situations are discussed below.

Superelevation

There are practical upper limits to the rate of superelevation on a horizontal curve. These
limits relate to considerations of climate, constructability, adjacent land use, and the frequency of
slow-moving vehicles. Where snow and ice are a factor, the rate of superelevation should not
exceed the rate on which vehicles standing or traveling slowly would slide toward the center of
the curve when the pavement is icy. At higher speeds, the phenomenon of partial hydroplaning
can occur on curves with poor drainage that allows water to build up on the pavement surface.
Skidding occurs, usually at the rear wheels, when the lubricating effect of the water film reduces
the available lateral friction below the friction demand for cornering. When travelling slowly
around a curve with high superelevation, negative lateral forces develop and the vehicle is held in
the proper path only when the driver steers up the slope or against the direction of the horizontal
curve. Steering in this direction seems unnatural to the driver and may explain the difficulty of
driving on roads where the superelevation is in excess of that needed for travel at normal speeds.
Such high rates of superelevation are undesirable on high-volume roads, as in urban and suburban
areas, where there are numerous occasions when vehicle speeds may be considerably reduced
because of the volume of traffic or other conditions.

Some vehicles have high centers of gravity and some passenger cars are loosely suspended
on their axles. When these vehicles travel slowly on steep cross slopes, a high percentage of their
weight is carried by the inner tires. A vehicle can roll over if this condition becomes extreme.

A discussion of these considerations and the rationale used to establish an appropriate
maximum rate of superelevation for design of horizontal curves is provided in the subsequent
section on “Maximum Superelevation Rates.”
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Side Friction Factor

The side friction factor represents the vehicle’s need for side friction, also called the side
friction demand; it also represents the lateral acceleration af that acts on the vehicle. This
acceleration can be computed as the product of the side friction demand factor f and the
gravitational constant g (i.e., af = fg). It should be noted that the lateral acceleration actually
experienced by vehicle occupants tends to be slightly larger than predicted by the product fg due
to vehicle body roll angle.

With the wide variation in vehicle speeds on curves, there usually is an unbalanced force
whether the curve is superelevated or not. This force results in tire side thrust, which is
counterbalanced by friction between the tires and the pavement surface. This frictional
counterforce is developed by distortion of the contact area of the tire.

The coefficient of friction f is the friction force divided by the component of the weight
perpendicular to the pavement surface and is expressed as a simplification of the basic curve
formula shown as Equation (3-8). The value of the product ef in this formula is always small. As
a result, the 1-0.01ef term is nearly equal to 1.0 and is normally omitted in roadway design.
Omission of this term yields the following basic side friction equation:
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This equation is referred to as the simplified curve formula  and yields slightly larger (and,
thus, more conservative) estimates of friction demand than would be obtained using the basic
curve formula.

The coefficient f has been called lateral ratio, cornering ratio, unbalanced centrifugal ratio,
friction factor, and side friction factor. Because of its widespread use, the last term is used in this
discussion. The upper limit of the side friction factor is the point at which the tire would begin to
skid; this is known as the point of impending skid. Because highway curves are designed to avoid
skidding conditions with a margin of safety, the f values used in design should be substantially
less than the coefficient of friction at impending skid.

The side friction factor at impending skid depends on a number of other factors, among
which the most important are the speed of the vehicle, the type and condition of the roadway
surface, and the type and condition of the vehicle tires. Different observers have recorded
different maximum side friction factors at the same speeds for pavements of similar composition,
and logically so, because of the inherent variability in pavement texture, weather conditions, and
tire condition. In general, studies show that the maximum side friction factors developed between
new tires and wet concrete pavements range from about 0.5 at 30 km/h [20 mph] to
approximately 0.35 at 100 km/h [60 mph]. For normal wet concrete pavements and smooth tires
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the maximum side friction factor at impeding skid is about 0.35 at 70 km/h [45 mph]. In all cases,
the studies show a decrease in friction values as speeds increase (16, 17, 18).

Horizontal curves should not be designed directly on the basis of the maximum available
side friction factor. Rather, the maximum side friction factor used in design should be that portion
of the maximum available side friction that can be used with comfort and safety by the vast
majority of drivers. Side friction levels that represent pavements that are glazed, bleeding, or
otherwise lacking in reasonable skid-resistant properties should not control design because such
conditions are avoidable and geometric design should be based on acceptable surface conditions
attainable at reasonable cost.

A key consideration in selecting maximum side friction factors for use in design is the level
of centripetal or lateral acceleration that is sufficient to cause drivers to experience a feeling of
discomfort and to react instinctively to avoid higher speed. The speed on a curve at which
discomfort due to the lateral acceleration is evident to drivers has been accepted as a design
control for the maximum side friction factor. At lower nonuniform running speeds, which are
typical in urban areas, drivers are more tolerant of discomfort, thus permitting employment of an
increased amount of side friction for use in design of horizontal curves.

The ball-bank indicator has been widely used by research groups, local agencies, and
highway departments as a uniform measure of lateral acceleration to set speeds on curves that
avoid driver discomfort. It consists of a steel ball in a sealed glass tube; except for the damping
effect of the liquid in the tube, the ball is free to roll. Its simplicity of construction and operation
has led to widespread acceptance as a guide for determination of appropriate curve speeds. With
such a device mounted in a vehicle in motion, the ball-bank reading at any time is indicative of
the combined effect of body roll, lateral acceleration angle, and superelevation as shown in
Exhibit 3-9.

Exhibit 3-9.  Geometry for Ball-Bank Indicator

The centripetal acceleration developed as a vehicle travels at uniform speed on a curve
causes the ball to roll out to a fixed angle position as shown in Exhibit 3-9. A correction should
be made for that portion of the force taken up in the small body roll angle. The indicated side
force perceived by the vehicle occupants is thus on the order of F ≈ tan (a-?).



Elements of Design

135

In a series of definitive tests (18), it was concluded that speeds on curves that avoid driver
discomfort are indicated by ball-bank readings of 14 degrees for speeds of 30 km/h [20 mph] or
less, 12 degrees for speeds of 40 and 50 km/h [25 and 30 mph], and 10 degrees for speeds of 55
through 80 km/h [35 through 50 mph]. These ball-bank readings are indicative of side friction
factors of 0.21, 0.18, and 0.15, respectively, for the test body roll angles and provide ample
margin of safety against skidding.

From other tests (19), a maximum side friction factor of 0.16 for speeds up to 100 km/h
[60 mph] was recommended. For higher speeds, the incremental reduction of this factor was
recommended. Speed studies on the Pennsylvania Turnpike (17) led to a conclusion that the side
friction factor should not exceed 0.10 for design speeds of 110 km/h [70 mph] and higher. A
recent study (20) re-examined previously published findings and analyzed new data collected at
numerous horizontal curves. The side friction demand factors developed in that study are
generally consistent with the side friction factors reported above.

An electronic accelerometer provides an alternative to the ball-bank indicator for use in
determining advisory speeds for horizontal curves and ramps. An accelerometer is a gravity-
sensitive electronic device that can measure the lateral forces and accelerations that drivers
experience while traversing a highway curve (65).

It should be recognized that other factors influence driver speed choice under conditions of
high friction demand. Swerving becomes perceptible, drift angle increases, and increased steering
effort is needed to avoid involuntary lane line violations. Under these conditions , the cone of
vision narrows and is accompanied by an increasing sense of concentration and intensity
considered undesirable by most drivers. These factors are more apparent to a driver under
open-road conditions.

Where practical, the maximum side friction factors used in design should be conservative for
dry pavements and should provide an ample margin of safety against skidding on pavements that
are wet as well as ice or snow covered. The need to provide skid-resistant pavement surfacing for
these conditions cannot be overemphasized because superimposed on the frictional demands
resulting from roadway geometry are those that result from driving maneuvers such as braking,
sudden lane changes, and minor changes in direction within a lane. In these short-term
maneuvers, high friction demand can exist but the discomfort threshold may not be perceived in
time for the driver to take corrective action.

Exhibit 3-10 summarizes the findings of the cited tests relating to side friction factors
recommended for curve design. Although some variation in the test results is noted, all are in
agreement that the side friction factor should be lower for high-speed design than for low-speed
design. The subsequent sections in this chapter on “Design for Rural Highways, Urban Freeways,
and High-Speed Urban Streets” and “Design for Low-Speed Urban Streets” should be referred to
for the values of the side friction factor recommended for use in horizontal curve design. Exhibit
3-11 compares the friction factors assumed for the three different types of highway facilities for
which different friction factors are assumed herein: (1) rural highways and high-speed urban
streets, (2) low-speed urban streets, and (3) turning roadways.
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Exhibit 3-10.  Side Friction Factors
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Exhibit 3-11.  Comparison of Side Friction Factors Assumed for Design of Different
Types of Facilities
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Distribution of e and f Over a Range of Curves

For a given design speed there are five methods for sustaining centripetal acceleration on
curves by use of e or f, or both. These methods are discussed below, and the resulting
relationships are illustrated in Exhibit 3-12:

• Method 1—Superelevation and side friction are directly proportional to the inverse of
the radius (i.e., a straight-line relation exists between 1/R = 0 and 1/R = 1/Rmin).

• Method 2—Side friction is such that a vehicle traveling at design speed has all lateral
acceleration sustained by side friction on curves up to those requiring fmax. For sharper
curves, f remains equal to fmax and superelevation is then used to sustain lateral
acceleration until e reaches emax. In this method, first f and then e are increased in
inverse proportion to the radius of curvature.

• Method 3—Superelevation is such that a vehicle traveling at the design speed has all
lateral acceleration sustained by superelevation on curves up to that requiring emax. For
sharper curves, e remains at emax and side friction is then used to sustain lateral
acceleration until f reaches fmax. In this method, first e and then f are increased in
inverse proportion to the radius of curvature.

• Method 4—This method is the same as method 3, except that it is based on average
running speed instead of design speed.

• Method 5—Superelevation and side friction are in a curvilinear relation with the inverse
of the radius of the curve, with values between those of methods 1 and 3.

Exhibit 3-12A compares the relationship between superelevation and the inverse of the
radius of the curve for these five methods. Exhibit 3-12B shows the corresponding value of side
friction for a vehicle traveling at design speed, and Exhibit 3-12C for a vehicle traveling at the
corresponding average running speed.

The straight-line relationship between superelevation and the inverse of the radius of the
curve in method 1 results in a similar relationship between side friction and the radius for vehicles
traveling at either the design or average running speed. This method has considerable merit and
logic in addition to its simplicity. On any particular highway, the horizontal alignment consists of
tangents and curves of varying radius greater than or equal to the minimum radius appropriate for
the design speed (Rmin). Application of superelevation in amounts directly proportional to the
inverse of the radius would, for vehicles traveling at uniform speed, result in side friction factors
with a straight-line variation from zero on tangents (ignoring cross slope) to the maximum side
friction at the minimum radius. This method might appear to be an ideal means of distributing the
side friction factor, but its appropriateness depends on travel at a constant speed by each vehicle
in the traffic stream, regardless of whether travel is on a tangent, a curve of intermediate degree,
or a curve with the minimum radius for that design speed. While uniform speed is the aim of most
drivers, and can be obtained on well-designed highways when volumes are not heavy, there is a
tendency for some drivers to travel faster on tangents and the flatter curves than on the sharper
curves, particularly after being delayed by inability to pass slower moving vehicles. This
tendency points to the desirability of providing superelevation rates for intermediate curves in
excess of those that result from use of method 1.
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Exhibit 3-12.  Methods of Distributing Superelevation and Side Friction
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Method 2 uses side friction to sustain all lateral acceleration up to the curvature
corresponding to the maximum side friction factor, and this maximum side friction factor is
available on all sharper curves. In this method, superelevation is introduced only after the
maximum side friction has been used. Therefore, no superelevation is needed on flatter curves
that need less than maximum side friction for vehicles traveling at the design speed (see curve 2
in Exhibit 3-12A). When superelevation is needed, it increases rapidly as curves with maximum
side friction grow sharper. Because this method is completely dependent on available side
friction, its use is generally limited to locations where travel speed is not uniform, such as on
urban streets. This method is particularly advantageous on low-speed urban streets where,
because of various constraints, superelevation frequently cannot be provided.

In method 3, which was practiced many years ago, superelevation to sustain all lateral
acceleration for a vehicle traveling at the design speed is provided on all curves up to that needing
maximum practical superelevation, and this maximum superelevation is provided on all sharper
curves. Under this method, no side friction is provided on flat curves with less than maximum
superelevation for vehicles traveling at the design speed, as shown by curve 3 in Exhibit 3-12B,
and the appropriate side friction increases rapidly as curves with maximum superelevation grow
sharper. Further, as shown by curve 3 in Exhibit 3-12C, for vehicles traveling at average running
speed, this superelevation method results in negative friction for curves from very flat radii to
about the middle of the range of curve radii; beyond this point, as curves become sharper, the side
friction increases rapidly up to a maximum corresponding to the minimum radius of curvature.
This marked difference in side friction for different curves is not logical and may result in erratic
driving, either at the design or average running speed.

Method 4 is intended to overcome the deficiencies of method 3 by using superelevation at
speeds lower than the design speed. This method has been widely used with an average running
speed for which all lateral acceleration is sustained by superelevation of curves flatter than that
needing the maximum rate of superelevation. This average running speed was an approximation
that, as presented in Exhibit 3-26, varies from 78 to 100 [80 to 100] percent of design speed.
Curve 4 in Exhibit 3-12A shows that in using this method the maximum superelevation is reached
near the middle of the curvature range. Exhibit 3-12C shows that at average running speed no
side friction is needed up to this curvature, and side friction increases rapidly and in direct
proportion for sharper curves. This method has the same disadvantages as method 3, but they
apply to a smaller degree.

To accommodate overdriving that is likely to occur on flat to intermediate curves, it is
desirable that the superelevation approximate that obtained by method 4. Overdriving on such
curves involves very little risk that a driver will lose control of the vehicle  because superelevation
sustains nearly all lateral acceleration at the average running speed, and considerable side friction
is available for greater speeds. On the other hand, method 1, which avoids use of maximum
superelevation for a substantial part of the range of curve radii, is also desirable . In method 5, a
curved line (curve 5, as shown within the triangular working range between curves 1 and 4 in
Exhibit 3-12A) represents a superelevation and side friction distribution reasonably retain ing the
advantages of both methods 1 and 4. Curve 5 has an unsymmetrical parabolic form and represents
a practical distribution for superelevation over the range of curvature.
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Design Considerations

Superelevation rates that are applicable over the range of curvature for each design speed
have been determined for use in highway design. One extreme of this range is the maximum
superelevation rate established by practical considerations and used to determine the maximum
curvature for each design speed. The maximum superelevation may be different for different
highway conditions. At the other extreme, no superelevation is needed for tangent highways or
highways with extremely long-radius curves. For curvature between these extremes and for a
given design speed, the superelevation should be chosen in such manner that there is a logical
relation between the side friction factor and the applied superelevation rate.

Maximum Superelevation Rates

The maximum rates of superelevation used on highways are controlled by four factors:
climate conditions (i.e., frequency and amount of snow and ice); terrain conditions (i.e., flat,
rolling, or mountainous); type of area (i.e., rural or urban); and frequency of very slow-moving
vehicles whose operation might be affected by high superelevation rates. Consideration of these
factors jointly leads to the conclusion that no single maximum superelevation rate is universally
applicable and that a range of values should be used. However, using only one maximum
superelevation rate within a region of similar climate and land use is desirable, as such a practice
promotes design consistency.

Design consistency relates to the uniformity of the highway alignment and its associated
design element dimensions. This uniformity allows drivers to improve their perception-reaction
skills by developing expectancies. Design elements that are not uniform for similar types of
roadways may be counter to a driver’s expectancy and result in an increase in driver workload.
Logically, there is an inherent relationship between design consistency, driver workload, and
motorist safety with “consistent” designs being associated with lower workloads and safer
highways.

The highest superelevation rate for highways in common use is 10 percent, although
12 percent is used in some cases. Superelevation rates above 8 percent are only used in areas
without snow and ice. Although higher superelevation rates offer an advantage to those drivers
traveling at high speeds, current practice considers that rates in excess of 12 percent are beyond
practical limits. This practice recognizes the combined effects of construction processes,
maintenance difficulties, and operation of vehicles at low speeds.

Thus, a superelevation rate of 12 percent appears to represent a practical maximum value
where snow and ice do not exist. A superelevation rate of 12 percent may be used on low-volume
gravel-surfaced roads to facilitate cross drainage; however, superelevation rates of this magnitude
can cause higher speeds, which are conducive to rutting and displacement of gravel. Generally,
8 percent is recognized as a reasonable maximum value for superelevation rate.

Where snow and ice are factors, tests and experience show that a superelevation rate of
about 8 percent is a logical maximum to minimize slipping across a highway by stopped vehicles
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or vehicles attempting to start slowly from a stopped position. One series of tests (16) found
coefficients of friction for ice ranging from 0.050 to 0.200, depending on the condition of the ice
(i.e., wet, dry, clean, smooth, or rough). Tests on loose or packed snow show coefficients of
friction ranging from 0.200 to 0.400. Other tests (21) have corroborated these values. The lower
extreme of this range of coefficients of friction probably occurs only under thin film “quick
freeze” conditions at a temperature of about –1°C [30°F] in the presence of water on the
pavement. Similar low friction values may occur with thin layers of mud on the pavement
surface, with oil or flushed spots, and with high speeds and a sufficient depth of water on the
pavement surface to permit hydroplaning. For these reasons some highway agencies have adopted
a maximum superelevation rate of 8 percent. Such agencies believe that 8 percent represents a
logical maximum superelevation rate, regardless of snow or ice conditions. Such a limit tends to
reduce the likelihood that slow drivers will experience negative side friction, which can result in
excessive steering effort and erratic operation.

Where traffic congestion or extensive marginal development acts to restrict top speeds, it is
common practice to utilize a low maximum rate of superelevation, usually 4 to 6 percent.
Similarly, either a low maximum rate of superelevation or no superelevation is employed within
important intersection areas or where there is a tendency to drive slowly because of turning and
crossing movements, warning devices, and signals. In these areas it is difficult to warp crossing
pavements for drainage without providing negative superelevation for some turning movements.

In summary, it is recommended that (1) several rates, rather than a single rate, of maximum
superelevation should be recognized in establishing design controls for highway curves, (2) a rate
of 12 percent should not be exceeded, (3) a rate of 4 or 6 percent is applicable for urban design in
areas with little or no constraints, and (4) superelevation may be omitted on low-speed urban
streets where severe constraints are present. Accordingly, five maximum superelevation rates—
4, 6, 8, 10, and 12 percent—are used below. For each of these rates the maximum curvature and
actual superelevation rates for flatter curves are determined. In actual design practice, an agency
will generally use different superelevation rates within the normal range of rates described above
for different road systems.

Minimum Radius

The minimum radius is a limiting value of curvature for a given design speed and is
determined from the maximum rate of superelevation and the maximum side friction factor
selected for design (limiting value of f). Use of sharper curvature for that design speed would call
for superelevation beyond the limit considered practical or for operation with tire friction and
lateral acceleration beyond what is considered comfortable by many drivers, or both. Although
based on a threshold of driver comfort, rather than safety, the minimum radius of curvature is a
significant value in alignment design. The minimum radius of curvature is also an important
control value for determination of superelevation rates for flatter curves.

The minimum radius of curvature, Rmin, can be calculated directly from the simplified curve
formula introduced above in the section on the “Side Friction Factor.” This formula can be recast
to determine Rmin as follows:
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Design for Rural Highways, Urban Freeways, and High-Speed Urban Streets

On rural highways, on urban freeways, and on urban streets where speed is relatively high
and relatively uniform, horizontal curves are generally superelevated and successive curves are
generally balanced to provide a smooth-riding transition from one curve to the next. A balanced
design for a series of curves of varying radii is provided by the appropriate distribution of e and f
values, as discussed above, to select an appropriate superelevation rate in the range from the
normal cross slope to maximum superelevation.

Exhibit 3-13 shows the recommended values of the side friction factor for rural highways,
urban freeways, and high-speed urban streets as a solid line superimposed on the analysis curves
from Exhibit 3-10. These recommended side friction factors provide a reasonable margin of
safety at high speeds and lead to somewhat lower superelevation rates for low design speeds than
do some of the other curves. The lower superelevation rates at the low speeds provide a greater
margin of safety to offset the tendency of many motorists to overdrive highways with low design
speeds.

For the reasons discussed above, it is recommended that maximum side friction factors for
design of rural highways, urban freeways, and high-speed urban streets should be those
represented by the solid line in Exhibit 3-13. These maximum side friction factors vary directly
with design speed from 0.17 at 30 km/h [20 mph] to 0.14 at 80 km/h [50 mph] and then directly
with design speed from 0.14 at 80 km/h [50 mph] to 0.08 at 130 km/h [80 mph]. The research
report Side Friction for Superelevation on Horizontal Curves (22) confirms the appropriateness of
these design values.

Based on the maximum allowable side friction factors from Exhibit 3-13, Exhibit 3-14 gives
the minimum radius for each of the five maximum superelevation rates for design speeds from
20 to 130 km/h [15 to 80 mph].

Method 5, described previously, is recommended for the distribution of e and f for all curves
with radii greater than the minimum radius of curvature on rural highways, urban freeways, and
high-speed urban streets. Use of method 5 is discussed in the following text and exhibits.
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Exhibit 3-13.  Side Friction Factors for Rural Highways and High-Speed Urban Streets
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Metric US Customary
Design
Speed
(km/h)

Maximum
e (%)

Limiting
Values of

f
Total

(e/100 + f)

Calculated
Radius

(m)

Rounded
Radius

(m)

Design
Speed
(mph)

Maximum
e (%)

Limiting
Values of

f
Total

(e/100 + f)

Calculated
Radius

(ft)

Rounded
Radius

(ft)
20 4.0 0.18 0.22 14.3 15 15 4.0 0.175 0.215 70.0 70
30 4.0 0.17 0.21 33.7 35 20 4.0 0.170 0.210 127.4 125
40 4.0 0.17 0.21 60.0 60 25 4.0 0.165 0.205 203.9 205
50 4.0 0.16 0.20 98.4 100 30 4.0 0.160 0.200 301.0 300
60 4.0 0.15 0.19 149.1 150 35 4.0 0.155 0.195 420.2 420
70 4.0 0.14 0.18 214.2 215 40 4.0 0.150 0.190 563.3 565
80 4.0 0.14 0.18 279.8 280 45 4.0 0.145 0.185 732.2 730
90 4.0 0.13 0.17 375.0 375 50 4.0 0.140 0.180 929.0 930

100 4.0 0.12 0.16 491.9 490 55 4.0 0.130 0.170 1190.2 1190
60 4.0 0.120 0.160 1505.0 1505

20 6.0 0.18 0.24 13.1 15 15 6.0 0.175 0.235 64.0 65
30 6.0 0.17 0.23 30.8 30 20 6.0 0.170 0.230 116.3 115
40 6.0 0.17 0.23 54.7 55 25 6.0 0.165 0.225 185.8 185
50 6.0 0.16 0.22 89.4 90 30 6.0 0.160 0.220 273.6 275
60 6.0 0.15 0.21 134.9 135 35 6.0 0.155 0.215 381.1 380
70 6.0 0.14 0.20 192.8 195 40 6.0 0.150 0.210 509.6 510
80 6.0 0.14 0.20 251.8 250 45 6.0 0.145 0.205 660.7 660
90 6.0 0.13 0.19 335.5 335 50 6.0 0.140 0.200 836.1 835

100 6.0 0.12 0.18 437.2 435 55 6.0 0.130 0.190 1065.0 1065
110 6.0 0.11 0.17 560.2 560 60 6.0 0.120 0.180 1337.8 1340
120 6.0 0.09 0.15 755.5 755 65 6.0 0.110 0.170 1662.4 1660
130 6.0 0.08 0.14 950.0 950 70 6.0 0.100 0.160 2048.5 2050

75 6.0 0.090 0.150 2508.4 2510
80 6.0 0.080 0.140 3057.8 3060

20 8.0 0.18 0.28 12.1 10 15 8.0 0.175 0.255 59.0 60
30 8.0 0.17 0.25 28.3 30 20 8.0 0.170 0.250 107.0 105
40 8.0 0.17 0.25 50.4 50 25 8.0 0.185 0.245 170.8 170
50 8.0 0.16 0.24 82.0 80 30 8.0 0.160 0.240 250.8 250
60 8.0 0.15 0.23 123.2 125 35 8.0 0.155 0.235 348.7 350
70 8.0 0.14 0.22 175.3 175 40 8.0 0.150 0.230 465.3 465
80 8.0 0.14 0.22 228.9 230 45 8.0 0.145 0.225 502.0 500
90 8.0 0.13 0.21 303.6 305 50 8.0 0.140 0.220 760.1 760

100 8.0 0.12 0.20 393.5 395 55 8.0 0.130 0.210 963.5 965
110 8.0 0.11 0.19 501.2 500 60 8.0 0.120 0.200 1204.0 1205
120 8.0 0.09 0.17 666.6 665 65 8.0 0.110 0.190 1487.4 1485
130 8.0 0.08 0.18 831.3 830 70 8.0 0.100 0.180 1820.9 1820

75 8.0 0.090 0.170 2213.3 2215
80 8.0 0.080 0.160 2675.6 2675

20 10.0 0.18 0.28 11.2 10 15 10.0 0.175 0.275 54.7 55
30 10.0 0.17 0.27 26.2 25 20 10.0 0.170 0.270 99.1 100
40 10.0 0.17 0.27 46.6 45 25 10.0 0.165 0.265 157.8 160
50 10.0 0.16 0.26 75.7 75 30 10.0 0.160 0.280 231.5 230
60 10.0 0.15 0.25 113.3 115 35 10.0 0.155 0.255 321.3 320
70 10.0 0.14 0.24 160.7 160 40 10.0 0.150 0.250 428.1 430
80 10.0 0.14 0.24 209.9 210 45 10.0 0.145 0.245 552.9 555
90 10.0 0.13 0.23 277.2 275 50 10.0 0.140 0.240 696.8 695

100 10.0 0.12 0.22 357.7 360 55 10.0 0.130 0.230 879.7 880
110 10.0 0.11 0.21 453.5 455 60 10.0 0.120 0.220 1094.6 1095
120 10.0 0.09 0.19 596.5 595 65 10.0 0.110 0.210 1345.8 1345
130 10.0 0.08 0.18 738.9 740 70 10.0 0.100 0.200 1838.8 1840

75 10.0 0.090 0.190 1980.3 1980
80 10.0 0.080 0.180 2378.3 2380

20 12.0 0.18 0.30 10.5 10 15 12.0 0.175 0.295 51.0 50
30 12.0 0.17 0.29 24.4 25 20 12.0 0.170 0.290 92.3 90
40 12.0 0.17 0.29 43.4 45 25 12.0 0.165 0.285 146.7 145
50 12.0 0.16 0.28 70.3 70 30 12.0 0.160 0.280 215.0 215
60 12.0 0.15 0.27 104.9 105 35 12.0 0.155 0.275 298.0 300
70 12.0 0.14 0.26 148.3 150 40 12.0 0.150 0.270 396.4 395
80 12.0 0.14 0.26 193.7 195 45 12.0 0.145 0.265 511.1 510
90 12.0 0.13 0.25 255.0 255 50 12.0 0.140 0.260 643.2 845

100 12.0 0.12 0.24 327.9 330 55 12.0 0.130 0.250 809.4 810
110 12.0 0.11 0.23 414.0 415 60 12.0 0.120 0.240 1003.4 1005
120 12.0 0.09 0.21 539.7 540 65 12.0 0.110 0.230 1228.7 1230
130 12.0 0.08 0.20 665.0 665 70 12.0 0.100 0.220 1489.8 1490

75 12.0 0.090 0.210 1791.7 1790
80 12.0 0.080 0.200 2140.5 2140

Note: In recognition of safety considerations, use of emax = 4.0% should be limited to urban conditions.

Exhibit 3-14.  Minimum Radius for Design of Rural Highways, Urban Freeways, and
High-Speed Urban Streets Using Limiting Values of e and f
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Procedure for Development of Finalized e Distribution

The side friction factors shown as the solid line on Exhibit 3-13 represent the maximum f
values selected for design for each speed. When these values are used in conjunction with the
recommended method 5, they determine the f distribution curves for the various speeds.
Subtracting these computed f values from the computed value of e/100 + f at the design speed,
the finalized e distribution is thus obtained (see Exhibit 3-15). The finalized e distribution curves
resulting from this approach, based on method 5 and used below, are shown in Exhibits 3-16 to
3-20.

Exhibit 3-15.  Method 5 Procedure for Development of the Finalized e Distribution
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Exhibit 3-16.  Design Superelevation Rates for Maximum Superelevation Rate of 4 Percent
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Exhibit 3-17.  Design Superelevation Rates for Maximum Superelevation Rate of 6 Percent
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Exhibit 3-18.  Design Superelevation Rates for Maximum Superelevation Rate of 8 Percent
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Exhibit 3-19.  Design Superelevation Rates for Maximum Superelevation Rate of 10 Percent
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Exhibit 3-20.  Design Superelevation Rates for Maximum Superelevation Rate of 12 Percent

As Exhibit 3-15 illustrates, the f distribution curve at the design speed, using method 5,
results in an unsymmetrical parabolic curve with legs 1 and 2. These legs correspond to curves 4
and 3-4, respectively, in Exhibit 3-12B. The terms used in the derivation of the equations used to
compute the f and finalized e distributions are illustrated in Exhibit 3-15.
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The e and f distributions for method 5 may be derived using the basic curve formula,
neglecting the (1 - 0.01ef) term, using the following sequence of equations:

Metric US Customary

R
V

fe
20079.0

01.0 =+
R

V
fe

2067.0
01.0 =+

( 3-11 )

where:

VD = V = design speed, km/h;
emax = e = maximum

superelevation, percent;
fmax = f = maximum allowable

side friction factor;
Rmin = R = minimum radius,

meters;
RPl = R = radius at the point of

intersection, Pl, of legs (1)
and (2) of the f distribution
parabolic curve (= R at the
point of intersection of
0.01emax and (0.01e + f)R);

VR = running speed, km/h

where:

VD = V = design speed, mph;
emax = e = maximum

superelevation, percent;
fmax = f = maximum allowable side

friction factor;
Rmin = R = minimum radius, feet;
RPl = R = radius at the point of

intersection, Pl, of legs (1)
and (2) of the f distribution
parabolic curve (= R at the
point of intersection of
0.01emax and (0.01e + f)R);

VR = running speed, mph
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Because (0.01e + f)D - (0.01e + f)R = h, at
point RPl the equations reduce to the
following:
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Because (0.01e + f)D - (0.01e + f)R = h, at
point RPl the equations reduce to the
following:

( )
max2

R

2
Dmax

PI e
V

Ve
h 01.0

01.0
−








=

( 3-14 )

where hPl = Pl offset from the 1/R axis. where hPl = Pl offset from the 1/R axis.

Also,

( )PIPI RhS =1

Also,

( )
58.57291
PIPI Rh

S =

( 3-15 )
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PImin

PImax

RR

hf
S

112

−

−
=









−

−
=

PImin

PImax

RR

hf
S

11
58.5729

2

( 3-16 )

where S2 = slope of leg 2. where S2 = slope of leg 2.

The equation for the middle ordinate
(MO) of an unsymmetrical vertical curve
is the following:
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The equation for the middle ordinate (MO)
of an unsymmetrical vertical curve is the
following:
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where: L1 = 1/RPl and L2 = 1/Rmin—1/RPl.
It follows that:
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where MO = middle ordinate of the f
distribution curve, and

where MO = middle ordinate of the f
distribution curve, and
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in which R = radius at any point. in which R = radius at any point.
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Use the general vertical curve equation:
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with 1/R measured from the vertical axis.

with 1/R = 1/RPl,

with 1/R measured from the vertical axis.
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where: f1 = f distribution at any point 1/R
= 1/RPl; and

where: f1 = f distribution at any point 1/R =
1/RPl; and
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where: 0.01e1 = 0.01e distribution at any
point 1/R = 1/RPl.
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where: f2 = f distribution at any point 1/R
> 1/RPl; and

where: f2 = f distribution at any point 1/R >
1/RPl; and

( ) 22 01.001.0 ffee D −+= ( ) 22 01.001.0 ffee D −+= ( 3-24 )

where: 0.01e2 = 0.01e distribution at any
point 1/R >1/RPl.

where: 0.01e2 = 0.01e distribution at any
point 1/R >1/RPl.

Exhibit 3-15 is a typical layout illustrating the method 5 procedure for development of the
finalized e distribution. The figure depicts how the f value is determined for 1/R and then
subtracted from the value of (e/100 + f) to determine e/100.
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An example of the procedure to calculate e for a design speed of 80 km/h [50 mph] and an
emax of 10 percent is shown below:

Example

Metric US Customary
Determine e given: VD = 80 km/h

emax = 10 percent

From Exhibit 3-26: VR = 70 km/h
From Exhibit 3-14: f = 0.14

(maximum allowable
side friction factor)

Using the appropriate equations yields:

Rmin = 210.7, RPI = 387.1, and hPI = 0.031

S1 = 11.95 and S2 = 50.23

Substituting, the middle ordinate becomes
0.022.

The e distribution value for any radius is
found by taking the (0.01e +f)D value minus
the f1 or f2 value (refer to Exhibit 3-15). Thus,
the e distribution value for an R = RPI would
be (0.01e + f)D = 0.0079(VD)2/R = 0.131
minus an f1 = 0.053, which results in 0.078.
This value multiplied by 100 to convert to
percent corresponds to the e value, which
can be interpolated for R = 386 m at the
80 km/h design speed in Exhibit 3-24.

Determine e given: VD = 50 mph
emax = 10 percent

From Exhibit 3-26: VR = 44 mph
From Exhibit 3-14: f = 0.14

(maximum allowable
side friction factor)

Using the appropriate equations yields:

Rmin = 697.9, RPI = 1297.12, and hPI = 0.029

S1 = 0.0066 and S2 = 0.0293

Substituting, the middle ordinate becomes
0.0231.

The e distribution value for any radius is
found by taking the (0.01e +f)D value minus
the f1 or f2 value (refer to Exhibit 3-15). Thus,
the e distribution value for an R = RPI would
be (0.01e + f)D = 0.067(VD)2/R = 0.129
minus an f1 = 0.052, which results in 0.077.
This value multiplied by 100 to convert to
percent corresponds to the e value, which
can be interpolated for R = 1,298 ft at the
50 mph design speed in Exhibit 3-24.

Design Superelevation Tables

Exhibits 3-21 to 3-25 show, in addition to length of runoff or transition discussed later in this
chapter, values of R and the resulting superelevation for different design speeds for each of five
values of maximum superelevation rate (i.e., for a full range of common design conditions). The
minimum radii for each of the five maximum superelevation rates were calculated from the
simplified curve formula , with the use of f values from Exhibit 3-13. Method 5 was used to
distribute e and f in calculating the appropriate superelevation rates for the remainder of the range
of curvature. Under all but extreme weather conditions , vehicles can travel safely at speeds higher
than the design speed on horizontal curves with the superelevation rates indicated in the tables.
This is due to the development of a radius/superelevation relationship that uses friction factors
that are generally considerably less than can be achieved. This is illustrated in Exhibit 3-11,
which compares the friction factors used in design of various types of highway facilities and the
maximum side friction factors available on certain wet and dry concrete pavements.
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Exhibit 3-23.  Values for Design Elements Related to Design Speed and Horizontal Curvature (Continued)
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Exhibit 3-24.  Values for Design Elements Related to Design Speed and Horizontal Curvature (Continued)
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The term “normal cross slope” (NC) designates curves that are so flat that the elimination of
adverse cross slope is not considered necessary, and thus the normal cross slope sections can be
used. The term “remove cross slope” (RC) designates curves where it is adequate to eliminate the
adverse cross slope by superelevating the entire roadway at the normal cross slope.

Sharpest Curve Without Superelevation

The minimum rate of cross slope applicable to the traveled way is determined by drainage
needs. Consistent with the type of highway and amount of rainfall, snow, and ice, the usually
accepted minimum values for cross slope range from 1.5 percent for high-type surfaces to
approximately 2.0 percent for low-type surfaces (for further information, see the section on
“Cross Slope” in Chapter 4). For discussion purposes, a value of 1.5 percent is used below as a
single value representative of the cross slope for high-type, uncurbed pavements. Steeper cross
slopes are generally needed where curbs are used to minimize ponding of water on the outside
through lane.

The shape or form of the normal cross slope varies. Some States and many municipalities
use a curved traveled way cross section for two-lane roadways, usually parabolic in form. Others
employ a straight-line section for each lane.

Very flat horizontal curves need no superelevation. Traffic entering a curve to the right has
some superelevation provided by the normal cross slope. Traffic entering a curve to the left has
an adverse or negative superelevation resulting from the normal cross slope, but with flat curves
the side friction needed to sustain the lateral acceleration and counteract the negative
superelevation is small. However, on successively sharper curves for the same speed, a point is
reached where the combination of lateral acceleration and negative superelevation overcomes the
allowable side friction, and a positive slope across the entire roadway is desirable to help sustain
the lateral acceleration. Thus, an important part of superelevation design policy is a criterion for
the minimum curvature for which superelevation is needed, or conversely, the maximum
curvature for which a normal roadway cross section is appropriate. 

Many highway agencies express this criterion as a single radius of curvature applicable to all
design speeds. When using this method, care should be taken to ensure that the cross slope is
sufficient to provide surface drainage and reduce the potential for vehicle hydroplaning and wet
weather skidding, especially on flat, high-speed curves. Some agencies use a different criterion
for maximum superelevation without curvature for each design speed. The latter method is more
realistic and conforms to the previously discussed superelevation-speed-curvature relationships.
The maximum curvature for sections without superelevation for each design speed should be
determined by setting consistently low values of side friction factor, considering the effect of
normal cross slope and both directions of travel. The result is an increasing radius for
successively higher design speeds.

For an average rate of cross slope of 1.5 percent and the superelevation curves of
Exhibit 3-19 (emax= 10 percent), the corresponding minimum radius for each design speed is
shown in the third column of Exhibit 3-26. These are curvatures calling for superelevation equal
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to the normal cross slope, and therefore indicate the limit of curvature with normal cross slopes.
The side friction factors developed because of adverse cross slope at both the design speed and
the average running speed are shown in the right columns. It is evident from their uniform and
low values over the range of design speeds that these radii are logical limiting values for sections
with normal cross slopes.

For a limited range of horizontal curves sharper than those shown in Exhibit 3-26, a practical
superelevation adjustment can be obtained by retaining the shape of the normal traveled way
cross section but rotating it around the edge or centerline of the traveled way. This adjustment
makes it unnecessary to change the screeds used in constructing rigid pavements, and the
construction procedures are the same on such curves as on tangent sections except that the side
forms should be set to the proper difference in elevation. This method of eliminating adverse
slope results in a steeper slope at the lower edge of traveled way than would otherwise be
obtained, which may be desirable for drainage. However, traffic operating on the higher side of
the traveled way does not receive as much benefit as it does when the normal section is changed
to a plane section for the full width of the roadway.

On a curve sharp enough to need a superelevation rate in excess of about 2.0 percent, a plane
slope across the whole traveled way should be used. A transition from the normal to a straight-
line cross slope is needed. For short lengths of highway needing cross-slope reversals, the
difficulties and extra costs involved in constructing such transitions may supersede the desirable
design refinement. This practical limit of 2.0 percent corresponds to curves with radii ranging
from 700 m [2,290 ft] for 50-km/h [30-mph] design speeds to about 3,500 m [11,500 ft] for
110-m/h [70-mph] design speeds. For curves between these values and those in Exhibit 3-26, the
superelevation adjustment can be made by rotation of the normal traveled way cross section or,
preferably, by change to a plane slope across the whole traveled way.

Effects of Grades

On long or fairly steep grades, drivers tend to travel faster in the downgrade than in the
upgrade direction. In a refined design this tendency should be recognized, and some adjustment in
superelevation rates should be made. In the case of a divided highway with each roadway
independently superelevated, or on a one-way ramp, such an adjustment can be readily made. In
the simplest practical form, values from Exhibits 3-21 to 3-25 can be used directly by assuming a
slightly higher design speed for the downgrade and a slightly lower design speed for the upgrade.
The appropriate variation in design speed depends on the particular conditions, especially the rate
and length of grade and the magnitude of the curve radius in comparison to other curves on the
approach highway section.

It is questionable whether similar adjustments should be made on two-lane and multilane
undivided roadways. In one respect the two directions of traffic tend to balance each other, and
adjustment of superelevation is not needed. However, the downgrade speed is the most critical,
and adjustment for it may be desirable in some cases. Although not common practice, lanes can
be constructed at different cross slopes in the same direction. More practical would be an
adjustment for the whole traveled way as determined by the downgrade speed, because the extra
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cross slope would not significantly affect upgrade travel, with the possible exception of heavy
trucks on long grades. The desirability of avoiding minor changes in design speed should also be
considered. In general, it is advisable to follow the common practice of not making such
superelevation adjustments on undivided roadways.

Metric US Customary
Resulting side
friction factor, f,

with adverse cross
slope

Resulting side
friction factor, f,

with adverse cross
slopeDesign

speed
(km/h)

Average
running
speed
(km/h)

Minimum
curve
radius

(m)
at design

speed
at running

speed

Design
speed
(km/h)

Average
running
speed
(km/h)

Minimum
curve
radius

(m)
at design

speed
at running

speed
20 20 200 0.031 0.031 15 15 960 0.031 0.031
30 30 450 0.031 0.031 20 20 1700 0.031 0.031
40 40 800 0.031 0.031 25 24 2460 0.032 0.031
50 47 1110 0.033 0.031 30 28 3350 0.033 0.031
60 55 1530 0.034 0.031 35 32 4390 0.034 0.031
70 63 2020 0.034 0.031 40 36 5570 0.034 0.031
80 70 2500 0.035 0.030 45 40 6880 0.035 0.031
90 77 3030 0.036 0.030 50 44 8350 0.035 0.031

100 85 3700 0.036 0.030 55 48 9960 0.035 0.031
110 91 4270 0.037 0.030 60 52 11720 0.036 0.030
120 98 4990 0.038 0.030 65 55 13180 0.036 0.030
130 102 5450 0.040 0.030 70 58 14730 0.037 0.030

75 61 16380 0.038 0.030
80 64 18130 0.039 0.030

Exhibit 3-26.  Minimum Curve Radius for Section with Normal Cross Slopes (emax = 10%)

Transition Design Controls

General Considerations

The design of transition sections includes consideration of transitions in the roadway cross
slope and possible transition curves incorporated in the horizontal alignment. The former
consideration is referred to as superelevation transition and the latter is referred to as alignment
transition. Where both transition components are used, they occur together over a common
section of roadway at the beginning and end of the mainline circular curves.

The superelevation transition section consists of the superelevation runoff and tangent runout
sections. The superelevation runoff section consists of the length of roadway needed to
accomplish a change in outside-lane cross slope from zero (flat) to full superelevation, or vice
versa. The tangent runout section consists of the length of roadway needed to accomplish a
change in outside-lane cross slope from the normal cross slope rate to zero (flat), or vice versa.
For reasons of safety and comfort, the pavement rotation in the superelevation transition section
should be effected over a length that is sufficient to make such rotation imperceptible to drivers.
To be pleasing in appearance, the pavement edges should not appear distorted to the driver.
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In the alignment transition section, a spiral or compound transition curve may be used to
introduce the main circular curve in a natural manner (i.e., one that is consistent with the driver’s
steered path). Such transition curvature consists of one or more curves aligned and located to
provide a gradual change in alignment radius. As a result , an alignment transition introduces the
lateral acceleration associated with the curve in a gentle manner. While such a gradual change in
path and lateral acceleration is appealing, there is no definitive evidence that transition curves are
essential to the safe operation of the roadway and, as a result, they are not used by many agencies.

When a transition curve is not used, the roadway tangent directly adjoins the main circular
curve. This type of transition design is referred to below as the “tangent-to-curve” transition.

Some agencies employ spiral curves and use their length to make the appropriate
superelevation transition. A spiral curve approximates the natural turning path of a vehicle. One
agency believes that the length of spiral should be based on a 4-s minimum maneuver time at the
design speed of the highway. Other agencies do not employ spiral curves but empirically
designate proportional lengths of tangent and circular curve for the same purpose. In either case,
as far as can be determined, the length of roadway to effect the superelevation runoff should be
the same for the same rate of superelevation and radius of curvature.

Review of current design practice indicates that the length of a superelevation runoff section
is largely governed by its appearance. Spiral transition curve lengths as determined otherwise
often are shorter than those determined for general appearance, so that theoretically derived spiral
lengths are replaced with longer empirically derived runoff lengths. A number of agencies have
established one or more control runoff lengths within a range of about 30 to 200 m
[100 to 650 ft], but there is no universally accepted empirical basis for determining runoff length,
considering all likely traveled way widths. In one widely used empirical expression, the runoff
length is determined as a function of the slope of the outside edge of the traveled way relative to
the centerline profile.

Tangent-to-Curve Transition

Minimum length of superelevation runoff. For appearance and comfort, the length of
superelevation runoff should be based on a maximum acceptable difference between the
longitudinal grades of the axis of rotation and the edge of pavement. The axis of rotation is
generally represented by the alignment centerline for undivided roadways; however, other
pavement reference lines can be used. These lines and the rationale for their use is discussed
below in the section on “Methods of Attaining Superelevation.”

Current practice is to limit the grade difference, referred to as the relative gradient, to a
maximum value of 0.50 percent or a longitudinal slope of 1:200 at 80 km/h [50 mph]. In one
source (23), this same 1:200 slope is used for a design speed of 80 km/h [50 mph] and higher.
Where design speeds are less than 80 km/h [50 mph], greater relative slopes are used. To reflect
the importance of the higher design speed and to harmonize with the flatter curving elements,
both horizontal and vertical, it appears logical to extrapolate the relative slopes for the higher
design speeds.
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The maximum relative gradient is varied with design speed to provide longer runoff lengths
at higher speeds and shorter lengths at lower speeds. Experience indicates that relative gradients
of 0.80 and 0.35 percent [0.78 and 0.35 percent] provide acceptable runoff lengths for design
speeds of 20 and 130 km/h [15 and 80 mph], respectively.

Interpolation between these values provides the maximum relative gradients shown in
Exhibit 3-27. The maximum relative gradient between profiles of the edges of two-lane traveled
ways should be double those given in the exhibit. Runoff lengths determined on this basis are
directly proportional to the total superelevation, which is the product of the lane width and
superelevation rate.

Previous editions of this policy have suggested that runoff lengths should be at least equal to
the distance traveled in 2.0 s at the design speed. This criterion tended to determine the runoff
lengths of curves with small superelevation rates, high speed, or both. Experience with the 2.0-s
criterion indicates that the improvement in appearance is outweighed by a tendency to aggravate
problems associated with pavement drainage in the transition section. In fact, it is noted that some
agencies do not use this control. From this evidence, it is concluded that a comfortable and
aesthetically pleasing runoff design can be attained through the exclusive use of the maximum
relative gradient criterion.

Metric US Customary

Design speed
(km/h)

Maximum
relative

gradient (%)

Equivalent
maximum

relative slope
Design speed

(mph)

Maximum
relative

gradient (%)

Equivalent
maximum

relative slope
20 0.80 1:125 15 0.78 1:128
30 0.75 1:133 20 0.74 1:135
40 0.70 1:143 25 0.70 1:143
50 0.65 1:150 30 0.66 1:152
60 0.60 1:167 35 0.62 1:161
70 0.55 1:182 40 0.58 1:172
80 0.50 1:200 45 0.54 1:185
90 0.47 1:213 50 0.50 1:200

100 0.44 1:227 55 0.47 1:213
110 0.41 1:244 60 0.45 1:222
120 0.38 1:263 65 0.43 1:233
130 0.35 1:286 70 0.40 1:250

75 0.38 1:263
80 0.35 1:286

Exhibit 3-27.  Maximum Relative Gradients
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On the basis of the preceding discussion, the minimum length of runoff should be
determined as:

Metric US Customary
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where:

Lr = minimum length of
superelevation runoff, m;

? = maximum relative gradient,
percent;

n1 = number of lanes rotated;
bw = adjustment factor for number

of lanes rotated;
w = width of one traffic lane, m

(typically 3.6 m);
ed = design superelevation rate,

percent

where:

Lr = minimum length of
superelevation runoff, ft;

? = maximum relative gradient,
percent;

n1 = number of lanes rotated;
bw = adjustment factor for number of

lanes rotated;
w = width of one traffic lane, ft

(typically 12 ft);
ed = design superelevation rate,

percent

Equation (3-25) can be used directly for undivided streets or highways where the cross
section is rotated about the highway centerline and n1 is equal to one-half the number of lanes in
the cross section. More generally, Equation (3-25) can be used for rotation about any pavement
reference line provided that the rotated width (wn1) has a common superelevation rate and is
rotated as a plane.

A strict application of the maximum relative gradient criterion provides runoff lengths for
four-lane undivided roadways that are double those for two-lane roadways; those for six-lane
undivided roadways would be tripled. While lengths of this order may be considered desirable, it
is often not practical to provide such lengths in design. On a purely empirical basis , it is
recommended that minimum superelevation runoff lengths be adjusted downward to avoid
excessive lengths for multilane roadways. The recommended adjusted factors are presented in
Exhibit 3-28.

The adjustment factors listed in Exhibit 3-28 are directly applicable to undivided streets and
highways. Development of runoff for divided highways is discussed in more detail in the later
section on “Axis of Rotation with a Median.” The topic of runoff superelevation for turning
roadway designs at intersections and through interchanges is discussed in Chapters 9 and 10,
respectively.

Typical minimum superelevation runoff lengths are presented in Exhibit 3-29. The lengths
shown represent cases where one or two lanes are rotated about a pavement edge. The former
case is found on two-lane roadways where the pavement is rotated about the centerline or on
one-lane interchange ramps where the pavement rotation is about an edge line. The latter case is
found on multilane undivided roadways where each direction is separately rotated about an edge
line.



AASHTO—Geometric Design of Highways and Streets

172

Exhibit 3-28.  Adjustment Factor for Number of Lanes Rotated

Elimination of the 2.0-s travel-time, criterion discussed above results in shorter runoff
lengths for smaller superelevation rates and higher speeds. However, even the shortest runoff
lengths (corresponding to a superelevation rate of 2.0 percent) correspond to travel times of 0.6 s,
which is sufficient to provide a smooth edge-of-pavement profile.

For high-type alignments, superelevation runoff lengths longer than those shown in
Exhibit 3-28 may be desirable. In this case, drainage needs or the desire for smoothness in the
traveled way edge profiles may call for a small increase in runoff length.

The superelevation runoff lengths given in Exhibit 3-28 are based on 3.6-m [12-ft] lanes. For
other lane widths, the appropriate runoff length should vary in proportion to the ratio of the actual
lane width to 3.6 m [12 ft]. Shorter lengths could be applied for designs with 3.0- and 3.3-m
[10- and 11-ft] lanes, but considerations of consistency and practicality suggest that the runoff
lengths for 3.6-m [12-ft] lanes should be used in all cases.
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Minimum length of tangent runout. The length of tangent runout is determined by the
amount of adverse cross slope to be removed and the rate at which it is removed. To effect a
smooth edge of pavement profile, the rate of removal should equal the relative gradient used to
define the superelevation runoff length. Based on this rationale, the following equation should be
used to compute the minimum tangent runout length:

Metric US Customary
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where:

Lt = minimum length of
tangent runout, m;

eNC = normal cross slope rate,
percent;

ed = design superelevation
rate, percent;

Lr = minimum length of
superelevation runoff, m

where:

Lt = minimum length of tangent
runout, ft;

eNC = normal cross slope rate,
percent;

ed = design superelevation rate,
percent;

Lr = minimum length of
superelevation runoff, ft

The tangent runout lengths determined with Equation (3-26) are listed in Exhibit 3-29.

Location with respect to end of curve. In the tangent-to-curve design, the location of the
superelevation runoff length with respect to the point of curvature (PC) must be determined.
Normal practice is to divide the runoff length between the tangent and curved sections and to
avoid placing the entire runoff length on either the tangent or the curve. With full superelevation
attained at the PC, the runoff lies entirely on the approach tangent, where theoretically no
superelevation is needed. At the other extreme, placement of the runoff entirely on the circular
curve results in the initial portion of the curve having less than the desired amount of
superelevation. Both of these extremes tend to be associated with a large peak lateral acceleration.

Experience indicates that locating a portion of the runoff on the tangent, in advance of the
PC, is preferable, since this tends to minimize the peak lateral acceleration and the resulting side
friction demand. The magnitude of side friction demand incurred during travel through the runoff
can vary with the actual vehicle travel path. Observations indicate that a spiral path results from a
driver’s natural steering behavior during curve entry or exit. This natural spiral usually begins on
the tangent and ends beyond the beginning of the circular curve. Most evidence indicates that the
length of this natural spiral ranges from 2- to 4-s travel time; however, its length may also be
affected by lane width and the presence of other vehicles.

Based on the preceding discussion, locating a portion of the runoff on the tangent is
consistent with the natural spiral path adopted by the driver during curve entry. In this manner,
the gradual introduction of superelevation prior to the curve compensates for the gradual increase
in lateral acceleration associated with the spiral path. As a result, the peak lateral acceleration
incurred at the PC should theoretically be about equal to 50 percent of the lateral acceleration
associated with the circular curve.



Metric US Customary
Minimum runoff and runout length (m) Minimum runoff and runout length (ft)

Runoff Runout Runoff Runout
Superelevation Superelevation

Design
speed
(km/h) 2 4 6 8 10 12 any

Design
speed
(mph) 2 4 6 8 10 12 any

One lane rotated One lane rotated
20 9 18 27 36 45 54 9 15 31 61 92 123 154 184 31
30 10 19 29 38 48 57 10 20 32 65 97 130 162 194 32
40 10 21 31 41 51 62 10 25 34 69 103 137 172 206 34
50 11 22 32 43 54 65 11 30 36 73 109 146 182 219 36
60 12 24 36 48 60 72 12 35 39 77 116 155 193 232 39
70 13 26 39 52 66 79 13 40 41 83 124 165 206 248 41
80 14 29 43 58 72 86 14 45 44 89 133 178 222 266 44
90 15 31 46 61 77 92 15 50 48 96 144 192 240 288 48

100 16 33 49 65 82 98 16 55 51 102 153 204 256 307 51
110 18 35 53 70 88 105 18 60 53 107 160 213 266 320 53
120 19 38 57 76 95 114 19 65 56 112 168 224 280 336 56
130 21 41 62 82 103 124 21 70 60 120 180 240 300 360 60

75 63 126 189 252 316 379 63
80 69 137 206 275 343 412 69

Two lanes rotated Two lanes rotated
20 14 27 41 54 68 81 14 15 46 92 138 184 230 276 46
30 14 29 43 57 72 86 14 20 49 97 146 194 243 292 49
40 15 31 46 62 77 93 15 25 51 103 154 206 257 309 51
50 16 32 49 65 81 97 16 30 55 109 164 219 274 328 55
60 18 36 54 72 90 108 18 35 58 116 174 232 290 348 58
70 20 39 59 79 98 118 20 40 62 124 186 248 310 372 62
80 22 43 65 86 108 130 22 45 67 133 200 266 333 400 67
90 23 46 69 92 115 138 23 50 72 144 216 288 360 432 72

100 25 49 74 98 123 147 25 55 77 153 230 307 383 460 77
110 26 53 79 105 132 158 26 60 80 160 240 320 400 480 80
120 28 57 85 114 142 170 28 65 84 168 252 336 419 503 84
130 31 62 93 124 154 185 31 70 90 180 270 360 450 540 90

75 95 189 284 379 473 568 95
80 103 206 309 412 515 618 103

Note:  Based on 3.6 m [12 ft] lanes and on a 2.0% normal cross slope.

Exhibit 3-29.  Minimum Superelevation Runoff and Tangent Runout Lengths
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To achieve this balance in lateral acceleration, most agencies locate a portion of the runoff
length on the tangent prior to the curve. The proportion of runoff length placed on the tangent
varies from 0.6 to 0.8 (i.e., 60 to 80 percent) with a large majority of agencies using 0.67
(i.e., 67 percent). Most agencies consistently use a single value of this proportion for all street and
highway curves.

Theoretical considerations confirm the desirability of placing a larger portion of the runoff
length on the approach tangent rather than on the circular curve. Such considerations are based on
analysis of the acceleration acting laterally on the vehicle while it travels through the transition
section. This lateral acceleration can induce a lateral velocity and lane shift that could lead to
operational problems. Specifically, a lateral velocity in an outward direction (relative to the
curve) requires a driver to make a corrective steer maneuver that produces a path radius sharper
than that of the roadway curve. Such a critical radius produces an undesirable increase in peak
side friction demand. Moreover, a lateral velocity of sufficient magnitude to shift the vehicle into
an adjacent lane (without corrective steering) is also undesirable for safety reasons.

Analysis of the aforementioned theoretical considerations has led to the conclusion that an
appropriate allocation of runoff length between the tangent and the curve can minimize the
aforementioned operational problems (24). The values obtained from the analysis are listed in
Exhibit 3-30. If used in design, the values listed in Exhibit 3-30 should minimize lateral
acceleration and the vehicle ’s lateral motion. Values smaller than those listed tend to be
associated with larger outward lateral velocities. Values larger than those listed tend to be
associated with larger lateral shifts.

Metric US Customary
Portion of runoff located prior to

the curve
Portion of runoff located prior to

the curve
No. of lanes rotated No. of lanes rotated

Design
speed
(km/h) 1.0 1.5 2.0-2.5 3.0-3.5

Design
speed
(mph) 1.0 1.5 2.0-2.5 3.0-3.5

20-70 0.80 0.85 0.90 0.90 15-45 0.80 0.85 0.90 0.90
80-130 0.70 0.75 0.80 0.85 50-80 0.70 0.75 0.80 0.85

Exhibit 3-30.  Runoff Locations that Minimize the Vehicle’s Lateral Motion

Theoretical considerations indicate that values for the proportion of runoff length on the
tangent in the range of 0.7 to 0.9 (i.e., 70 to 90 percent) offer the best operating conditions; the
specific value in this range should be dependent on design speed and rotated width. Experience
obtained from existing practice indicates that deviation from the values in Exhibit 3-30 by
10 percent should not lead to measurable operational problems. In this regard, use of a single
value for the proportion of runoff length on the tangent in the range of 0.6 to 0.9 (60 to
90 percent) for all speeds and rotated widths is considered acceptable. However, refinement of
this value, based on the trends shown in Exhibit 3-30, is desirable when conditions allow.

Location with respect to end of curve. In alignment design with spirals , the superelevation
runoff is effected over the whole of the transition curve. The length of the superelevation runoff
should be equal to the spiral length for the tangent-to-spiral (TS) transition at the beginning and
the spiral-to-curve (SC) transition at the end of the circular curve. The change in cross slope
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begins by removing the adverse cross slope from the lane or lanes on the outside of the curve on a
length of tangent just ahead of TS (the tangent runout) (see Exhibit 3-37). Between the TS and
SC, the spiral curve and the superelevation runoff are coincident and the traveled way is rotated
to reach the full superelevation at the SC. This arrangement is reversed on leaving the curve. In
this design, the whole of the circular curve has full superelevation.

Limiting superelevation rates. Theoretical considerations indicate that, when a vehicle is
traveling through a tangent-to-curve transition, large superelevation rates are associated with
large shifts in the vehicle’s lateral position. In general, such shifts in lateral position can be
minimized by the proper location of the superelevation runoff section, as described above.
However, excessively large lateral shifts must be checked by the driver through steering action.

In recognition of the potential adverse effect that large shifts in lateral position may have on
safety, the threshold superelevation rates associated with a lateral shift of 1.0 m [3.0 ft] are
identified in Exhibit 3-31. These limiting superelevation rates do not apply for speeds of 80 km/h
[50 mph] or more when combined with superelevation rates of 12 percent or less.

Metric US Customary

Design speed (km/h)

Limiting
superelevation rate

(%) Design speed (mph)

Limiting
superelevation rate

(%)
20 8 15 8
30 8 20 8
40 10 25 10
50 11 30 11
60 11 35 11
70 12 40 11

45 12

Exhibit 3-31.  Limiting Superelevation Rates

Designs that incorporate superelevation in excess of the limiting rates may be associated
with excessive lateral shift. Therefore, it is recommended that such superelevation rates be
avoided. However, if they are used, consideration should be given to increasing the width of the
traveled way along the curve to reduce the potential for vehicle  encroachment into the adjacent
lane.

Spiral Curve Transitions

General. Any motor vehicle follows a transition path as it enters or leaves a circular
horizontal curve. The steering change and the consequent gain or loss of lateral force cannot be
effected instantly. For most curves, the average driver can follow a suitable transition path within
the limits of normal lane width. However, combinations of high speed and sharp curvature lead to
longer transition paths, which can result in shifts in lateral position and sometimes actual
encroachment on adjoining lanes. In such instances, incorporation of transition curves between
the tangent and the sharp circular curve, as well as between circular curves of substantially
different radii, may be appropriate in order to make it easier for a driver to keep his or her vehicle
within its own lane.
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The principal advantages of transition curves in horizontal alignment are the following:

1. A properly designed transition curve provides a natural, easy-to-follow path for drivers,
such that the lateral force increases and decreases gradually as a vehicle enters and
leaves a circular curve. Transition curves minimize encroachment on adjoining traffic
lanes and tend to promote uniformity in speed. A spiral transition curve simulates the
natural turning path of a vehicle.

2. The transition curve length provides a suitable location for the superelevation runoff.
The transition from the normal pavement cross slope on the tangent to the fully
superelevated section on the curve can be accomplished along the length of the transition
curve in a manner that closely fits the speed-radius relationship for vehicles traversing
the transition. Where superelevation runoff is introduced without a transition curve,
usually partly on the curve and partly on the tangent, the driver approaching the curve
may have to steer opposite to the direction of the approaching curve when on the
superelevated tangent portion in order to keep the vehicle within its lane.

3. A spiral transition curve also facilitates the transition in width where the traveled way is
widened on a circular curve. Use of spiral transitions provides flexibility in
accomplishing the widening of sharp curves.

4. The appearance of the highway or street is enhanced by the application of spiral
transition curves. The use of spiral transitions avoids noticeable breaks in the alignment
as perceived by drivers at the beginning and end of circular curves. Exhibit 3-32
illustrates such breaks, which are made more prominent by the presence of
superelevation runoff.

Length of Spiral

Length of spiral. Generally, the Euler spiral, which is also known as the clothoid, is used in
the design of spiral transition curves. The radius varies from infinity at the tangent end of the
spiral to the radius of the circular arc at the end that adjoins that circular arc. By definition, the
radius of curvature at any point on an Euler spiral varies inversely with the distance measured
along the spiral. In the case of a spiral transition that connects two circular curves having
different radii, there is an initial radius rather than an infinite value.

The following equation, developed in 1909 by Shortt (25) for gradual attainment of lateral
acceleration on railroad track curves, is the basic expression used by some highway agencies for
computing minimum length of a spiral transition curve:

Metric US Customary
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= ( 3-27 )

where:

L = minimum length of spiral, m;
V = speed, km/h;
R = curve radius, m;
C = rate of increase of lateral

acceleration, m/s3

where:

L = minimum length of spiral, ft;
V = speed, mph;
R = curve radius, ft;
C = rate of increase of lateral

acceleration, ft/s3
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Exhibit 3-32.  Transition Spirals (23)

The factor C is an empirical value representing the comfort and safety levels provided by the
spiral curve. The value of C = 0.3 m/s3 [1 ft/s3] is generally accepted for railroad operation, but
values ranging from 0.3 to 0.9 m/s3 [1 to 3 ft/s3] have been used for highways. This equation is
sometimes modified to take into account the effect of superelevation, which results in much
shorter spiral curve lengths. Highways do not appear to need as much precision as is obtained
from computing the length of spiral by this equation or its modified form. A more practical
control for the length of  spiral is that it should equal the length needed  for superelevation runoff.
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Maximum radius for use of a spiral. A review of guidance on the use of spiral curve
transitions indicates a general lack of consistency among highway agencies. In general, much of
this guidance suggests that an upper limit on curve radius can be established such that only radii
below this maximum are likely to obtain safety and operational benefits from the use of spiral
transition curves. Such a limiting radius has been established by several agencies based on a
minimum lateral acceleration rate. Such minimum rates have been found to vary from 0.4 to
1.3 m/s2 [1.3 to 4.25 ft/s2]. The upper end of this range of rates corresponds to the maximum
curve radius for which some reduction in crash potential has also been noted. For these reasons, it
is recommended that the maximum radius for use of a spiral should be based on a minimum
lateral acceleration rate of 1.3 m/s2 [4.25 ft/s2] (20). These radii are listed in Exhibit 3-33.

The radii listed in Exhibit 3-33 are intended for use by those highway agencies that desire to
use spiral curve transitions. Exhibit 3-33 is not intended to define radii that require the use of a
spiral.

Metric US Customary
Design speed (km/h) Maximum radius (m) Design speed (mph) Maximum radius (ft)

20 24 15 114
30 54 20 203
40 95 25 317
50 148 30 456
60 213 35 620
70 290 40 810
80 379 45 1025
90 480 50 1265

100 592 55 1531
110 716 60 1822
120 852 65 2138
130 1000 70 2479

75 2846
80 3238

Note:  The safety benefits of spiral curve transitions are likely to be negligible for larger radii.

Exhibit 3-33.  Maximum Radius for Use of a Spiral Curve Transition

Minimum length of spiral. Several agencies define a minimum length of spiral based on
consideration of driver comfort and shifts in the lateral position of vehicles. Criteria based on
driver comfort are intended to provide a spiral length that allows for a comfortable increase in
lateral acceleration as a vehicle enters a curve. The criteria based on lateral shift are intended to
ensure that a spiral curve is sufficiently long to provide a shift in a vehicle’s lateral position
within its lane that is consistent with that produced by the vehicle ’s natural spiral path. It is
recommended that these two criteria  be used together to determine the minimum length of spiral.
Thus, the minimum spiral length can be computed as:
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Metric US Customary
Ls, min should be the larger of: Ls, min should be the larger of:

( )Rp24L minmin,s =
or

( )Rp24L minmin,s =
or

( 3-28 )

RC
V

.L mins,

3

02140=
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V

.L mins,

3

153=
( 3-29 )

  where:

Ls,min = minimum length of spiral, m;
pmin = minimum lateral offset

between the tangent and
circular curve (0.20 m);

R = radius of circular curve, m;
V = design speed, km/h;
C = maximum rate of change in

lateral acceleration
(1.2 m/s3)

  where:

Ls,min = minimum length of spiral, ft;
pmin = minimum lateral offset

between the tangent and
circular curve (0.66 ft);

R = radius of circular curve, ft;
V = design speed, mph;
C = maximum rate of change in

lateral acceleration
(4 ft/s3)

A value of 0.20 m [0.66 ft] is recommended for pmin. This value is consistent with the
minimum lateral shift that occurs as a result of the natural steering behavior of most drivers. The
recommended minimum value for C is 1.2 m/s3 [4.0 ft/s3]. The use of lower values will yield
longer, more “comfortable” spiral curve lengths; however, such lengths would not represent the
minimum length consistent with driver comfort.

Maximum length of spiral. International experience indicates that there is a need to limit
the length of spiral transition curves. Safety problems have been found to occur on spiral curves
that are long (relative to the length of the circular curve). Such problems occur when the spiral is
so long as to mislead the driver about the sharpness of the approaching curve. A conservative
maximum length of spiral that should minimize the likelihood of such problems can be computed
as:

Metric US Customary

( )RpL maxmaxs, 24= ( )RpL maxmaxs, 24= ( 3-30 )

where:

Ls,max = maximum length of
spiral, m;

pmax = maximum lateral offset
between the tangent
and circular curve
(1.0 m);

R = radius of circular
curve, m

where:

Ls,max = maximum length of
spiral, ft;

pmax = maximum lateral offset
between the tangent
and circular curve
(3.3 ft);

R = radius of circular
curve, ft

A value of 1.0 m [3.3 ft] is recommended for pmax. This value is consistent with the
maximum lateral shift that occurs as a result of the natural steering behavior of most drivers. It
also provides a reasonable balance between spiral length and curve radius.
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Desirable length of spiral. A recent study of the operational effects of spiral curve
transitions (20) found that spiral length is an important design control. Specifically, the most
desirable operating conditions were noted when the spiral curve length was approximately equal
to the length of the natural spiral path adopted by drivers. Differences between these two lengths
resulted in operational problems associated with large lateral velocit ies or shifts in lateral position
at the end of the transition curve. Specifically, a large lateral velocity in an outward direction
(relative to the curve) requires the driver to make a corrective steering maneuver that results in a
path radius sharper than the radius of the circular curve. Such a critical radius produces an
undesirable increase in peak side friction demand. Moreover, lateral velocit ies of sufficient
magnitude to shift a vehicle into an adjacent lane (without corrective steering) are also
undesirable for safety reasons.

Based on these considerations, desirable lengths of spiral transition curves are shown in
Exhibit 3-34. These lengths correspond to 2.0 s of travel time at the design speed of the roadway.
This travel time has been found to be representative of the natural spiral path for most
drivers (20).

The spiral lengths listed in Exhibit 3-34 are recommended as desirable values for street and
highway design. Theoretical considerations suggest that significant deviations from these lengths
tend to increase the shifts in the lateral position of vehicles within a lane that may precipitate
encroachment on an adjacent lane or shoulder. The use of longer spiral curve lengths that are less
than Ls,max is acceptable. However, where such longer spiral curve lengths are used, consideration
should be given to increasing the width of the traveled way on the curve to minimize the potential
for encroachments into the adjacent lanes.

Metric US Customary
Design speed (km/h) Spiral length (m) Design speed (mph) Spiral length (ft)

20 11 15 44
30 17 20 59
40 22 25 74
50 28 30 88
60 33 35 103
70 39 40 117
80 44 45 132
90 50 50 147

100 56 55 161
110 61 60 176
120 67 65 191
130 72 70 205

75 220
80 235

Exhibit 3-34.  Desirable Length of Spiral Curve Transition

Spiral curve lengths longer than those shown in Exhibit 3-34 may be needed at turning
roadway terminals to adequately develop the desired superelevation. Specifically, spirals twice as
long as those shown in Exhibit 3-34 may be needed in such situations. The resulting shift in
lateral position may exceed 1.0 m [3.3 ft]; however, such a shift is consistent with driver
expectancy at a turning roadway terminal and can be accommodated by the additional lane width
typically provided on such turning roadways.
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Finally, if the desirable spiral curve length shown in Exhibit 3-34 is less than the minimum
spiral curve length determined from Equations (3-28) and (3-29), the minimum spiral curve
length should be used in design.

Length of superelevation runoff. In transition design with a spiral curve, it is
recommended that the superelevation runoff be accomplished over the length of spiral. For the
most part the calculated values for length of spiral and length of runoff do not differ materially.
However, in view of the empirical nature of both, an adjustment in one to avoid having two
separate sets of design criteria  is desirable . The length of runoff is applicable to all superelevated
curves, and it is recommended that this value should be used for minimum lengths of spiral. In
this manner, the length of spiral should be set equal to the length of runoff. The change in cross
slope begins by introducing a tangent runout section just in advance of the spiral curve. Full
attainment of superelevation is then accomplished over the length of the spiral. In such a design,
the whole of the circular curve has full superelevation.

Limiting superelevation rates. One consequence of equating runoff length to spiral length
is that the resulting relative gradient of the pavement edge may exceed the values listed in
Exhibit 3-27. However, small increases in gradient have not been found to have an adverse effect
on comfort or appearance. In this regard, the adjustment factors listed in Exhibit 3-28 effectively
allow for a 50 percent increase in the maximum relative gradient when three lanes are rotated.

The superelevation rates that are associated with a maximum relative gradient that is
50 percent larger than the values in Exhibit 3-27 are listed in Exhibit 3-35. If the superelevation
rate used in design exceeds the rate listed in this table, the maximum relative gradient will be at
least 50 percent larger than the maximum relative gradient allowed for a tangent-to-curve design.
In this situation, special consideration should be given to the transition’s appearance and the
abruptness of its edge-of-pavement profile.

Metric US Customary
Number of lanes rotated Number of lanes rotatedDesign

speed
(km/h) 1 2 3

Design
speed
(mph) 1 2 3

20 3.7 1.9 1.3 15 4.3 2.2 1.5
30 5.2 2.6 1.7 20 5.5 2.8 1.9
40 6.5 3.2 2.2 25 6.5 3.3 2.2
50 7.5 3.8 2.5 30 7.3 3.7 2.5
60 8.3 4.2 2.8 35 8.0 4.0 2.7
70 8.9 4.5 3.0 40 8.5 4.3 2.9
80 9.3 4.6 3.1 45 8.9 4.5 3.0
90 9.8 4.9 3.3 50 9.2 4.6 3.1

100 10.2 5.1 3.4 55 9.5 4.8 3.2
110 10.4 5.2 3.5 60 9.9 5.0 3.3
120 10.6 5.3 3.5 65 10.3 5.2 3.4
130 10.6 5.3 3.5 70 10.3 5.2 3.5

75 10.5 5.3 3.5
80 10.5 5.3 3.5

Note:  Based on desirable length of spiral curve transition from Exhibit 3-34.

Exhibit 3-35.  Superelevation Rates Associated With Large Relative Gradients
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Length of tangent runout. The tangent runout length for a spiral curve transition design is
based on the same approach used for the tangent-to-curve transition design. Specifically, a
smooth edge of pavement profile is desired such that a common edge slope gradient is maintained
throughout the superelevation runout and runoff sections. Based on this rationale, the following
equation can be used to compute the tangent runout length:

Metric US Customary

S
d

NC
t L

e
e

L = S
d

NC
t L

e
e

L = ( 3-31 )

where:

Lt = length of tangent runout,
m;

LS = length of spiral, m;
ed = design superelevation

rate, percent;
eNC = normal cross slope rate,

percent

where:

Lt = length of tangent runout,
ft;

LS = length of spiral, ft;
ed = design superelevation

rate, percent;
eNC = normal cross slope rate,

percent

The tangent runout lengths obtained from Equation (3-31) are presented in Exhibit 3-36. The
lengths in this table tend to be longer than desirable  for combinations of low superelevation rate
and high speed. Such long lengths may present safety problems when there is insufficient profile
grade to provide adequate pavement surface drainage. Such problems can be avoided when the
profile grade criteria  described in the section on “Minimum Transition Grades” are applied to the
spiral curve transition.

Metric US Customary
Tangent runout length (m) Tangent runout length (ft)

Superelevation rate Superelevation rate
Design
speed
(km/h) 2 4 6 8 10

Design
speed
(mph) 2 4 6 8 10

20 11 – – – – 15 44 – – – –
30 17 8 – – – 20 59 30 – – –
40 22 11 7 – – 25 74 37 25 – –
50 28 14 9 – – 30 88 44 29 – –
60 33 17 11 8 – 35 103 52 34 26 –
70 39 19 13 10 – 40 117 59 39 29 –
80 44 22 15 11 – 45 132 66 44 33 –
90 50 25 17 13 10 50 147 74 49 37 –

100 56 28 19 14 11 55 161 81 54 40 –
110 61 31 20 15 12 60 176 88 59 44 –
120 67 33 22 17 13 65 191 96 64 48 38
130 72 36 24 18 14 70 205 103 68 51 41

75 220 110 73 55 44
80 235 118 78 59 47

Notes: 1.  Based on 2.0% normal cross slope.
2.  Superelevation rates above 10% and cells with “–” coincide with a pavement edge

grade that exceeds the maximum relative gradient in Exhibit 3-27 by 50% or more.
These limits apply to roads where one lane is rotated; lower limits apply when more
lanes are rotated (see Exhibit 3-28).

Exhibit 3-36.  Tangent Runout Length for Spiral Curve Transition Design
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Compound Curve Transition

In general, compound curve transitions are most commonly considered for application to
low-speed turning roadways at intersections. In contrast, tangent-to-curve or spiral curve
transition designs are more commonly used on street and highway curves.

Guidance concerning compound curve transition design for turning roadways is provided in
Chapters 9 and 10. The guidance in Chapter 9 applies to low-speed turning roadway terminals at
intersections , while the guidance in Chapter 10 applies to interchange ramp terminals.

Methods of Attaining Superelevation

Four methods are used to transition the pavement to a superelevated cross section. These
methods include: (1) revolving a traveled way with normal cross slopes about the centerline
profile , (2) revolving a traveled way with normal cross slopes about the inside-edge profile,
(3) revolving a traveled way with normal cross slopes about the outside-edge profile, and
(4) revolving a straight cross-slope traveled way about the outside-edge profile. Exhibit 3-37
illustrates these four methods. The methods of changing cross slope are most conveniently shown
in the exhibit in terms of straight line relationships, but it is emphasized that the angular breaks
between the straight-line profiles are to be rounded in the finished design, as shown in the exhibit.

The profile reference line controls for the roadway’s vertical alignment through the
horizontal curve. Although shown as a horizontal line in Exhibit 3-37, the profile reference line
may correspond to a tangent, a vertical curve, or a combination of the two. In Exhibit 3-37A, the
profile reference line corresponds to the centerline profile. In Exhibits 3-37B and 3-37C, the
profile reference line is represented as a “theoretical” centerline profile as it does not coincide
with the axis of rotation. In Exhibit 3-37D, the profile reference line corresponds to the outside
edge of traveled way. The cross sections at the bottom of each diagram in Exhibit 3-37 indicate
the traveled way cross slope condition at the lettered points.

The first method, as shown in Exhibit 3-37A, revolves the traveled way about the centerline
profile. This method is the most widely used because the change in elevation of the edge of the
traveled way is made with less distortion than with the other methods. In this regard, one-half of
the change in elevation is made at each edge.

The second method, as shown in Exhibit 3-37B, revolves the traveled way about the inside-
edge profile. In this case, the inside-edge profile is determined as a line parallel to the profile
reference line. One-half of the change in elevation is made by raising the actual centerline profile
with respect to the inside-edge profile and the other half by raising the outside-edge profile an
equal amount with respect to the actual centerline profile.

The third method, as shown in Exhibit 3-37C, revolves the traveled way about the outside-
edge profile. This method is similar to that shown in Exhibit 3-37B except that the elevation
change is accomplished below the outside-edge profile instead of above the inside-edge profile.
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Exhibit 3-37.  Diagrammatic Profiles Showing Methods of Attaining Superelevation for a
Curve to the Right
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Exhibit 3-37.  Diagrammatic Profiles Showing Methods of Attaining Superelevation
for a Curve to the Right (Continued)
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The fourth method, as shown in Exhibit 3-37D, revolves the traveled way (having a straight
cross-slope) about the outside-edge profile. This method is often used for two-lane one-way
roadways where the axis of rotation coincides with the edge of the traveled way adjacent to the
highway median.

The methods for attaining superelevation are nearly the same for all four methods. Cross
section A at one end of the tangent runout is a normal (or straight) cross-slope section. At cross
section B, the other end of the tangent runout and the beginning of the superelevation runoff, the
lane or lanes on the outside of the curve are made horizontal (or level) with the actual centerline
profile for Exhibits 3-37A, 3-37B, and 3-37C; there is no change in cross slope for
Exhibit 3-37D.

At cross section C the traveled way is a plane, superelevated at the normal cross slope rate.
Between cross sections B and C for Exhibits 3-37A, 3-37B, and 3-37C, the outside lane or lanes
change from a level condition to one of superelevation at the normal cross slope rate and normal
cross slope is retained on the inner lanes. There is no change between cross sections B and C for
Exhibit 3-37D. Between cross sections C and E the pavement section is revolved to the full rate
of superelevation. The rate of cross slope at an intermediate point (e.g., cross section D) is
proportional to the distance from cross section C.

In an overall sense, the method of rotation about the centerline shown in Exhibit 3-37A is
usually the most adaptable. On the other hand, the method shown in Exhibit 3-37B is preferable
where the lower edge profile is a major control, as for drainage. With uniform profile conditions,
its use results in the greatest distortion of the upper edge profile. Where the overall appearance is
to be emphasized, the methods of Exhibits 3-37C and 3-37D are advantageous in that the
upper-edge profile—the edge most noticeable to drivers—retains the smoothness of the control
profile. Thus, the shape and direction of the centerline profile may determine the preferred
method for attaining superelevation.

Considering the infinite number of profile arrangements that are possible and in recognition
of such specific problems as drainage, avoidance of critical grades, aesthetics, and fitting the
roadway to the adjacent topography, no general recommendation for the adoption of any
particular axis of rotation can be made. To obtain the most pleasing and functional results, each
superelevation transition section should be considered individually. In practice, any pavement
reference line used for the axis of rotation may be best suited for the problem at hand.

Design of Smooth Profiles for Traveled Way Edges

In the diagrammatic profiles shown in Exhibit 3-37, the tangent profile control lines result in
angular breaks at cross sections A, C, and E. For general appearance and safety, these breaks
should be rounded in final design by insertion of vertical curves. Even when the maximum
relative gradient is used to define runoff length, the length of vertical curve needed to conform to
the 0.65 [0.66] percent break at the 50-km/h [30-mph] design speed (see Exhibit 3-27) and 0.38
[0.38] percent break at the 120-km/h [75 mph] design speed need not be great. Where the traveled
way is revolved about an edge, these grade breaks are doubled to 1.30 [1.32] percent for the
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50-km/h [30-mph] design speed and to 0.76 [0.76] percent for the 120-km/h [75-mph] design
speed. Greater lengths of vertical curve are obviously needed in these cases. Specific criteria for
the lengths of vertical curves at the breaks in the diagrammatic profiles have not been established.
For an approximate guide, however, the minimum vertical curve length in meters [feet] can be
used as numerically equal to the design speed in kilometers per hour [equal to the design speed in
miles per hour]. Greater lengths should be used where practical, as the general profile condition
may determine.

Several methods are available for the development of smooth-edge profiles in superelevation
transition sections. One method defines the edge profiles on a straight-line basis, as shown in
Exhibit 3-37, and then develops the profile details based on inserting parabolic vertical curves at
each edge break. In such cases, the minimum vertical curve length is often set equal to a travel
time at the design speed of about 0.7 s. This method is laborious when the edge vertical curves
are superimposed on a centerline vertical curve. However, it does provide an essential control for
the designer and should yield uniformity of results.

A second method uses a graphical approach to define the edge profile. The method
essentially is one of spline-line development. In this method the centerline or other base profile,
which usually is computed, is plotted on an appropriate vertical scale. Superelevation control
points are in the form of the break points shown in Exhibit 3-37. Then by means of a spline, curve
template, ship curve, or circular curve, smooth-flowing lines are drawn to approximate the
straight-line controls. The natural bending of the spline nearly always satisfies the need for
minimum smoothing. Once the edge profiles are drawn in the proper relation to one another,
elevations can be read at the appropriate intervals (as needed for construction control).

An important advantage of the graphical or spline-line method is the infinite study
alternatives it affords the designer. Alternate profile solutions can be developed with a minimum
expenditure of time. The net result is a design that is well suited to the particular control
conditions. The engineering design labor needed for this procedure is minimal. These several
advantages make this method preferable  to the other methods of developing profile details for
runoff sections.

Divided highways warrant a greater refinement in design and greater attention to appearance
than do two-lane highways because divided highways usually serve much greater traffic volumes.
Moreover, the cost of such refinements is insignificant compared with the construction cost of the
divided highway.  Accordingly, there should be greater emphasis on the development of smooth-
flowing traveled way edge profiles for divided highways.

Axis of Rotation with a Median

In the design of divided highways, streets, and parkways, the inclusion of a median in the
cross section influences the superelevation transition design. This influence stems from the
several possible locations for the axis of rotation. The most appropriate location for this axis
depends on the width of the median and its cross section. Common combinations of these factors
and the appropriate corresponding axis location are described in the following three cases:
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Case I—The whole of the traveled way, including the median, is superelevated as a plane
section. Case I should necessarily be limited to narrow medians and moderate superelevation
rates to avoid substantial differences in elevation of the extreme edges of the traveled way arising
from the median tilt. Specifically, Case I should be applied only to medians with widths of 4 m
[15 ft] or less. Superelevation can be attained using a method similar to that shown in Exhibit 3-
37A except for the two median edges, which will appear as profiles only slightly removed from
the centerline.

Case II—The median is held in a horizontal plane and the two traveled ways are rotated
separately around the median edges. Case II can be applied to any width of median but is most
appropriate for medians with widths between 4 and 18 m [15 and 60 ft]. By holding the median
edges level, the difference in elevation between the extreme traveled way edges can be limited to
that needed to superelevate the roadway. Superelevation transition design for Case II usually has
the median-edge profiles as the control. One traveled way is rotated about its lower edge and the
other about its higher edge. Superelevation can be attained using any of the methods shown in
Exhibits 3-37B, 3-37C, and 3-37D, with the profile reference line being the same for both
traveled ways.

Case III—The two traveled ways are treated separately for runoff with a resulting variable
difference in elevations at the median edges. Case III design can be used with wide medians (i.e.,
those having a width of 18 m [60 ft] or more). For this case, the differences in elevation of the
extreme edges of the traveled way are minimized by a compensating slope across the median.
With a wide median, it is possible to design the profiles and superelevation transition separately
for the two roadways. Accordingly, superelevation can be attained by the method otherwise
considered appropriate (i.e., any of the methods in Exhibit 3-37 can be used).

Superelevation runoff lengths vary for each of the three cases. For Case I designs, the length
of runoff should be based on the total rotated width (including the median width). Runoff lengths
for Case II designs should be the same as those for undivided highways with a similar number of
lanes. Finally, runoff lengths for Case III designs are based on the needs of the separate one-way
roadways, as defined by their superelevation rates and rotated widths.

Superelevation runoff lengths for four- and six-lane undivided highways have been shown in
Exhibit 3-28 as 1.5 and 2 times, respectively, the lengths for two-lane highways. For Case I
designs of divided highways the length of runoff should properly be increased in the proportion to
the total width, including the median. Because Case I applies primarily to narrow medians, the
added length usually will be insignificant. With medians of the order of 1 to 3 m [3 to 10 ft] wide,
any increase in runoff length may well be ignored.

Under Case II conditions with narrow medians in a horizontal plane, the runoff lengths
should be the same as those for undivided highways as shown in Exhibits 3-21 through 3-25 for
four-lane highways. This length applies to highways with medians about 4 m [15 ft] or less in
width. However, with medians about 12 m [40 ft] or more in width, the two-lane values should be
used for the one-way roadways because the extreme traveled way edges are at least 24 m [80 ft]
apart and are independent of each other. Values for the one-way roadways of six-lane highways
when separated by a wide median should be 1.2 times the two-lane values of Exhibits 3-21
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through 3-25. The one-way traveled ways of highways with medians between 4 and 12 m [15 and
40 ft] might be designed on the basis of either the suggested two-lane or multilane runoff lengths.

With Case III cross sections, the median generally will be 12 m [40 ft] or more in width, and
the two-lane values for length of runoff are applicable for one-way roadways of four-lane divided
highways. The values for the one-way roadways of six-lane divided highways should be
somewhat greater. In situations where the median width is less than about 12 m [40 ft], the runoff
length should be determined in the same manner as for Case II.

Divided highways warrant a greater refinement in design and greater attention to appearance
than two-lane highways because they serve much greater traffic volumes and because the cost of
such refinements is insignificant compared with the cost of construction. Accordingly, the values
for length of runoff indicated above should be considered minimums, and the use of yet longer
values should be considered. Likewise, there should be emphasis on the development of smooth-
flowing traveled way edge profiles of the type obtained by spline-line design methods.

Minimum Transition Grades

Two potential pavement surface drainage problems are of concern in the superelevation
transition section. One problem relates to the potential lack of adequate longitudinal grade. This
problem generally occurs when the grade axis of rotation is equal to, but opposite in sign to, the
effective relative gradient. It results in the edge of pavement having negligible longitudinal grade,
which can lead to poor pavement surface drainage, especially on curbed cross sections.

The other potential drainage problem relates to inadequate lateral drainage due to negligible
cross slope during pavement rotation. This problem occurs in the transition section where the
cross slope of the outside lane varies from an adverse slope at the normal cross slope rate to a
superelevated slope at the normal cross slope rate. This length of the transition section includes
the tangent runout section and an equal length of the runoff section. Within this length, the
pavement cross slope may not be sufficient to adequately drain the pavement laterally.

Two techniques can be used to alleviate these two potential drainage problems. One
technique is to provide a minimum profile grade in the transition section. The second technique is
to provide a minimum edge of pavement grade in the transition section. Both techniques can be
incorporated in the design by use of the following grade criteria:

1. Maintain minimum profile grade of 0.5 percent through the transition section.

2. Maintain minimum edge of pavement grade of 0.2 percent (0.5 percent for curbed
streets) through the transition section.

The second grade criterion is equivalent to the following series of equations relating profile
grade and effective maximum relative gradient:
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Metric US Customary
Uncurbed Curbed Uncurbed Curbed
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where:

G = profile grade, percent;
? * = effective maximum relative

gradient, percent;
Lr = length of superelevation

runoff, m;
nl = number of lanes rotated,

lanes;
w = width of one traffic lane, m

(typically 3.6 m);
ed = design superelevation rate,

percent.

where:

G = profile grade, percent;
? * = effective maximum relative

gradient, percent;
Lr = length of superelevation

runoff, ft;
nl = number of lanes rotated,

lanes;
w = width of one traffic lane, ft

(typically 12 ft);
ed = design superelevation rate,

percent.

The value of 0.2 in the grade control (G) equation represents the minimum edge of pavement
grade for uncurbed roadways (expressed as a percentage). If this equation is applied to curbed
streets, the value 0.2 should be replaced with 0.5.

To illustrate the combined use of the two grade criteria, consider an uncurbed roadway curve
having an effective maximum relative gradient of 0.65 percent in the transition section. The first
criterion would exclude grades between –0.50 and +0.50 percent. The second grade criterion
would exclude grades in the range of –0.85 to –0.45 percent (via the first two components of the
equation) and those in the range of 0.45 to 0.85 percent (via the last two components of the
equation). Given the overlap between the ranges for Controls 1 and 2, the profile grade within the
transition would have to be outside of the range of –0.85 to +0.85 percent in order to satisfy both
criteria and provide adequate pavement surface drainage.

Turning Roadway Design

Turning roadways can be categorized as interchange ramps, roadways, or intersection curves
for right-turning vehicles. Loop or diamond configurations for turning roadways are used at
interchanges and consist of combinations of tangents and curves. At intersections, turning
roadways have a diamond configuration and consist of curves (often compound curves). Turning
roadway design does not apply to minimum edge-of-traveled-way design for turns at
intersections. Here it is a matter of closely fitting compound curves to the inside edge of the
design vehicle ’s swept path (as described in Chapter 9).
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When the design speed of the turning roadway is 70 km/h [45 mph] or less, compound
curvature can be used to form the entire alignment of the turning roadway.  When the design speed
exceeds 70 km/h [45 mph], the exclusive use of compound curves is often impractical, as it tends
to need a large amount of right-of-way.  Thus, high-speed turning roadways follow the interchange
ramp design guidelines in Chapter 10 and include a mix of tangents and curves. By this approach,
the design can be more sensitive to right-of-way impacts as well as to driver comfort and safety.

For compound curves at intersections, it is preferable  that the ratio of the flatter radius to the
sharper radius not exceed 2:1. This ratio results in a reduction of approximately 10 km/h [6 mph]
in average running speeds for the two curves.

For compound curves at interchanges, it is preferable that the ratio of the flatter radius to the
sharper radius not exceed 1.75:1. However, general observations on ramps having differences in
radii with a ratio of 2:1 indicate that both operation and appearance are satisfactory.

Curves that are compounded should not be too short or their effect in enabling a change in
speed from the tangent or flat curve to the sharp curve is lost. In a series of curves of decreasing
radii, each curve should be long enough to enable the driver to decelerate at a reasonable  rate. At
intersections , a maximum deceleration rate of 5 km/h/s [3 mph/s] may be used (although 3 km/h/s
[2 mph/s] is desirable). The desirable rate represents very light braking, because deceleration in
gear alone generally results in overall rates between 1.5 and 2.5 km/h/s [1 and 1.5 mph/s].
Minimum compound curve lengths based on these criteria  are presented in Exhibit 3-38.

The compound curve lengths in Exhibit 3-38 are developed on the premise that travel is in
the direction of sharper curvature. For the acceleration condition, the 2:1 ratio is not as critical
and may be exceeded.

Metric US Customary
Minimum length of

circular arc (m)
Minimum length of

circular arc (ft)

Radius (m) Acceptable Desirable Radius (ft) Acceptable Desirable
30 12 20 100 40 60
50 15 20 150 50 70
60 20 30 200 60 90
75 25 35 250 80 120

100 30 45 300 100 140
125 35 55 400 120 180

150 or more 45 60 500 or more 140 200

Exhibit 3-38.  Lengths of Circular Arcs for Different Compound Curve Radii

Design for Low-Speed Urban Streets

As previously discussed, the maximum allowable side friction factor for use in the design of
horizontal curves is the point at which the lateral force causes the driver to experience a feeling of
discomfort when driving a curve at a particular design speed. Exhibit 3-10 has summarized the
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test results of side friction factors developed on curves at these apparent limits of comfort. Use of
the solid line in Exhibit 3-13 and method 5 was recommended for distributing e and f in the
design of rural highways and high-speed urban streets. Method 2 is recommended for the design
of horizontal curves on low-speed urban streets where, through conditioning, drivers have
developed a higher threshold of discomfort. By this method, none of the lateral force is
counteracted by superelevation so long as the side friction factor is less than the specified
maximum for the radius of the curve and the design speed.

For sharper curves, f remains at the maximum and e is used in direct proportion to the
continued increase in curvature until e reaches emax. The recommended design values for f that are
applicable to low-speed urban streets are shown in Exhibit 3-39 as a solid line superimposed on
the analysis curves from Exhibit 3-10. They are based on a tolerable degree of discomfort and
provide a reasonable margin of safety against skidding under normal driving conditions in the
urban environment. These values vary with the design speed from 0.32 at 30 km/h [0.30 at 20
mph] to about 0.165 at 70 km/h [0.165 at 45 mph], with 70 km/h [45 mph] being the upper limit
for low speed established in the design speed discussion of Chapter 2.

Although superelevation is advantageous for traffic operations, various factors often
combine to make its use impractical in many built-up areas. These factors include wide pavement
areas, the need to meet the grade of adjacent property, surface drainage considerations, and
frequency of cross streets, alleys and driveways. Therefore, horizontal curves on low-speed
streets in urban areas are frequently designed without superelevation, sustaining the lateral force
solely with side friction. On these curves for traffic entering a curve to the left the normal cross
slope is an adverse or negative superelevation, but with flat curves the resultant friction needed to
sustain the lateral force, even given the negative superelevation, is small.

However, on successively sharper curves for the same design speed, the minimum radius or
sharpest curve without superelevation is reached when the side friction factor developed to
sustain the lateral force, given the adverse cross slope, reaches the maximum allowable value
based on driver comfort considerations. The maximum allowable side friction factor based on
driver comfort also provides an appropriate margin of safety against skidding. For travel on
sharper curves, superelevation is needed.

The maximum superelevation rate of zero in Exhibit 3-41 establishes the minimum radius
for each speed below which superelevation is not provided on local streets in residential and
commercial areas but should be considered in industrial areas or other streets where operating
speeds are higher. A maximum superelevation rate of 4.0 or 6.0 percent is commonly used. The
maximum curvature for a given design speed is defined for low-speed urban streets when both the
maximum superelevation rate and the maximum allowable side friction factors are utilized.
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Exhibit 3-39.  Side Friction Factors for Low-Speed Urban Streets
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Maximum Comfortable Speed on Horizontal Curves

Exhibit 3-40 and 3-41, for low-speed urban streets, are derived from the simplified curve
formula:

Metric US Customary

R
V

f
e

127100

2

max =+
R

V
f

e
15100

2

max =+
( 3-33 )

Exhibit 3-40 has been prepared by using the recommended values of f for low-speed urban
streets from Exhibit 3-39 and by varying the rates of superelevation from –5.0 to +6.0 percent.
This exhibit may be used for determining the maximum speeds for horizontal curves on low-
speed urban streets. By interpolating, the exhibit may also be used to determine the minimum
superelevation needed where a curve is to be provided with a radius greater than the minimum,
but less than the radius for a cross section with normal cross slopes. However, it is desirable to
provide the maximum superelevation for curves with these intermediate radii as well because of
the tendency for drivers to overdrive curves with lower design speeds.

Minimum Superelevation Runoff Length

The following equation for deriving the minimum superelevation runoff length is based on
the maximum allowable side friction factor, where C is the rate of change of the side friction
factor obtained from Exhibit 3-41.

Metric US Customary

C
fV

L D72.2
=

C
fV

L D2.47
=

( 3-34 )

 where:

L = length of superelevation runoff, m;
f = side friction factor;
VD = design speed, km/h; and
C = rate of change of f, m/s3.

 where:

L = length of superelevation runoff, ft;
f = side friction factor;
VD = design speed, mph; and
C = rate of change of f, ft/s3.
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Exhibit 3-40.  Relationship of Radius Superelevation, Cross Slope Rate, and Design
Speed for Low-Speed Urban Street Design



Metric

Design
speed
(km/h)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(m)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(m)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(m) C

Min L
(m)

20 0.06 0.350 0.410 10 0.04 0.350 0.390 10 0.00 0.350 0.350 10 1.25 15
30 0.06 0.312 0.372 20 0.04 0.312 0.352 20 0.00 0.312 0.312 25 1.20 20
40 0.06 0.252 0.312 40 0.04 0.252 0.292 45 0.00 0.252 0.252 50 1.15 25
50 0.06 0.214 0.274 70 0.04 0.214 0.254 80 0.00 0.214 0.214 90 1.10 25
60 0.06 0.186 0.246 115 0.04 0.186 0.226 125 0.00 0.186 0.186 150 1.05 30
70 0.06 0.163 0.223 175 0.04 0.163 0.203 190 0.00 0.163 0.163 235 1.00 30

US Customary

Design
speed
(mph)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(ft)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(ft)

Max
e/100 Max f

Total
(e/100 + f)

Min R
(ft) C

Min L
(ft)

15 0.06 0.330 0.390 40 0.04 0.330 0.370 40 0.00 0.330 0.330 45 4.25 55
20 0.06 0.300 0.360 75 0.04 0.300 0.340 80 0.00 0.300 0.300 90 4.00 75
25 0.06 0.252 0.312 135 0.04 0.252 0.292 145 0.00 0.252 0.252 165 3.75 80
30 0.06 0.221 0.281 215 0.04 0.221 0.261 230 0.00 0.221 0.221 275 3.50 90
35 0.06 0.197 0.257 320 0.04 0.197 0.231 345 0.00 0.197 0.197 415 3.25 100
40 0.06 0.178 0.238 450 0.04 0.178 0.218 490 0.00 0.178 0.178 600 3.00 115
45 0.06 0.163 0.223 605 0.04 0.163 0.203 665 0.00 0.163 0.163 830 2.75 125

Exhibit 3-41.  Minimum Radii and Minimum Lengths of Superelevation Runoff for Limiting Values of e and f (Low-Speed
Urban Streets)
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For design on low-speed urban streets the value of C varies from 1.25 m/s3 at 20 km/h
[4.25 ft/s3 at 15 mph] to 1.0 m/s3 at 70 km/h [2.75 ft/s3 at 45 mph]. The minimum lengths of
superelevation runoff for limiting values of superelevation and side friction are shown in
Exhibit 3-41. The formula for length of superelevation runoff is based on revolving the traveled
way about the centerline of the street. On flat grades, revolving the traveled way about the
centerline may result in low spots on the inner edge of the traveled way. To avoid this condition,
the traveled way should be revolved about the inside edge and the length of superelevation runoff
shown on Exhibit 3-41 should be doubled.

Minimum Radii and Minimum Lengths of Superelevation Runoff for Limiting
Values of e and f

Exhibit 3-41 presents the minimum radii for three rates of superelevation: 0.0, 4.0, and
6.0 percent. The 6.0 percent rate is considered to be the desirable maximum superelevation for
low-speed urban street design. In addition, the exhibit contains the minimum lengths of
superelevation runoff for each superelevation rate. From this table, the minimum desirable
tangent length between two reversing curves of minimum radii can be calculated. The
superelevation rate of zero is included in the exhibit because an intervening length of tangent is
needed between reversing curves even if neither is superelevated. As stated previously, the
portion of the maximum superelevation provided at the PC and PT of the curves can range
between 60 and 90 percent. The sum of the superelevation runoff lengths outside the PC or PT of
the curves is the minimum intervening length of tangent.

Curvature of Turning Roadways and Curvature at Intersections

Curvature for through roads and streets has been discussed previously. Curvature of turning
roadways and curvature at high-speed intersections are special cases discussed in the following
four sections.

Minimum Radius for Turning Speed

As further discussed in Chapter 9, vehicles turning at intersections designed for minimum-
radius turns have to operate at low speed, perhaps less than 15 km/h [10 mph]. While it is
desirable and often practical to design for turning vehicles operating at higher speeds, it is often
appropriate for safety and economy to use lower turning speeds at most intersections. The speeds
for which these intersection curves should be designed depend on vehicle speeds on the approach
highways, the type of intersection, and the volumes of through and turning traffic. Generally, a
desirable turning speed for design is the average running speed of traffic on the highway
approaching the turn. Designs at such speeds offer little hindrance to smooth flow of traffic and
may be justified for some interchange ramps or, at intersections, for certain movements involving
little or no conflict with pedestrians or other vehicular traffic.
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Curves at intersections need not be considered in the same category as curves on the open
highways because the various warnings provided and the anticipation of more critical conditions
at an intersection permit the use of less liberal design factors. Drivers generally operate at higher
speeds in relation to the radii on intersection curves than on open highway curves. This increased
speed is accomplished by the drivers’ acceptance and use of higher side friction factors in
operating on curves at intersections than the side friction factors accepted and used on the
high-speed highways.

Several studies (26, 27, 28) have been conducted to determine lateral vehicle placement and
distribution of speeds on intersection curves. Results of these studies pertinent to speed-curvature
relationships are plotted in Exhibit 3-42. In the analyses of these data the 95-percentile speed of
traffic was assumed to be that closely representing the design speed, which generally corresponds
to the speed adopted by the faster group of drivers. Side friction factors (taking superelevation
into account) actually developed by drivers negotiating the curves at the 95-percentile speed are
indicated for 34 locations in Exhibit 3-42. The dashed line at the upper left shows the side friction
factors used for design of curves on rural highways and high-speed urban streets (Exhibit 3-13).
Use of this control limit for high speeds, and a friction factor of about 0.5 that could be developed
at a low speed as the other limit, gives an average or representative curve through the plottings of
individual observations—a relation between design (95-percentile ) speed and side friction factor
that is considered appropriate for rural and high-speed urban curve design for at-grade
intersections.

With this relation established and with logical assumptions for the superelevation rate that
can be developed on intersection curves, minimum radii for various design speeds are derived
from the simplified curve formula (see Equation (3-9) in the preceding section on “Theoretical
Considerations”). Obviously, different rates of superelevation would produce somewhat different
radii for a given design speed and side friction factor. For design of intersection curves it is
desirable to establish a single minimum radius for each design speed. This is done by assuming a
likely minimum rate of superelevation (a conservative value) that can nearly always be obtained
for certain radii. If more superelevation than this minimum is actually provided, drivers will
either be able to drive the curves a little faster or drive them more comfortably because of less
friction.

In selecting a minimum rate of superelevation it is recognized that the sharper the curve the
shorter its length and the less of an opportunity for developing a large rate of superelevation. This
condition applies particularly to intersections where the turning roadway is often close to the
intersection proper, where much of its area is adjacent to the through traveled way, and where the
complete turn is made through a total angle of about 90 degrees. Assuming the more critical
conditions and considering the lengths likely to be available for developing superelevation on
curves of various radii, the minimum rate of superelevation for derivation purposes is taken as
that varying from zero at 15 km/h to 9.0 percent at 70 km/h [zero at 10 mph to 10.0 percent at
45 mph]. By using these rates and the side friction factors of Exhibit 3-42 in the simplified curve
formula, the minimum radii for intersection curves for operation at design speed are derived as
shown in Exhibit 3-43.
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Exhibit 3-42.  Relation Between Speed and Side Friction Factor on Curves at
Intersections



Elements of Design

201

Metric
Design (turning) speed,
V (km/h)

15 20 30 40 50 60 70

Side friction factor, f 0.40 0.35 0.28 0.23 0.19 0.17 0.15
Assumed minimum
superelevation,
e/100

0.00 0.00 0.02 0.04 0.06 0.08 0.09

Total e/100 + f 0.40 0.35 0.30 0.27 0.25 0.25 0.24
Calculated minimum
radius, R (m)

5 9 24 47 79 113 161

Suggested minimum
radius curve for design
(m)

7 10 25 50 80 115 160

Average running speed
(km/h) 15 20 28 35 42 51 57

Note:  For design speeds greater than 70 km/h, use values for open highway conditions.
US Customary

Design (turning) speed,
V (mph)

10 15 20 25 30 35 40 45

Side friction factor, f 0.38 0.32 0.27 0.23 0.20 0.18 0.16 0.15
Assumed minimum
superelevation,
e/100

0.00 0.00 0.02 0.04 0.06 0.08 0.09 0.10

Total e/100 + f 0.38 0.32 0.29 0.27 0.26 0.26 0.25 0.25
Calculated minimum
radius, R (ft)

18 47 92 154 231 314 426 540

Suggested minimum
radius curve for design
(ft)

25 50 90 150 230 310 430 540

Average running speed
(mph)

10 14 18 22 26 30 34 36

Note:  For design speeds greater than 45 mph, use values for open highway conditions.

Exhibit 3-43.  Minimum Radii for Intersection Curves

The minimum radii of Exhibit 3-43 are represented by the solid line at the left in
Exhibit 3-44. The solid line at the upper right shows the relation between design speed and
minimum radius for open highway conditions, as derived with e values shown at the upper left.
The joining of the two lines indicates that open-highway conditions on intersection curves are
approached when the curvature is sufficiently flat to permit operation between 60 and 80 km/h
[40 and 50 mph]. Thus, in design of intersection curves for design speeds of above 70 km/h
[45 mph], open highway conditions should be assumed and the design based on Exhibit 3-21 to
3-25. The square points in Exhibit 3-44 are the observed 95-percentile speeds from the same
studies represented in Exhibit 3-42 for the locations where more than 50 vehicles were sampled.
The plotted line fits these points closely, indicating further that the assumptions made in the
derivation of minimum radii in Exhibit 3-44 are appropriate and that a group of the higher speed
drivers will use the design speed assumed.

In addition to the design speed, the average running speed is also used in consideration of
certain elements of intersection design. The points indicated by crosses in Exhibit 3-44 are actual
average speeds observed on the same intersection curves referred to. The long dashed line
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through these points is assumed to represent the average running speed for intersection curves. At
the right this curve crosses the short dashed line, which indicates the average speed for open
highways. For a given design speed on the solid (upper) curve in Exhibit 3-44, the assumed
running speed lies vertically below on the dashed curve. These running speeds are shown in the
last line of Exhibit 3-43.

Exhibit 3-44.  Minimum Radii for Curves at Intersections
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The minimum radii established above should be used for design preferably on the inner edge
of the traveled way rather than on the middle of the vehicle path or the centerline of the traveled
way. In all cases, as much superelevation as practical up to the appropriate maximum value
should be developed. For the suggested radii shown in Exhibit 3-43, a superelevation rate of at
least 8.0 percent is desirable  at all locations, and a rate of 8.0 to 10.0 percent for locations where
snow or ice is not a factor. On those intersection legs where all traffic comes to a stop, as at stop
signs, a lesser amount of superelevation is usually appropriate. Also where large trucks will be
using an intersection, use of superelevation may need to be limited because these larger trucks
may have trouble negotiating intersection curves with superelevation. This is particularly true
where trucks cross over from a roadway or ramp sloping in one direction to one sloping the other
way. Where there are a significant number of large trucks for each design speed, flatter curves
and less superelevation should be provided. Superelevation for curves at intersections is further
discussed under that heading in Chapter 9.

Transitions and Compound Curves

Drivers turning at intersections and at interchange ramp terminals naturally follow
transitional travel paths just as they do at higher speeds on the open highway. If facilities are not
provided for driving in this natural manner, many drivers may deviate from the intended path and
develop their own transition, sometimes to the extent of encroaching on other lanes or on the
shoulder. Natural travel paths can best be provided by the use of transition or spiral curves that
may be inserted between a tangent and a circular arc or between two circular arcs of different
radii. Practical designs that follow transitional paths may also be developed by the use of
compound circular curves. Transitioned roadways have the added advantage of providing a
practical means for changing from a normal to a superelevated cross section.

Length of Spiral

Lengths of spirals for use at intersections are determined in the same manner as they are for
open highways. On intersection curves, lengths of spirals may be shorter than they are on the
open highway curves, because drivers accept a more rapid change in direction of travel under
intersection conditions. In other words, C (the rate of change of lateral acceleration on
intersection curves) may be higher on intersection curves than on open highway curves, where
values of C ranging from 0.3 to 1.0 m/s3 [1 to 3 ft/sec3] generally are accepted. Rates for curves at
intersections are assumed to vary from 0.75 m/s3 [2.5 ft/s3] for a turnout speed of 80 km/h
[50 mph] to 1.2 m/s3 [4.0 ft/s3] for 30 km/h [20 mph]. With the use of these values in the Shortt
formula (25), lengths of spirals for intersection curves are developed in Exhibit 3-45. The
minimum lengths of spirals shown are for minimum-radius curves as governed by the design
speed. Somewhat lesser spiral lengths are suitable for above-minimum radii.



Metric US Customary
Design speed (km/h) 30 40 50 60 70 (mph) 20 25 30 35 40 45
Minimum radius (m) 25 50 80 125 160 (ft) 90 150 230 310 430 550
Assumed C (m/s3) 1.2 1.1 1.0 0.9 0.8 (ft/s3) 4.0 3.75 3.5 3.25 3.0 2.75
Calculated length of spiral (m) 19 25 33 41 57 (ft) 70 87 105 134 156 190
Suggested minimum
length of spiral (m) 20 25 35 45 60 (ft) 70 90 110 130 160 200

Exhibit 3-45.  Minimum Lengths of Spiral for Intersection Curves
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Spirals also may be advantageous between two circular arcs of widely different radii. In this
case, the length of spiral can be obtained from Exhibit 3-45 by using a radius that is the difference
in the radii of the two arcs. For example, two curves to be connected by a spiral have radii of
250 and 80 m [820 to 262 ft]. This difference of 170 m [558 ft] is very close to the minimum
radius of 160 m [550 ft] in Exhibit 3-45 for which the suggested minimum length is about 60 m
[200 ft].

Compound curves at intersections for which the radius of one curve is more than twice the
radius of the other should have either a spiral or a circular curve of intermediate radius inserted
between the two. If, in such instances, the calculated length of spiral is less than 30 m [100 ft], it
is suggested that a length of at least 30 m [100 ft] be used.

Compound Circular Curves

Compound circular curves are advantageous in effecting desirable shapes of turning
roadways for at-grade intersections and for interchange ramps. Where circular arcs of widely
different radii are joined, however, the alignment appears abrupt or forced, and the travel paths of
vehicles need considerable steering effort.

On compound curves for open highways, it is generally accepted that the ratio of the flatter
radius to the sharper radius should not exceed 1.5:1. For compound curves at intersections where
drivers accept more rapid changes in direction and speed, the radius of the flatter arc can be as
much as 100 percent greater than the radius of the sharper arc, a ratio of 2:1. The ratio of 2:1 for
the sharper curves used at intersections results in approximately the same difference (about
10 km/h [6 mph]) in average running speeds for the two curves. These curves are compounded as
for a ratio of 1.5:1 on the flatter curves used on the open highway. General observations on ramps
having differences in radii with a ratio of 2:1 indicate that both operation and appearance
normally are satisfactory.

Where practical, a smaller difference in radii should be used. A desirable maximum ratio is
1.75:1. Where the ratio is greater than 2:1, a suitable length of spiral or a circular arc of
intermediate radius should be inserted between the two curves. In the case of very sharp curves
designed to accommodate minimum turning paths of vehicles, it is not practical to apply this ratio
control. In this case, compound curves should be developed that fit closely to the path of the
design vehicle to be accommodated, for which higher ratios may be needed as shown in
Chapter 9.

Curves that are compounded should not be too short or their effectiveness in enabling
smooth transitions from tangent or flat-curve to sharp-curve operation may be lost. In a series of
curves of decreasing radii, each curve should be long enough to enable the driver to decelerate at
a reasonable rate, which at intersections is assumed to be not more than 5 km/h/s [3 mph/s],
although 3 km/h/s [2 mph/s] is desirable. Minimum curve lengths that meet these criteria based
on the running speeds shown in Exhibit 3-44, are indicated in Exhibit 3-46. They are based on a
deceleration of 5 km/h/s [3 mph/s], and a desirable minimum deceleration of 3 km/h/s [2 mph/s].
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The latter deceleration rate indicates very light braking, because deceleration in gear alone
generally results in overall rates between 1.5 and 2.5 km/h/s [1 and 1.5 mph/s].

Metric US Customary

Length of circular arc (m) Length of circular arc (ft)

Radius (m) Minimum Desirable Radius (ft) Minimum Desirable
30 12 20 100 40 60
50 15 20 150 50 70
60 20 30 200 60 90
75 25 35 250 80 120

100 30 45 300 100 140
125 35 55 400 120 180

150 or more 45 60 500 or more 140 200

Exhibit 3-46.  Length of Circular Arc for a Compound Intersection Curve When Followed
by a Curve of One-Half Radius or Preceded by a Curve of Double Radius

These design guidelines for compound curves are developed on the premise that travel is in
the direction of sharper curvature. For the acceleration condition, the 2:1 ratio is not as critical
and may be exceeded.

Offtracking

Offtracking is the characteristic, common to all vehicles, although much more pronounced
with the larger design vehicles, in which the rear wheels do not follow precisely the same path as
the front wheels when the vehicle negotiates a horizontal curve or makes a turn. When a vehicle
traverses a curve without superelevation at low speed, the rear wheels track inside the front
wheels. When a vehicle traverses a superelevated curve, the rear wheels may track inside the
front wheels more or less than the amount computed on the above basis. This is because of the
slip angle assumed by the tires with respect to the direction of travel, which results from the side
friction developed between the pavement and rolling tires. The relative position of the wheel
tracks depends on the speed and the amount of friction developed to sustain the lateral force not
sustained by superelevation or, when traveling slowly, by the friction developed to counteract the
effect of superelevation not compensated by lateral force. At higher speeds, the rear wheels may
even track outside the front wheels.

Derivation of Design Values for Widening on Horizontal Curves

In each case, the amount of offtracking, and therefore the amount of widening needed on
horizontal curves, depends jointly on the length and other characteristics of the design vehicle and
the radius of curvature negotiated. Selection of the design vehicle is based on the size and
frequency of the various vehicle types at the location in question. The amount of widening needed
increases with the size of the design vehicle (for single-unit vehicles or vehicles with the same
number of trailers or semitrailers) and decreases with increasing radius of curvature. The width
elements of the design vehicle used in determining the appropriate roadway widening on curves
include the track width of the design vehicles that may meet or pass on the curve, U; the lateral
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clearance per vehicle, C; the width of front overhang of the vehicle occupying the inner lane or
lanes, FA; the width of rear overhang, FB; and a width allowance for the difficulty of driving on
curves, Z.

The track width (U) for a vehicle following a curve or making a turn, also known as the
swept path width, is the sum of the track width on tangent (u) (2.44 or 2.59 m [8.0 or 8.5 ft]
depending on the design vehicle) and the amount of offtracking. The offtracking depends on the
radius of the curve or turn, the number and location of articulation points, and the lengths of the
wheelbases between axles. The track width on a curve (U) is calculated using the equation:

Metric US Customary

∑−−+= 22
iLRRuU ∑−−+= 22

iLRRuU ( 3-35 )

where:

U = track width on curve, m;
u = track width on tangent (out-

to-out of tires), m;
R = radius of curve or turn, m;

and
Li = wheelbase of design vehicle

between consecutive axles
(or sets of tandem axles)
and articulation points, m.

where:

U = track width on curve, ft;
u = track width on tangent (out-

to-out of tires), ft;
R = radius of curve or turn, ft;

and
Li = wheelbase of design vehicle

between consecutive axles
(or sets of tandem axles)
and articulation points, ft.

This equation can be used for any combination of radius and number and length of
wheelbases. The radius for open highway curves is the path of the midpoint of the front axle;
however, for most design purposes on two-lane highways, the radius of the curve at the centerline
of the highway may be used for simplicity of calculations. For turning roadways, the radius is the
path of the outer front wheel (31). The wheelbases (Li) used in the calculations include the
distances between each axle and articulation point on the vehicle. For a single-unit truck only the
distance between the front axle and the drive wheels is considered. For an articulated vehicle,
each of the articulation points is used to determine U. For example, a tractor/semitrailer
combination truck has three Li values that are considered in determining offtracking: (1) the
distance from the front axle to the tractor drive axle(s), (2) the distance from the drive axle(s) to
the fifth wheel pivot, and (3) the distance from the fifth wheel pivot to the rear axle(s). In the
summation process, some terms may be negative, rather than positive, if the articulation point is
in front of, rather than behind, the drive axle(s) (29) or if there is a rear-axle overhang. Rear-axle
overhang is the distance between the rear axle(s) and the pintle hook of a towing vehicle (30) in a
multi-trailer combination truck. Representative values for the track width of design vehicles are
shown in Exhibit 3-47 to illustrate the differences in relative widths between groups of design
vehicles.

The lateral clearance allowance, C, provides for the clearance between the edge of the
traveled way and nearest wheel path and for the body clearance between vehicles passing or
meeting. Lateral clearance per vehicle is assumed to be 0.6, 0.75, and 0.9 m [2.0, 2.5, and 3.0 ft]
for tangent lane widths , Wn, equal to 6.0, 6.6, and 7.2 m [20, 22, and 24 ft], respectively.
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Exhibit 3-47.  Track Width for Widening of Traveled Way on Curves
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The width of the front overhang (FA) is the radial distance between the outer edge of the tire
path of the outer front wheel and the path of the outer front edge of the vehicle body. For curves
and turning roadways, FA depends on the radius of the curve, the extent of the front overhang of
the design vehicle, and the wheelbase of the unit itself. In the case of tractor-trailer combinations,
only the wheelbase of the tractor unit is used. Exhibit 3-48 illustrates relative overhang width
values for FA determined from:

Metric US Customary

RALARFA −++= )2(2 RALARFA −++= )2(2 ( 3-36 )

where:

A = front overhang of inner
lane vehicle, m;

L = wheelbase of single unit
or tractor, m.

where:

A = front overhang of inner
lane vehicle, ft;

L = wheelbase of single unit
or tractor, ft.

The width of the rear overhang (FB) is the radial distance between the outer edge of the tire
path of the inner rear wheel and the inside edge of the vehicle body. For the passenger car (P)
design vehicle, the width of the body is 0.3 m [1 ft] greater than the width of out-to-out width of
the rear wheels, making FB = 0.15 m [0.5 ft]. In the truck design vehicles, the width of body is the
same as the width out-to-out of the rear wheels, and FB = 0.

The extra width allowance (Z) is an additional radial width of pavement to allow for the
difficulty of maneuvering on a curve and the variation in driver operation. This additional width
is an empirical value that varies with the speed of traffic and the radius of the curve. The
additional width allowance is expressed as:

Metric US Customary

( )RVZ 1.0= RVZ = ( 3-37 )

where:

V = design speed of the highway,
km/h.

where:

V = design speed of the highway,
mph.

This expression, used primarily for widening of the traveled way on open highways, is also
applicable to intersection curves. Exhibit 3-49 illustrates the computed values for Z for speeds
between 20 and 100 km/h [15 and 60 mph]. For the normal range of curve radii at intersections, Z
resolves into a nearly constant value of 0.6 m [2 ft] by using the speed-curvature relations in
Exhibit 3-44 for radii in the range of 15 to 150 m [50 to 500 ft]. This added width, as shown
diagrammatically in Exhibits 3-50 and 3-53, should be assumed to be evenly distributed over the
traveled way width to allow for the inaccuracy in steering on curved paths.
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Exhibit 3-48.  Front Overhang for Widening of Traveled Way on Curves
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Exhibit 3-49.  Extra Width Allowance for Difficulty of Driving on Traveled Way
on Curves
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Traveled Way Widening on Horizontal Curves

The traveled way on horizontal curves is sometimes widened to make operating conditions
on curves comparable to those on tangents. On earlier highways with narrow lanes and sharp
curves, there was considerable need for widening on curves, even though speeds were generally
low. On modern highways and streets with 3.6 m [12 ft] lanes and high-type alignment, the need
for widening has lessened considerably in spite of high speeds, but for some conditions of speed,
curvature, and width it remains appropriate to widen traveled ways.

Widening is needed on certain curves for one of the following reasons: (1) the design vehicle
occupies a greater width because the rear wheels generally track inside front wheels (offtracking)
in negotiating curves, or (2) drivers experience difficulty in steering their vehicles in the center of
the lane. The added width occupied by the vehicle as it traverses the curve as compared with the
width of the traveled way on tangent can be computed by geometry for any combination of radius
and wheelbase. The effect of variation in lateral placement of the rear wheels with respect to the
front wheels and the resultant difficulty of steering should be accommodated by widening on
curves, but the appropriate amount of widening cannot be determined as positively as that for
simple offtracking.

The amount of widening of the traveled way on a horizontal curve is the difference between
the width needed on the curve and the width used on a tangent:

Metric US Customary

nc WWw −= nc WWw −= ( 3-38 )

where:

w = widening of traveled way on
curve, m;

Wc = width of traveled way on
curve, m;

Wn = width of traveled way on
tangent, m

where:

w = widening of traveled way on
curve, ft;

Wc = width of traveled way on
curve, ft;

Wn = width of traveled way on
tangent, ft

The traveled way width needed on a curve (Wc) has several components related to operation
on curves, including: the track width of each vehicle meeting or passing, U; the lateral clearance
for each vehicle, C; width of front overhang of the vehicle occupying the inner lane or lanes, FA;
and a width allowance for the difficulty of driving on curves, Z. The application of these
components is illustrated in Exhibit 3-50. Each of these components is derived in the section on
“Derivation of Design Values for Widening on Horizontal Curves,” earlier in this chapter.

To determine width Wc, it is necessary to select an appropriate design vehicle. The design
vehicle should usually be a truck because offtracking is much greater for trucks than for
passenger cars. The WB-15 [WB-50] design vehicle is considered representative for two-lane
open-highway conditions. Other design vehicles may be selected however, when representative of
the actual traffic on a particular facility.
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Exhibit 3-50.  Widening Components on Open Highway Curves (Two-Lane Highways,
One-Way or Two-Way)
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The width Wc is calculated by the equation:

Metric US Customary

ZF1)(NC)N(UW Ac +−++= ZF1)(NC)N(UW Ac +−++= ( 3-39 )

where:

N = number of lanes;
U = track width of design vehicle

(out-to-out tires), m;
C = lateral clearance, m;
FA = width of front overhang of

inner-lane vehicle, m;
Z = extra width allowance, m

where:

N = number of lanes;
U = track width of design vehicle

(out-to-out tires), ft;
C = lateral clearance, ft;
FA = width of front overhang of

inner-lane vehicle, ft;
Z = extra width allowance, ft

The traveled way widening values for the assumed design condition for a WB-15 [WB-50]
vehicle on a two-lane highway are presented in Exhibit 3-51. The differences in track widths of
the SU, WB-12, WB-19, WB-20, WB-20D, WB-30T, and WB-33D [SU, WB-40, WB-62,
WB-65, WB-67D, WB-100T, and WB-109D] design trucks are substantial for the sharp curves
associated with intersections, but for open highways on which radii are usually larger than 200 m
[650 ft], with design speeds over 60 km/h [30 mph], the differences are insignificant (see
Exhibit 3-47). Where both sharper curves (as for a 50 km/h [30 mph] design speed) and large
truck combinations are prevalent, the derived widening values for the WB-15 [WB-50] truck
should be adjusted in accordance with Exhibit 3-52. The suggested increases of the tabular values
for two ranges of radius of curvature are general and will not necessarily result in a full lateral
clearance C or an extra width allowance Z, as shown in Exhibit 3-49 for the shorter radii. With
the lower speeds and volumes on roads with such curvature, however, slightly smaller clearances
may be tolerable.

Design Values for Traveled Way Widening

Widening is costly and very little is actually gained from a small amount of widening. It is
suggested that a minimum widening of 0.6 m [2.0 ft] be used and that lower values in
Exhibit 3-51 be disregarded. Note that the values in Exhibit 3-51 are for a WB-15 [WB-50]
design vehicle. For other design vehicles, an adjustment from Exhibit 3-52 should be applied.
Values in Exhibit 3-51 also are applicable to two-lane, one-way traveled ways (i.e., to each
roadway of a divided highway or street). Studies show that on tangent alignment somewhat
smaller clearances between vehicles are used in passing vehicles traveling in the same direction
as compared with meeting vehicles traveling in opposite directions. There is no evidence that
these smaller clearances are obtained on curved alignment on one-way roads. Moreover, drivers
are not in position to judge clearances as well when passing vehicles as when meeting opposing
vehicles on a curved two-way highway. For this reason and because all geometric elements on a
divided highway are generally well maintained, widening on a two-lane, one-way traveled way of
a divided highway should be the same as that on a two-lane, two-way highway, as noted in
Exhibit 3-51.



Metric
Roadway width = 7.2 m Roadway width = 6.6 m Roadway width = 6.0 m
Design Speed (km/h) Design Speed (km/h) Design Speed (km/h)

Radius
of curve

(m) 50 60 70 80 90 100 50 60 70 80 90 100 50 60 70 80 90 100
3000 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.5 0.6 0.6 0.6 0.6
2500 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.5 0.6 0.6 0.6 0.6 0.6
2000 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.3 0.3 0.3 0.4 0.6 0.6 0.6 0.6 0.6 0.7
1500 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.4 0.4 0.4 0.4 0.6 0.6 0.7 0.7 0.7 0.7
1000 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5 0.7 0.7 0.7 0.8 0.8 0.8

900 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.8 0.9
800 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9
700 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9 1.0
600 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 1.0 1.0
500 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1
400 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2
300 0.5 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.1 1.2 1.2 1.3 1.4 1.4
250 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 1.2 1.3 1.4 1.4 1.5
200 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.6
150 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.6 1.7 1.8 1.9 1.9
140 1.2 1.3 1.5 1.6 1.8 1.9
130 1.3 1.4 1.6 1.7 1.9 2.0
120 1.4 1.5 1.7 1.8 2.0 2.1
110 1.5 1.6 1.8 1.9 2.1 2.2
100 1.6 1.7 1.9 2.0 2.2 2.3
90 1.8 2.1 2.4
80 2.0 2.3 2.6
70 2.3 2.6 2.9

Notes: Values shown are for WB-15 design vehicle and represent widening in meters.  For other design vehicles, use
adjustments in Exhibit 3-52.
Values less than 0.6 m may be disregarded.
For 3-lane roadways, multiply above values by 1.5.
For 4-lane roadways, multiply above values by 2.

Exhibit 3-51.  Calculated and Design Values for Traveled Way Widening on Open Highway Curves (Two-Lane
Highways, One-Way or Two-Way)
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US Customary
Roadway width = 24 ft Roadway width = 22 ft Roadway width = 20 ft
Design Speed (mph) Design Speed (mph) Design Speed (mph)

Radius
of curve

(ft) 30 35 40 45 50 55 60 30 35 40 45 50 55 60 30 35 40 45 50 55 60
7000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 1.6 1.6 1.7 1.7 1.8 1.9 1.9
6500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.6 1.7 1.7 1.8 1.8 1.9 2.0
6000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.7 0.8 0.8 0.9 1.0 1.0 1.6 1.7 1.8 1.8 1.9 2.0 2.0
5500 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.7 1.7 1.8 1.9 1.9 2.0 2.1
5000 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.7 0.8 0.9 0.9 1.0 1.1 1.1 1.7 1.8 1.9 1.9 2.0 2.1 2.1
4500 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.8 0.8 0.9 1.0 1.1 1.1 1.2 1.8 1.8 1.9 2.0 2.1 2.1 2.2
4000 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.8 0.9 1.0 1.1 1.2 1.2 1.3 1.8 1.9 2.0 2.1 2.2 2.2 2.3
3500 0.0 0.0 0.1 0.2 0.3 0.3 0.4 0.9 1.0 1.1 1.2 1.3 1.3 1.4 1.9 2.0 2.1 2.2 2.3 2.3 2.4
3000 0.0 0.1 0.2 0.3 0.4 0.5 0.6 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6
2500 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.2 2.3 2.4 2.5 2.6 2.7 2.8
2000 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.4 1.5 1.6 1.7 1.8 2.0 2.1 2.4 2.5 2.6 2.7 2.8 3.0 3.1
1800 0.5 0.6 0.8 0.9 1.0 1.1 1.2 1.5 1.6 1.8 1.9 2.0 2.1 2.2 2.5 2.6 2.8 2.9 3.0 3.1 3.2
1600 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.7 1.8 1.9 2.0 2.2 2.3 2.4 2.7 2.8 2.9 3.0 3.2 3.3 3.4
1400 0.8 1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.2 2.4 2.5 2.6 2.8 3.0 3.1 3.2 3.4 3.5 3.6
1200 1.1 1.2 1.4 1.5 1.7 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8 2.9 3.1 3.2 3.4 3.5 3.7 3.8 3.9
1000 1.4 1.6 1.7 1.9 2.0 2.2 2.4 2.4 2.6 2.7 2.9 3.0 3.2 3.4 3.4 3.6 3.7 3.9 4.0 4.2 4.4

900 1.6 1.8 2.0 2.1 2.3 2.5 2.6 2.8 3.0 3.1 3.3 3.5 3.6 3.8 4.0 4.1 4.3 4.5
800 1.9 2.1 2.2 2.4 2.6 2.8 2.9 3.1 3.2 3.4 3.6 3.8 3.9 4.1 4.2 4.4 4.6 4.8
700 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
600 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
500 3.3 3.5 3.7 3.9 4.3 4.5 4.7 4.9 5.3 5.5 5.7 5.9
450 3.7 3.9 4.1 4.7 4.9 5.1 5.7 5.9 6.1
400 4.2 4.4 4.7 5.2 5.4 5.7 6.2 6.4 6.7
350 4.8 5.1 5.3 5.8 6.1 6.3 6.8 7.1 7.3
300 5.6 5.9 6.6 6.9 7.6 7.9
250 6.8 7.8 8.8
200 8.5 9.5 10.5

Notes: Values shown are for WB-50 design vehicle and represent widening in feet.  For other design vehicles, use adjustments in Exhibit 3-52.
Values less than 2.0 ft may be disregarded.
For 3-lane roadways, multiply above values by 1.5.
For 4-lane roadways, multiply above values by 2.

Exhibit 3-51.  Calculated and Design Values for Traveled Way Widening on Open Highway Curves (Two-Lane Highways, One-Way or
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Metric US Customary
Design vehicle Design vehicleRadius

of
curve
(m) SU WB-12 WB-19 WB-20 WB-20D WB-30T WB-33D

Radius
of

curve
(ft) SU WB-40 WB-62 WB-65 WB-67D WB-100T WB-109D

3000 -0.3 -0.3 0.0 0.0 0.0 0.0 0.1 7000 -1.1 -1.1 0.1 0.1 0.0 0.0 0.3
2500 -0.3 -0.3 0.0 0.0 0.0 0.0 0.1 6500 -1.1 -1.1 0.1 0.1 0.0 0.1 0.3
2000 -0.3 -0.3 0.0 0.0 0.0 0.0 0.1 6000 -1.2 -1.1 0.1 0.2 0.0 0.1 0.3
1500 -0.4 -0.3 0.0 0.1 0.0 0.0 0.1 5500 -1.2 -1.1 0.1 0.2 0.0 0.1 0.4
1000 -0.4 -0.4 0.1 0.1 0.0 0.0 0.2 5000 -1.2 -1.1 0.1 0.2 0.0 0.1 0.4

900 -0.4 -0.4 0.1 0.1 0.0 0.0 0.2 4500 -1.2 -1.1 0.1 0.2 0.0 0.1 0.5
800 -0.4 -0.4 0.1 0.1 0.0 0.0 0.2 4000 -1.2 -1.2 0.2 0.2 -0.1 0.1 0.5
700 -0.4 -0.4 0.1 0.1 0.0 0.0 0.3 3500 -1.3 -1.2 0.2 0.3 -0.1 0.1 0.6
600 -0.5 -0.4 0.1 0.1 0.0 0.1 0.3 3000 -1.3 -1.2 0.2 0.3 -0.1 0.1 0.7
500 -0.5 -0.4 0.1 0.2 0.0 0.1 0.4 2500 -1.4 -1.2 0.3 0.4 -0.1 0.1 0.8
400 -0.5 -0.4 0.2 0.2 0.0 0.1 0.5 2000 -1.5 -1.3 0.3 0.5 -0.1 0.2 1.0
300 -0.6 -0.5 0.2 0.3 -0.1 0.1 0.6 1800 -1.5 -1.3 0.4 0.5 -0.1 0.2 1.1
250 -0.7 -0.5 0.2 0.3 -0.1 0.1 0.8 1600 -1.6 -1.4 0.4 0.6 -0.1 0.2 1.3
200 -0.8 -0.6 0.3 0.4 -0.1 0.2 1.0 1400 -1.7 -1.4 0.5 0.6 -0.2 0.2 1.5
150 -0.9 -0.7 0.4 0.6 -0.1 0.2 1.3 1200 -1.8 -1.5 0.5 0.8 -0.2 0.3 1.7
140 -0.9 -0.7 0.4 0.6 -0.1 0.2 1.4 1000 -2.0 -1.6 0.6 0.9 -0.2 0.3 2.0
130 -1.0 -0.7 0.5 0.6 -0.2 0.2 1.5 900 -2.1 -1.7 0.7 1.0 -0.2 0.4 2.3
120 -1.1 -0.8 0.5 0.7 -0.2 0.3 1.6 800 -2.2 -1.8 0.8 1.1 -0.3 0.4 2.6
110 -1.1 -0.8 0.6 0.8 -0.2 0.3 1.7 700 -2.4 -1.9 0.9 1.3 -0.3 0.5 2.9
100 -1.2 -0.9 0.6 0.8 -0.2 0.3 1.9 600 -2.6 -2.0 1.1 1.5 -0.4 0.6 3.4

90 -1.3 -0.9 0.7 0.9 -0.2 0.3 2.1 500 -2.9 -2.2 1.3 1.8 -0.4 0.7 4.1
80 -1.4 -1.0 0.8 1.1 -0.2 0.4 2.4 450 -3.2 -2.4 1.4 2.0 -0.5 0.7 4.6
70 -1.6 -1.1 0.9 1.2 -0.3 0.5 2.8 400 -3.4 -2.5 1.6 2.3 -0.5 0.8 5.1

350 -3.8 -2.8 1.9 2.6 -0.6 1.0 5.9
300 -4.3 -3.0 2.2 3.0 -0.7 1.1 6.9
250 -4.9 -3.5 2.6 3.7 -0.9 1.4 8.3
200 -5.9 -4.1 3.3 4.6 -1.1 1.7 10.5

Notes:  Adjustments are applied by adding to or subtracting from the values in Exhibit 3-51.
Adjustments depend only on radius and design vehicle; they are independent of roadway width and design speed.
For 3-lane roadways, multiply above values by 1.5.
For 4-lane roadways, multiply above values by 2.0.

Exhibit 3-52.  Adjustments for Traveled Way Widening Values on Open Highway Curves (Two-Lane Highways,
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On four-lane undivided highways or streets the widening of the traveled way should be
double the design values indicated in Exhibit 3-51. This means that some values below 0.6 m
[2 ft] in Exhibit 3-51, which were disregarded for two-lane highways, may now be used because,
when doubled for undivided four-lane highways, they will be greater than the minimum.

The above values are applicable to open-highway curves. For intersection conditions, with
generally smaller radii on turning roadways, the criteria for design widths are somewhat different.
These criteria are presented in the section “Widths for Turning Roadways at Intersections” in this
chapter, and design values are given in Exhibit 3-53.

Application of Widening on Curves

Widening should transition gradually on the approaches to the curve to ensure a reasonably
smooth alignment of the edge of the traveled way and to fit the paths of vehicles entering or
leaving the curve. The principal points of concern in the design of curve widening, which apply to
both ends of highway curves, are presented below:

• On simple (unspiraled) curves, widening should be applied on the inside edge of the
traveled way only. On curves designed with spirals, widening may be applied on the
inside edge or divided equally on either side of the centerline. In the latter method,
extension of the outer-edge tangent avoids a slight reverse curve on the outer edge. In
either case, the final marked centerline, and desirably any central longitudinal joint,
should be placed midway between the edges of the widened traveled way.

• Curve widening should transition gradually over a length sufficient to make the whole
of the traveled way fully usable. Although a long transition is desirable for traffic
operation, it may result in narrow pavement slivers that are difficult and expensive to
construct. Preferably, widening should transition over the superelevation runoff length,
but shorter lengths are sometimes used. Changes in width normally should be effected
over a distance of 30 to 60 m [100 to 200 ft].

• From the standpoints of usefulness and appearance, the edge of the traveled way
through the widening transition should be a smooth, graceful curve. A tangent transition
edge should be avoided. On minor highways or in cases where plan details are not
available, a curved transition staked by eye generally is satisfactory and better than a
tangent transition. In any event, the transition ends should avoid an angular break at the
pavement edge.

• On highway alignment without spirals, smooth and fitting alignment results from
attaining widening with one-half to two-thirds of the transition length along the tangent
and the balance along the curve. This is consistent with a common method for attaining
superelevation. The inside edge of the traveled way may be designed as a modified
spiral, with control points determined by the width/length ratio of a triangular wedge,
by calculated values based on a parabolic or cubic curve, or by a larger radius
(compound) curve. Otherwise, it may be aligned by eye in the field. On highway
alignment with spiral curves, the increase in width is usually distributed along the
length of the spiral.
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Exhibit 3-53.  Derivation of Turning Roadway Widths on Curves at Intersections
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• Widening areas can be fully detailed on construction plans. Alternatively, general
controls can be cited on construction or standard plans with final details left to the field
engineer.

Widths for Turning Roadways at Intersections

The widths of turning roadways at intersections are governed by the types of vehicles to be
accommodated, the radius of curvature, and the expected speed. Turning roadways may be
designed for one- or two-way operation, depending on the geometric pattern of the intersection.

Selection of an appropriate design vehicle should be based on the size and frequency of
vehicle types using or expected to use the facility. The radius of curvature in combination with
the track width of the design vehicle determine the width of a turning roadway. The width
elements for the turning vehicle, shown diagrammatically in Exhibit 3-53, are explained in the
section on “Derivation of Design Values for Widening on Horizontal Curves,” presented earlier
in this chapter. They ignore the effects of insufficient superelevation and of surfaces with low
friction resistance that tend to cause the rear wheels of vehicles traveling at other than low speed
to swing outward, developing the appropriate slip angles.

Turning roadways are classified for operational purposes as one-lane operation, with or
without opportunity for passing a stalled vehicle , and two- lane operation, either one-way or
two-way. Three cases are commonly considered in design:

Case I—One-lane, one-way operation with no provision for passing a stalled vehicle is
usually appropriate for minor turning movements and moderate turning volumes where the
connecting roadway is relatively short. Under these conditions, the chance of a vehicle
breakdown is remote but one of the edges of the traveled way should preferably have a sloping
curb or be flush with the shoulder.

Case II—One-lane, one-way operation with provision for passing a stalled vehicle is used to
allow operation at low speed and with sufficient clearance so that other vehicles can pass a stalled
vehicle. These widths are applicable to all turning movements of moderate to heavy traffic
volumes that do not exceed the capacity of a single-lane connection. In the event of a breakdown,
traffic flow can be maintained at a somewhat reduced speed. Many ramps and connections at
channelized intersections are in this category. However, for Case II, the widths needed for the
longer vehicles are very large as shown in Exhibit 3-54. Case I widths for these longer vehicles,
including the WB-19, WB-20, WB-30T, and WB-33D [WB-62, WB-65, WB-100T, and WB-
109D] design vehicles, may have to be used as the minimum values where they are present in
sufficient numbers to be considered the appropriate design vehicle.

Case III—Two-lane operation, either one- or two-way, is applicable where operation is two
way or where operation is one way, but two lanes are needed to handle the traffic volume.
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Exhibit 3-54.  Derived Pavement Widths for Turning Roadways for Different Design Vehicles (Continued)

222 A
A

SH
TO

—
G

eom
etric D

esign of H
ighw

ays and Streets



Elements of Design

223

Design Values

The total width, W, for separate turning roadways at intersections is derived by the
summation of the proper width elements. The separate formulas for width and values for lateral
clearance, C, and the allowance for difficulty of driving on curves, Z, for each case are shown in
Exhibit 3-53. Values for track width, U, are obtained from Exhibit 3-47 and values for front
overhang, FA , from Exhibit 3-48. Values of U and FA are read from the exhibit for the turning
radius, RT, which is closely approximated by adding the track width and proper clearances to the
radius of the inner edge of the turning roadway.

When determining the width for Case I, a lateral clearance, C, of 1.2 m [4 ft] is considered
appropriate. The allowance for difficulty of driving curves, Z, is constant, equal to about 0.6 m
[2 ft] for all radii of 150m [500 ft] or less. In this case, the front overhang, FA, need not be
considered because no passing of another vehicle is involved.

For Case II, the width involves U and C for the stopped vehicle and the U and C for the
passing vehicle. To this is added extra width for the front overhang, FA , of one vehicle and the
rear overhang, FB, (if any) of the other vehicle. The width of rear overhang for a passenger car is
considered to be 0.15 m [0.5 ft]. FB for truck design vehicles is 0. A total clearance of one-half
the value of C in the other two cases is assumed (i.e., 0.6 m [2 ft] for the stopped vehicle and
0.6 m [2 ft] for the passing vehicle). Because passing the stalled vehicle is accomplished at low
speeds, the extra width allowance, Z, is omitted.

All the width elements apply for Case III. To the values of U and FA obtained from
Exhibits 3-47 and 3-48, respectively, the lateral clearance, C, of 1.2 m [4 ft], FB of 0.15 m [0.5 ft]
for passenger cars, and Z of 0.6 m [2 ft] is added to determine the total width.

The derived widths for various radii for each design vehicle are given in Exhibit 3-54. For
general design use, the recommended widths given in Exhibit 3-54 seldom apply directly,
because the turning roadways usually accommodate more than one type of vehicle. Even
parkways designed primarily for P vehicles are used by buses and maintenance trucks. At the
other extreme, few if any public highways are designed to fully accommodate the WB-15
[WB-50] or longer design vehicles. Widths needed for some combination of separate design
vehicles become the practical design guide for intersection roadways. Such design widths are
given in Exhibit 3-55 for three logical conditions of mixed traffic, which are defined below.
However, where the larger design vehicles such as the WB-19 or WB-33D [WB-62 or WB-109D]
will be using a turning roadway or ramp, the facility should accommodate their turning paths for
at least the Case I condition. Therefore, Case I widths for the appropriate design vehicle and
radius shown in Exhibit 3-54 should be checked to determine whether they exceed widths shown
in Exhibit 3-55. If they do, consideration should be given to using the widths for Case I shown in
Exhibit 3-54 as the minimum widths for the turning roadway or ramp.

Traffic conditions for defining turning roadway widths are described in broad terms because
data concerning the traffic volume, or the percentage of the total volume, for each type of vehicle
are not available to define these traffic conditions with precision in relation to width.



Metric US Customary
Pavement width (m) Pavement width (ft)

Case I
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case II
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case III
Two-lane operation—

either one-way or
two-way

Case I
One-lane, one-way

operation—no
provision for passing

a stalled vehicle

Case II
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case III
Two-lane operation—

either one-way or
two-way

Design traffic conditions

Radius on
inner edge

of
pavement Design traffic conditions

Radius on
inner edge

of
pavement

R (m) A B C A B C A B C R (ft) A B C A B C A B C
15 5.4 5.5 7.0 6.0 7.8 9.2 9.4 11.0 13.6 50 18 18 23 20 26 30 31 36 45
25 4.8 5.0 5.8 5.6 6.9 7.9 8.6 9.7 11.1 75 16 17 20 19 23 27 29 33 38
30 4.5 4.9 5.5 5.5 6.7 7.6 8.4 9.4 10.6 100 15 16 18 18 22 25 28 31 35
50 4.2 4.6 5.0 5.3 6.3 7.0 7.9 8.8 9.5 150 14 15 17 18 21 23 26 29 32
75 3.9 4.5 4.8 5.2 6.1 6.7 7.7 8.5 8.9 200 13 15 16 17 20 22 26 28 30
100 3.9 4.5 4.8 5.2 5.9 6.5 7.6 8.3 8.7 300 13 15 15 17 20 22 25 28 29
125 3.9 4.5 4.8 5.1 5.9 6.4 7.6 8.2 8.5 400 13 15 15 17 19 21 25 27 28
150 3.6 4.5 4.5 5.1 5.8 6.4 7.5 8.2 8.4 500 12 15 15 17 19 21 25 27 28

Tangent 3.6 4.2 4.2 5.0 5.5 6.1 7.3 7.9 7.9 Tangent 12 14 14 17 18 20 24 26 26
Width modification regarding edge treatment Width modification regarding edge treatment

No stabilized
shoulder

None None None No stabilized
shoulder

None None None

Sloping curb None None None Sloping curb None None None
Vertical curb: Vertical curb:

one side Add 0.3 m None Add 0.3 m one side Add 1 ft None Add 1 ft
two sides Add 0.6 m Add 0.3 m Add 0.6 m two sides Add 2 ft Add 1 ft Add 2 ft

Stabilized
shoulder, one or
both sides

Lane width for
conditions B & C
on tangent may be
reduced to 3.6 m
where shoulder is
1.2 m or wider

Deduct shoulder
width; minimum
width as under
Case I

Deduct 0.6 where
shoulder is 1.2 m or
wider

Stabilized
shoulder, one or
both sides

Lane width for
conditions B & C
on tangent may be
reduced to 12 ft
where shoulder is
4 ft or wider

Deduct shoulder
width; minimum
pavement width
as under Case I

Deduct 2 ft where
shoulder is 4 ft or
wider

Note: A = predominantly P vehicles, but some consideration for SU trucks.
B = sufficient SU vehicles to govern design, but some consideration

for semitrailer combination trucks.
C = sufficient bus and combination-trucks to govern design.

Note: A = predominantly P vehicles, but some consideration for SU trucks.
B = sufficient SU vehicles to govern design, but some consideration for

semitrailer combination trucks.
C = sufficient bus and combination-trucks to govern design.

Exhibit 3-55. Design Widths of Pavements for Turning Roadways
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Traffic Condition A. This traffic condition consists predominantly of P vehicles, but some
consideration is also given to SU trucks; the values in Exhibit 3-55 are somewhat higher than
those for P vehicles in Exhibit 3-54.

Traffic Condition B. This traffic condition includes sufficient SU trucks to govern design,
but some consideration is also given to tractor-semitrailer combination trucks; values in Exhibit
3-55 for Cases I and III are those for SU vehicles in Exhibit 3-54. For Case II, values are reduced
as explained later in this section.

Traffic Condition C. This traffic condition includes sufficient tractor-semitrailer
combination trucks, WB-12 or WB-15 [WB-40 or WB-50], to govern design; the values in
Exhibit 3-55 for Cases I and III are those for the WB-12 [WB-40] truck in Exhibit 3-54. For
Case II, values are reduced.

In general, Traffic Condition A may be assumed to have a small volume of trucks or only an
occasional large truck; Traffic Condition B, a moderate volume of trucks (e.g., in the range of 5
to 10 percent of the total traffic); and Traffic Condition C, more and larger trucks.

In Exhibit 3-55, smaller vehicles in combination are assumed for deriving Case II widths
than for deriving Case III widths, because passing of stalled vehicles in the former is apt to be
very infrequent. Moreover, full offtracking need not be assumed for both the stalled and the
passing vehicles. Often the stalled vehicles can be drifted adjacent to the inner edge of roadway,
thereby providing additional clearance for the passing vehicle.

The design vehicles or combinations of different design vehicles used in determination of
values given in Exhibit 3-55 for the three traffic conditions, assuming full clearance for the design
vehicles indicated, are:

Metric US Customary

Design Traffic Condition Design Traffic Condition

Case A B C A B C
I P SU WB-12 P SU WB-40
II P-P P-SU SU-SU P-P P-SU SU-SU
III P-SU SU-SU WB-12-WB-12 P-SU SU-SU WB-40-WB-40

The combination of letters, such as P-SU for Case II, means that the design width in this
example allows a P design vehicle to pass a stalled SU design truck or vice versa. In assuming
full clearance, allowance was made for the values of C as discussed.

In negotiating roadways designed for smaller vehicles, larger vehicles will have less
clearance and will need to use lower speeds and will demand more caution and skill by drivers,
but there is a limit to the size of vehicles that can be operated on these narrower roadways. The
larger vehicles that can be operated on turning roadways of the widths shown in Exhibit 3-55, but
with partial clearance varying from about one-half the total values of C, as discussed for the
sharper curves, to nearly full values for the flatter curves, are:
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Metric US Customary

Case Design Traffic Condition Design Traffic Condition

A B C A B C
I WB-12 WB-12 WB-15 WB-40 WB-40 WB-50
II P-SU P-WB-12 SU-WB-12 P-SU P-WB-40 SU-WB-40
III SU-WB-12 WB-12-WB-12 WB-15-WB-15 SU-WB-40 WB-40-WB-40 WB-50-WB-50

The widths in Exhibit 3-55 are subject to some modification with respect to the treatment at
the edge, as shown at the bottom of the table. An occasional large vehicle can pass another on a
roadway designed for small vehicles if there is space and stability outside the roadway and there
is no barrier to prevent its occasional use. In such cases the width can be a little narrower than the
tabulated dimension. Vertical curbs along the edge of a lane give drivers a sense of restriction,
and occasional large vehicles have no additional space in which to maneuver; for this reason,
such roadways should be a little wider than the values shown in Exhibit 3-55.

When there is an adjacent stabilized shoulder, the widths for Cases II and III and under
certain conditions for Case I on roadways on tangent may be reduced. Case II values may be
reduced by the additional width of stabilized shoulder but not below the widths for Case I.
Similarly, Case III values may be reduced by 0.6 m [2 ft]. Case I values for the individual design
vehicles are recommended minimums and further reduction is not in order, even with a usable
shoulder, except on tangents. When vertical curbs are used on both sides, the tabulated widths
should be increased by 0.6 m [2 ft] for Cases I and III, or by 0.3 m [1 ft] for Case II, because
stalled vehicles are passed at low speed. Where such a curb is on only one side of the roadway,
the added width may be only 0.3 m [1 ft] for Cases I and III, and no added width is needed for
Case II.

The use of Exhibit 3-55 in design is illustrated by the following example. Assume that the
geometric layout and traffic volume for a specific turning movement are such that one-lane, one-
way operation with provision for passing a stalled vehicle is called for (Case II), and that the
traffic volume includes 10 to 12 percent trucks with an occasional large semitrailer combination
for which traffic condition C is deemed applicable. Then, with a radius of 50 m [165 ft] for the
inner edge of the traveled way, the width tabulated in Exhibit 3-55 is 7.0 m [23 ft]. With a 1.2-m
[4-ft] stabilized shoulder, the turning roadway width may be reduced to 5.8 [19 ft] (see lower part
of Exhibit 3-55). With a vertical curb on each side, the turning roadway width should be not less
than 7.3 m [24 ft].

Widths Outside Traveled Way

The roadway width for a turning roadway includes the shoulders or equivalent lateral
clearance outside the traveled way. Over the whole range of intersections, the appropriate
shoulder width varies from none, or minimal, on curbed urban streets to the width of an open-
highway cross section. The more general cases are discussed in the following paragraphs.
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Within a channelized intersection, shoulders for turning roadways are usually unnecessary.
The lanes may be defined by curbs, pavement markings, or islands. The islands may be curbed
and the general dimensional controls for islands provide the appropriate lateral clearances outside
the edges of the turning roadway. In most instances, the turning roadways are relatively short, and
shoulder sections are not needed for the temporary storage of vehicles. A discussion of island
dimensions can be found in Chapter 9.

Where there is a separate roadway for right turns, its left edge defines one side of the
triangular island. If the island is small or especially important in directing movements, it may be
defined by both curbs or pavement markings. On the other hand, where the turning radius is large,
the side of the island may be defined by guideposts, by delineators, or simply by pavement
markings and the edge of the pavement of the turning roadway. In any case, a developed left
shoulder is normally unnecessary. However, there should be either an offset, if curbs are used, or
a fairly level section of sufficient width on the left to avoid affecting the lateral placement of
vehicles.

A shoulder usually is provided on the right side of a right-turning roadway in rural areas. In
cross section and general treatment, the right shoulder should be essentially the same as the
shoulder of the adjacent open-highway section, possibly somewhat reduced in width because of
conditions at the intersections. Because turning vehicles have a tendency to encroach on the
shoulder, consideration should be given to providing heavy-duty right shoulders to accommodate
the associated wheel loads. Although a curb on the right side might be advantageous in reducing
maintenance operations that result from vehicles hugging the inside of the curve and causing edge
depressions or raveling, the introduction of curbing adjacent to high-speed highways should be
discouraged. For low-speed urban conditions, curbing of the right edge of a turning roadway is
normal practice. Curbs are discussed in greater detail in Chapter 4.

On large-scale channelized layouts and at interchanges, there may be turning roadways of
sufficient curvature and length to be well removed from other roadways. Such turning roadways
should have a shoulder on both sides. Curbs, when used, should be located at the outside edge of
the shoulder and should be sloping.

Some turning roadways, particularly ramps, pass over drainage structures, pass over or under
other roadways, or pass adjacent to walls or rock cuts on one or both sides. For such locations, the
minimum clearances for structures, as established in later chapters and in the current edition of
the AASHTO bridge specifications (31), apply directly. In addition, the design should be
evaluated for adequate sight distance, as the sharp curve may need above-minimum lateral
clearance.

Exhibit 3-56 is a summary of the range of design values for the general turning roadway
conditions described above. On roadways without curbs or with sloping curbs, the adjacent
shoulder should be of the same type and cross section as that on the approach highway. The
widths shown are for usable shoulders. Where roadside barriers are provided, the width indicated
should be measured to the face of the barrier, and the graded width should be about 0.6 m [2.0 ft]
greater. For other than low-volume conditions, it is desirable that right shoulders be surfaced,
surface treated, or otherwise stabilized for a width of 1.2 m [4.0 ft] or more.
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Metric US Customary
Shoulder width or lateral

clearance outside of traveled
way edge (m)

Shoulder width or lateral
clearance outside of traveled

way edge (ft)
Turning roadway

condition Left Right Left Right
Short length, usually
within channelized
intersection

0.6 to 1.2 0.6 to 1.2 2 to 4 2 to 4

Intermediate to long
length or in cut or on fill

1.2 to 3.0 1.8 to 3.6 4 to 10 6 to 12

Note:  All dimensions should be increased, where necessary, for sight distance.

Exhibit 3-56.  Range of Usable Shoulder Widths or Equivalent Lateral Clearances
Outside of Turning Roadways, Not on Structure

Sight Distance on Horizontal Curves

Another element of horizontal alignment is the sight distance across the inside of curves.
Where there are sight obstructions (such as walls, cut slopes, buildings, and longitudinal barriers)
on the inside of curves or the inside of the median lane on divided highways, a design may need
adjustment in the normal highway cross section or change in the alignment if removal of the
obstruction is impractical to provide adequate sight distance. Because of the many variables in
alignment, in cross section, and in the number, type, and location of potential obstructions,
specific study is usually needed for each individual curve. With sight distance for the design
speed as a control, the designer should check the actual conditions on each curve and make the
appropriate adjustments to provide adequate sight distance.

Stopping Sight Distance

For general use in design of a horizontal curve, the sight line is a chord of the curve, and the
stopping sight distance is measured along the centerline of the inside lane around the curve.
Exhibit 3-57 is a design chart showing the middle ordinates needed for clear sight areas that
satisfy stopping sight distance criteria presented in Exhibit 3-1 for horizontal curves of various
radii. Exhibit 3-57 includes radii for all superelevation rates to a maximum of 12 percent.

The middle-ordinate values in Exhibit 3-57 are derived from geometry for the several
dimensions, as indicated in the diagrammatic sketch in Exhibit 3-58 and in Equation (3-40). The
equation applies only to circular curves longer than the sight distance for the pertinent design
speed. The relationships between R, M, and V in this chart can be quickly checked. For example,
with an 80 km/h [50 mph] design speed and a curve with a 350 m [1,150 ft] radius, a clear sight
area with a middle ordinate of approximately 6.0 m [20 ft] is needed for stopping sight distance.
As another example, for a sight obstruction at a distance M equal to 6.0 m [20 ft] from the
centerline of theinside lane on a curve with a 175-m [575-ft] radius, the sight distance needed is
approximately at the upper end of the range for a speed of approximately 60 km/h [40 mph].
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Exhibit 3-57.  Design Controls for Stopping Sight Distance on Horizontal Curves
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Exhibit 3-57.  Design Controls for Stopping Sight Distance on Horizontal Curves
(Continued)
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Exhibit 3-58.  Diagram Illustrating Components for Determining Horizontal Sight Distance

Metric US Customary
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where:

S = Stopping sight distance, m;
R = Radius of curve, m;
M = Middle ordinate, m

where:

S = Stopping sight distance, ft;
R = Radius of curve, ft;
M = Middle ordinate, ft

Horizontal sight restrictions may occur where there is a cut slope on the inside of the curve.
For the 1,080-mm [3.5-ft] eye height and the 600-mm [2.0-ft] object height used for stopping
sight distance, a height of 840 mm [2.75 ft] may be used as the midpoint of the sight line where
the cut slope usually obstructs sight. This assumes that there is little or no vertical curvature. For
a highway with a 6.6-m [22-ft] traveled way, 1.2-m [4-ft] shoulders, an allowance of 1.2 m [4 ft]
for a ditch section, and 1V:2H (1 m or 1 ft vertically for each, 2 m or 2 ft horizontally) cut slopes,
the sight obstruction is about 5.75 m [19 ft] outside the centerline of the inside lane. This is
sufficient for adequate sight distance at 50 km/h [30 mph] when curves have a radius of about 90
m [275 ft] or more and at 80 km/h [50 mph] when curves have a radius of about 375 m [1,230 ft]
or more. Curves sharper than these would need flatter slopes, benching, or other adjustments. At
the other extreme, highways with normal lateral dimensions of more than 16 m [52 ft] provide
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adequate stopping sight distances for horizontal curves over the entire range of design speeds and
curves.

In some instances, retaining walls, concrete median safety barriers, and other similar features
constructed on the inside of curves may be sight obstructions and should be checked for stopping
sight distance. As an example, an obstruction of this type, located 1.2 m [4 ft] from the inside
edge of a 7.2-m [24-ft] traveled way, has a middle ordinate of about 3.0 m [10 ft]. At 80 km/h
[50 mph], this provides sufficient sight distance when a curve has a radius of about 700 m
[2,300 ft] or more. If the obstruction is moved an additional 0.3 m [1 ft] away from the roadway
creating a middle ordinate of 3.3 m [11 ft], a curve with a radius of 625 m [2,000 ft] or more
provides sufficient sight distance at the same 80 km/h [50 mph] speed. The same finding would
be applicable to existing buildings or similar sight obstructions on the inside of curves.

Where sufficient stopping sight distance is not available because a railing or a longitudinal
barrier constitutes a sight obstruction, alternative designs should be considered for both safety and
economic reasons. The alternatives are: (1) increase the offset to the obstruction, (2) increase the
radius, or (3) reduce the design speed. However, the alternative selected should not incorporate
shoulder widths on the inside of the curve in excess of 3.6 m [12 ft] because of the concern that
drivers will use wider shoulders as a passing or travel lane.

As can be seen from Exhibit 3-58, the method presented is only exact when both the vehicle
and the sight obstruction are located within the limits of the simple horizontal curve. When either
the vehicle or the sight obstruction is situated beyond the limits of the simple curve, the values
obtained are only approximate. The same is true if either the vehicle , the sight obstruction, or
both is situated within the limits of a spiral or a compound curve. In these instances, the value
obtained would result in middle ordinate values slightly larger than those needed to satisfy the
desired stopping sight distance. In many instances, the resulting additional clearance will not be
significant. Whenever Exhibit 3-57 is not applicable, the design should be checked either by
utilizing graphical procedures or by utilizing a computational method. Reference (32) provides a
computational method for making such checks.

Passing Sight Distance

The minimum passing sight distance for a two-lane road or street is about four times as great
as the minimum stopping sight distance at the same design speed. To conform to those greater
sight distances, clear sight areas on the inside of curves should have widths greatly in excess of
those discussed. The equations indicated in Equation (3-40) is directly applicable to passing sight
distance but are of limited practical value except on long curves. A chart demonstration using this
equation would be of value primarily in reaching negative conclusions—that it would be difficult
to maintain passing sight distance on other than very flat curves.

Passing sight distance is measured between an eye height of 1,080 mm [3.5 ft] and an object
height of 1,080 mm [3.5 ft]. The sight line near the center of the area inside a curve is about
240 mm [0.75 ft] higher than for stopping sight distance. The resultant lateral dimension for
normal highway cross sections (1V:2H to 1V:6H backslopes) in cut between the centerline of the
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inside lane and the midpoint of the sight line is from 0.5 to 1.5 m [1.5 to 4.5 ft] greater than that
for stopping sight distance. It is obvious that for many cut sections, design for passing sight
distance should, for practical reasons, be limited to tangents and very flat curves. Even in level
terrain, provision of passing sight distance would need a clear area inside each curve that would,
in some instances, extend beyond the normal right-of-way line.

In general, the designer should use graphical methods to check sight distance on horizontal
curves. This method is presented in Exhibit 3-8 and described in the accompanying discussion.

General Controls for Horizontal Alignment

In addition to the specific design elements for horizontal alignment discussed under previous
headings, a number of general controls are recognized in practice. These controls are not subject
to theoretical derivation, but they are important for efficient and smooth-flowing highways.
Excessive curvature or poor combinations of curvature limit capacity, cause economic losses
because of increased travel time and operating costs, and detract from a pleasing appearance. To
avoid such poor design practices, the general controls that follow should be used where practical:

• Alignment should be as directional as practical, but should be consistent with the
topography and with preserving developed properties and community values. A flowing
line that conforms generally to the natural contours is preferable to one with long
tangents that slashes through the terrain. With curvilinear alignment, construction scars
can be kept to a minimum and natural slopes and growth can be preserved. Such design
is desirable from a construction and maintenance standpoint. In general, the number of
short curves should be kept to a minimum. Winding alignment composed of short
curves should be avoided because it usually leads to erratic operation. Although the
aesthetic qualities of curving alignment are important, long tangents are needed on
two-lane highways so that sufficient passing sight distance is available on as great a
percentage of the highway length as practical.

• In alignment developed for a given design speed, the minimum radius of curvature for
that speed should be avoided wherever practical. The designer should attempt to use
generally flat curves, saving the minimum radius for the most critical conditions. In
general, the central angle of each curve should be as small as the physical conditions
permit, so that the highway will be as directional as practical. This central angle should
be absorbed in the longest practical curve, but on two-lane highways the exception
noted in the preceding paragraph applies.

• Consistent alignment should always be sought. Sharp curves should not be introduced
at the ends of long tangents. Sudden changes from areas of flat curvature to areas of
sharp curvature should be avoided. Where sharp curvature is introduced, it should be
approached, where practical, by a series of successively sharper curves.

• For small deflection angles, curves should be sufficiently long to avoid the appearance
of a kink. Curves should be at least 150 m [500 ft] long for a central angle of 5 degrees,
and the minimum length should be increased 30 m [100 ft] for each 1-degree decrease
in the central angle. The minimum length for horizontal curves on main highways,
Lc min, should be about three times the design speed expressed in km/h [15 times the
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design speed expressed in mph], or Lc min=3V [15V]. On high speed controlled-access
facilities that use flat curvature, for aesthetic reasons, the desirable minimum length for
curves should be about double the minimum length described above, or Lc des= 6V
[30V].

• Sharp curvature should be avoided on long, high fills. In the absence of cut slopes,
shrubs, and trees that extend above the level of the roadway, it is difficult for drivers to
perceive the extent of curvature and adjust their operation accordingly.

• Caution should be exercised in the use of compound circular curves. While the use of
compound curves affords flexibility in fitting the highway to the terrain and other
ground controls, the ease with which such curves can be used may tempt the designer to
use them without restraint. Preferably their use should be avoided where curves are
sharp. Compound curves with large differences in radius introduce the same problems
that arise at tangent approaches to circular curves. Where topography or right-of-way
restrictions make their use appropriate, the radius of the flatter circular arc, R1, should
not be more than 50 percent greater than the radius of the sharper circular arc, R2

(i.e., R1 should not exceed 1.5 R2). A multiple compound curve (i.e., several curves in
sequence) may be suitable as a transition to sharp curves as discussed in the previous
section on “Compound Circular Curves.” A spiral transition between flat curves and
sharp curves may be desirable. On one-way roads, such as ramps, the difference in radii
of compound curves is not so important if the second curve is flatter than the first.
However, the use of compound curves on ramps, with a flat curve between two sharper
curves, is not good practice.

• Abrupt reversals in alignment should be avoided. Such changes in alignment make it
difficult for drivers to keep within their own lane. It is also difficult to superelevate both
curves adequately, and erratic operation may result. The distance between reverse
curves should be the sum of the superelevation runoff lengths and the tangent runout
lengths or, preferably , an equivalent length with spiral curves, as defined in the section
on “Transition Design Controls” in this chapter.  If sufficient distance (i.e., more than
100 m [300 ft]) is not available to permit the tangent runout lengths or preferably an
equivalent length with spiral to return to a normal crown section, there may be a long
length where the centerline and the edges of roadway are at the same elevation and poor
transverse drainage can be expected. In this case, the superelevation runoff lengths
should be increased until they adjoin, thus providing one instantaneous level section.
For traveled ways with straight cross slopes, there is less difficulty in returning the
edges of roadway to a normal section and the 100-m [300-ft] guideline discussed above
may be decreased.

• The “broken-back” or “flat-back” arrangement of curves (with a short tangent between
two curves in the same direction) should be avoided except where very unusual
topographical or right-of-way conditions make other alternatives impractical. Except on
circumferential highways, most drivers do not expect successive curves to be in the
same direction; the preponderance of successive curves in opposite directions may
develop a subconscious expectation among drivers that makes successive curves in the
same direction unexpected. Broken-back alignments are also not pleasing in
appearance. Use of spiral transitions or compound curve alignments, in which there is
some degree of continuous superelevation, is preferable for such situations. The term
“broken-back” usually is not applied when the connecting tangent is of considerable
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length. Even in this case, the alignment may be unpleasant in appearance when both
curves are clearly visible for some distance ahead.

• To avoid the appearance of inconsistent distortion, the horizontal alignment should be
coordinated carefully with the profile design. General controls for this coordination are
discussed in the section of this chapter on “Combination of Horizontal and Vertical
Alignment.”

VERTICAL ALIGNMENT

Terrain

The topography of the land traversed has an influence on the alignment of roads and streets.
Topography affects horizontal alignment, but has an even more pronounced effect on vertical
alignment. To characterize variations in topography, engineers generally separate it into three
classifications according to terrain.

In level terrain , highway sight distances, as governed by both horizontal and vertical
restrictions, are generally long or can be made to be so without construction difficulty or major
expense.

In rolling terrain , natural slopes consistently rise above and fall below the road or street
grade, and occasional steep slopes offer some restriction to normal horizontal and vertical
roadway alignment.

In mountainous terrain, longitudinal and transverse changes in the elevation of the ground
with respect to the road or street are abrupt, and benching and side hill excavation are frequently
needed to obtain acceptable horizontal and vertical alignment.

Terrain classifications pertain to the general character of a specific route corridor. Routes in
valleys, passes, or mountainous areas that have all the characteristics of roads or streets traversing
level or rolling terrain should be classified as level or rolling. In general, rolling terrain generates
steeper grades than level terrain, causing trucks to reduce speeds below those of passenger cars;
mountainous terrain has even greater effects, causing some trucks to operate at crawl speeds.

Grades

Roads and streets should be designed to encourage uniform operation throughout. As
discussed earlier in this chapter, design speeds are used as a means toward this end by correlation
of various geometric features of the road or street. Design criteria have been determined for many
highway features, but few conclusions have been reached on the appropriate relationship of
roadway grades to design speed. Vehicle operating characteristics on grades are discussed and
established relationships of grades and their lengths to design speed are developed below.
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Vehicle Operating Characteristics on Grades

Passenger cars. The practices of passenger car drivers on grades vary greatly, but it is
generally accepted that nearly all passenger cars can readily negotiate grades as steep as 4 to
5 percent without an appreciable loss in speed below that normally maintained on level roadways,
except for cars with high weight/power ratios, including some compact and subcompact cars.

Studies show that, under uncongested conditions, operation on a 3-percent upgrade, has only
a slight effect on passenger car speeds compared to operations on the level. On steeper upgrades,
speeds decrease progressively with increases in the grade. On downgrades, passenger car speeds
generally are slightly higher than on level sections, but local conditions govern.

Trucks. The effect of grades on truck speeds is much more pronounced than on speeds of
passenger cars. The average speed of trucks on level sections of highway approximates the
average speed of passenger cars. Trucks generally increase speed by up to about 5 percent on
downgrades and decrease speed by 7 percent or more on upgrades as compared to their operation
on the level. On upgrades, the maximum speed that can be maintained by a truck is dependent
primarily on the length and steepness of the grade and the truck’s weight/power ratio, which is
the gross vehicle weight divided by the net engine power. Other factors that affect the average
truck speed on a grade are the entering speed, the aerodynamic resistance, and skill of the driver.
The last two factors cause only minor variations in the average speed.

Extensive studies of truck performance have been conducted to determine the separate and
combined effects of roadway grade, tractive effort, and gross vehicle weight (33, 34, 35, 36, 37,
38, 39).

The effect of rate and length of grade on the speed of a typical heavy truck is shown in
Exhibits 3-59 and 3-60. From Exhibit 3-59 it can be determined how far a truck, starting its climb
from any speed up to approximately 120 km/h [70 mph], travels up various grades or
combinations of grades before a certain or uniform speed is reached. For instance, with an
entering speed of approximately 110 km/h [70 mph] , the truck travels about 950 m [2,700 ft] up a
6 percent grade before its speed is reduced to 60 km/h [35 mph]. If the entering speed is 60 km/h
[35 mph], the speed at the end of a 300-m [1,000-ft] climb is about 43 km/h [26 mph]. This is
determined by starting on the curve for a 6 percent grade corresponding to 60 km/h [35 mph] for
which the distance is 750 m [2,500 ft], and proceeding along it to the point where the distance is
300 m [1,000 ft] more, or 1,050 m [3,500 ft], for which the speed is about 43 km/h [26 mph].
Exhibit 3-60 shows the performance on grade for a truck that approaches the grade at or below
crawl speed. The truck is able to accelerate to a speed of 40 km/h [25 mph] or more only on
grades of less than 3.5 percent. These data serve as a valuable guide for design in appraising the
effect of trucks on traffic operation for a given set of profile conditions.

Travel time (and, therefore, speed) of trucks on grades is directly related to the weight/power
ratio. Trucks of the same weight/power ratio typically have similar operating characteristics.
Hence, this ratio is of considerable assistance in anticipating the performance of trucks. Normally,
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Exhibit 3-59.  Speed-Distance Curves for a Typical Heavy Truck of 120 kg/kW [200 lb/hp]
for Deceleration on Upgrades
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Exhibit 3-60.  Speed-Distance Curves for Acceleration of a Typical Heavy Truck
of 120 kg/kW [200 lb/hp] on Upgrades and Downgrades
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the weight/power ratio is expressed in terms of gross weight and net power, in units of kg/kW
[wt/hp]; while the metric unit kg is a unit of mass, rather than weight, it is commonly used to
represent the weight of object. It has been found that trucks with weight/power ratios of about
120 kg/kW [200 lb/hp] have acceptable operating characteristics from the standpoint of the
highway user. Such a weight/power ratio assures a minimum speed of about 60 km/h [35 mph] on
a 3 percent upgrade. There is evidence that the automotive industry would find a weight/power
ratio of this magnitude acceptable as a minimum goal in the design of commercial vehicles. There
is also evidence that carrier operators are voluntarily recognizing this ratio as the minimum
performance control in the loads placed on trucks of different power, the overall result being that
weight/power ratio of trucks on highways has improved in recent years. Ratios developed from
information obtained in conjunction with the nationwide brake performance studies conducted
between 1949 and 1985 show, for example, that for a gross vehicle weight of 18,000 kg
[40,000 lb], the average weight/power ratio decreased from about 220 kg/kW [360 lb/hp] in 1949,
to about 130 kg/kW [210 lb/hp] in 1975; the weight/power ratio continued to fall to about
80 kg/kW [130 lb/hp] in 1985. This decreased weight/power ratio means greater power and better
climbing ability for trucks on upgrades.

There is a trend toward larger and heavier trucks with as many as three trailer units allowed
on certain highways in some States. Studies indicate that as the number of axles increases, the
weight/power ratio increases. Taking all factors into account, it appears conservative to use a
weight/power ratio of 120 kg/kW [200 lb/hp] in determining critical length of grade. However,
there are locations where a weight/power ratio as high as 120 kg/kW [200 lb/hp] is not
appropriate. Where this occurs, designers are encouraged to utilize either a more representative
weight/power ratio or an alternate method that more closely fits the conditions.

Recreational vehicles. Consideration of recreational vehicles on grades is not as critical as
consideration of trucks. However, on certain routes such as designated recreational routes, where
a low percentage of trucks may not warrant a truck climbing lane, sufficient recreational vehicle
traffic may indicate a need for an additional lane. This can be evaluated by using the design charts
in Exhibit 3-61 in the same manner as for trucks described in the preceding section of this
chapter. Recreational vehicles include self-contained motor homes, pickup campers, and towed
trailers of numerous sizes. Because the characteristics of recreational vehicles vary so much, it is
difficult to establish a single design vehicle. However, a recent study on the speed of vehicles on
grades included recreational vehicles (40). The critical vehicle was considered to be a vehicle
pulling a travel trailer, and the charts in Exhibits 3-61 for a typical recreational vehicle is based
on that assumption.

Control Grades for Design

Maximum grades. On the basis of the data in Exhibits 3-59 through 3-62, and according to
the grade controls now in use in a large number of States, reasonable guidelines for maximum
grades for use in design can be established. Maximum grades of about 5 percent are considered
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Exhibit 3-61.  Speed-Distance Curves for a Typical Recreational Vehicle on the
Selected Upgrades (40)
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Exhibit 3-62.  Crash Involvement Rate of Trucks for Which Running Speeds Are Reduced
Below Average Running Speed of All Traffic (41)
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appropriate for a design speed of 110 km/h [70 mph]. For a design speed of 50 km/h [30 mph],
maximum grades generally are in the range of 7 to 12 percent, depending on terrain. If only the
more important highways are considered, it appears that maximum grades of 7 or 8 percent are
representative of current design practice for a 50-km/h [30-mph] design speed. Control grades for
design speeds from 60 to 100 km/h [40 to 60 mph] fall between the above extremes. Maximum
grade controls for each functional class of highway and street are presented in Chapters 5
through 8.

The maximum design grade should be used only infrequently; in most cases, grades should
be less than the maximum design grade. At the other extreme, for short grades less than 150 m
[500 ft] in length and for one-way downgrades, the maximum grade may be about 1 percent
steeper than other locations; for low-volume rural highways, the maximum grade may be
2 percent steeper.

Minimum grades. Flat grades can typically be used without problem on uncurbed highways
where the cross slope is adequate to drain the pavement surface laterally. With curbed highways
or streets, longitudinal grades should be provided to facilitate surface drainage. An appropriate
minimum grade is typically 0.5 percent, but grades of 0.30 percent may be used where there is a
high-type pavement accurately sloped and supported on firm subgrade. Use of even flatter grades
may be justified in special cases as discussed in subsequent chapters. Particular attention should
be given to the design of storm water inlets and their spacing to keep the spread of water on the
traveled way within tolerable limits. Roadside channels and median swales frequently need
grades steeper than the roadway profile for adequate drainage. Drainage channels are discussed in
Chapter 4.

Critical Lengths of Grade for Design

Maximum grade in itself is not a complete design control. It is also appropriate to consider
the length of a particular grade in relation to desirable vehicle operation. The term “critical length
of grade” is used to indicate the maximum length of a designated upgrade on which a loaded
truck can operate without an unreasonable reduction in speed. For a given grade, lengths less than
critical result in acceptable operation in the desired range of speeds. If the desired freedom of
operation is to be maintained on grades longer than critical, design adjustments such as changes
in location to reduce grades or addition of extra lanes should be considered. The data for critical
lengths of grade should be used with other pertinent factors (such as traffic volume in relation to
capacity) to determine where added lanes are warranted.

To establish design values for critical lengths of grade for which gradeability of trucks is the
determining factor, data or assumptions are needed for the following:

1. Size and power of a representative truck or truck combination to be used as a design
vehicle along with the gradeability data for this vehicle :

A loaded truck, powered so that the weight/power ratio is about 120 kg/kW
[200 lb/hp], is representative of the size and type of vehicle normally used for
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design control for main highways. Data in Exhibits 3-59 and 3-60 apply to such a
vehicle.

2. Speed at entrance to critical length of grade :
The average running speed as related to design speed can be used to approximate the
speed of vehicles beginning an uphill climb. This estimate is, of course, subject to
adjustment as approach conditions may determine. Where vehicles approach on
nearly level grades, the running speed can be used directly. For a downhill approach
it should be increased somewhat, and for an uphill approach it should be decreased.

3. Minimum speed on the grade below in which interference to following vehicles is
considered unreasonable :

No specific data are available on which to base minimum tolerable speeds of trucks
on upgrades. It is logical to assume that such minimum speeds should be in direct
relation to the design speed. Minimum truck speeds of about 40 to 60 km/h
[25 to 40 mph] for the majority of highways (on which design speeds are about 60 to
100 km/h [40 to 60 mph]) probably are not unreasonably annoying to following
drivers unable to pass on two-lane roads, if the time interval during which they are
unable to pass is not too long. The time interval is not likely to be annoying on
two-lane roads with volumes well below their capacities, whereas it is likely to be
annoying on two-lane roads with volumes near capacity. Lower minimum truck
speeds can probably be tolerated on multilane highways rather than on two-lane
roads because there is more opportunity for and less difficulty in passing. Highways
should be designed so that the speeds of trucks will not be reduced enough to cause
intolerable conditions for following drivers.

Studies show that, regardless of the average speed on the highway, the more a vehicle
deviates from the average speed, the greater its chances of becoming involved in a crash. One
such study (41) used the speed distribution of vehicles traveling on highways in one state, and
related it to the crash involvement rate to obtain the rate for trucks of four or more axles operating
on level grades. The crash involvement rates for truck speed reductions of 10, 15, 25, and
30 km/h [5, 10, 15, and 20 mph] were developed assuming the reduction in the average speed for
all vehicles on a grade was 30 percent of the truck speed reduction on the same grade. The results
of this analysis are shown in Exhibit 3-62.

A common basis for determining critical length of grade is based on a reduction in speed of
trucks below the average running speed of traffic . The ideal would be for all traffic to operate at
the average speed. This, however, is not practical. In the past, the general practice has been to use
a reduction in truck speed of 25 km/h [15 mph] below the average running speed of all traffic  to
identify the critical length of grade. As shown in Exhibit 3-62, the crash involvement rate
increases significantly when the truck speed reduction exceeds 15 km/h [10 mph] with the
involvement rate being 2.4 times greater for a 25-km/h [15-mph] reduction than for a 15-km/h
[10-mph] reduction. On the basis of these relationships, it is recommended that a 15-km/h
[10-mph] reduction criterion be used as the general guide for determining critical lengths of
grade.

The length of any given grade that will cause the speed of a representative truck (120 kg/kW
[200 lb/hp]) entering the grade at 110 km/h [70 mph] to be reduced by various amounts below the
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average running speed of all traffic is shown graphically in Exhibit 3-63, which is based on the
truck performance data presented in Exhibit 3-59. The curve showing a 15-km/h [10-mph] speed
reduction is used as the general design guide for determining the critical lengths of grade. Similar
information on the critical length of grade for recreational vehicles may be found in Exhibit 3-64,
which is based on the recreational vehicle performance data presented in Exhibit 3-61.

Where the entering speed is less than 110 km/h [70 mph] , as may be the case where the
approach is on an upgrade, the speed reductions shown in Exhibits 3-63 and 3-64 will occur over
shorter lengths of grade. Conversely, where the approach is on a downgrade, the probable
approach speed is greater than 110 km/h [70 mph] and the truck or recreational vehicle will
ascend a greater length of grade than shown in the exhibits before the speed is reduced to the
values shown.

The method of using Exhibit 3-63 to determine critical lengths of grade is demonstrated in
the following examples.

Assume that a highway is being designed for 100 km/h [60 mph] and has a fairly level
approach to a 4 percent upgrade. The 15-km/h [10-mph] speed reduction curve in Exhibit 3-63
shows the critical length of grade to be 350 m [1,200 ft]. If, instead, the design speed was 60
km/h [40 mph] , the initial and minimum tolerable speeds on the grade would be different, but for
the same permissible speed reduction the critical length would still be 360 m [1,200 ft].

In another instance, the critical length of a 5 percent upgrade approached by a 500-m
[1,650-ft] length of 2 percent upgrade is unknown. Exhibit 3-63 shows that a 2 percent upgrade of
500 m [1,650 ft] in length would result in a speed reduction of about 9 km/h [6 mph]. The chart
further shows that the remaining tolerable speed reduction of 6 km/h [4 mph] would occur on
100 m [325 ft] of the 5 percent upgrade.

Where an upgrade is approached on a momentum grade, heavy trucks often increase speed,
sometimes to a considerable degree in order to make the climb in the upgrade at as high a speed
as practical. This factor can be recognized in design by increasing the tolerable speed reduction. It
remains for the designer to judge to what extent the speed of trucks would increase at the bottom
of the momentum grade above that generally found on level approaches. It appears that a speed
increase of about 10 km/h [5 mph] can be considered for moderate downgrades and a speed
increase of 15 km/h [10 mph] for steeper grades of moderate length or longer. On this basis, the
tolerable speed reduction with momentum grades would be 25 or 30 km/h [15 or 20 mph]. For
example, where there is a moderate length of 4 percent downgrade in advance of a 6 percent
upgrade, a tolerable speed reduction of 25 km/h [15 mph] can be assumed. For this case, the
critical length of the 6 percent upgrade is about 300 m [1,000 ft].

The critical length of grade in Exhibit 3-63 is derived as the length of tangent grade. Where a
vertical curve is part of a critical length of grade, an approximate equivalent tangent grade length
should be used. Where the condition involves vertical curves of Types II and IV shown later in
this chapter in Exhibit 3-73 and the algebraic difference in grades is not too great, the
measurement of critical length of grade may be made between the vertical points of intersection
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Exhibit 3-63.  Critical Lengths of Grade for Design, Assumed Typical Heavy Truck
 of 120 kg/kW [200 lb/hp], Entering Speed = 110 km/h [70 mph]
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Exhibit 3-64.  Critical Lengths of Grade Using an Approach Speed of 90 km/h [55 mph] for
Typical Recreational Vehicle (40)
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(VPI). Where vertical curves of Types I and III in Exhibit 3-73 are involved, about one-quarter of
the vertical curve length should be considered as part of the grade under consideration.

Steep downhill grades can also have a detrimental effect on the capacity and safety of
facilities with high traffic volumes and numerous heavy trucks. Some downgrades are long and
steep enough that some heavy vehicles travel at crawl speeds to avoid loss of control on the
grade. Slow-moving vehicles of this type may impede other vehicles. Therefore, there are
instances where consideration should be given to providing a truck lane for downhill traffic.
Procedures have been developed in the HCM (14) to analyze this situation.

The suggested design criterion for determining the critical length of grade is not intended as
a strict control but as a guide line. In some instances, the terrain or other physical controls may
preclude shortening or flattening grades to meet these controls. Where a speed reduction greater
than the suggested design guide cannot be avoided, undesirable type of operation may result on
roads with numerous trucks, particularly on two-lane roads with volumes approaching capacity
and in some instances on multilane highways. Where the length of critical grade is exceeded,
consideration should be given to providing an added uphill lane for slow-moving vehicles,
particularly where volume is at or near capacity and the truck volume is high. Data in
Exhibit 3-63 can be used along with other pertinent considerations, particularly volume data in
relation to capacity and volume data for trucks, to determine where such added lanes are
warranted.

Climbing Lanes

Climbing Lanes for Two-Lane Highways

General. Freedom and safety of operation on two-lane highways, besides being influenced
by the extent and frequency of passing sections, are adversely affected by heavily loaded vehicle
traffic operating on grades of sufficient length to result in speeds that could impede following
vehicles. In the past, provision of added climbing lanes to improve operations on upgrades has
been rather limited because of the additional construction costs involved. However, because of
the increasing amount of delay and the number of serious crashes occurring on grades, such lanes
are now more commonly included in original construction plans and additional lanes on existing
highways are being considered as safety improvement projects. The crash potential created by
this condition is illustrated in Exhibit 3-62.

A highway section with a climbing lane is not considered a three-lane highway, but a two-
lane highway with an added lane for vehicles moving slowly uphill so that other vehicles using
the normal lane to the right of the centerline are not delayed. These faster vehicles pass the slower
vehicles moving upgrade, but not in the lane for opposing traffic, as on a conventional two-lane
road. A separate climbing lane exclusively for slow-moving vehicles is preferred to the addition
of an extra lane carrying mixed traffic. Designs of two-lane highways with climbing lanes are
illustrated in Exhibits 3-65A and 3-65B. Climbing lanes are designed for each direction
independently of the other. Depending on the alignment and profile conditions, they may not
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overlap, as in Exhibit 3-65A, or they may overlap, as in Exhibit 3-65B, where there is a crest with
a long grade on each side.

Exhibit 3-65.  Climbing Lanes on Two-Lane Highways

It is desirable to provide a climbing lane, as an added lane for the upgrade direction of a
two-lane highway where the grade, traffic volume , and heavy vehicle volume combine to degrade
traffic operations from those on the approach to the grade. Where climbing lanes are provided
there has been a high degree of compliance in their use by truck drivers.

On highways with low volumes, only an occasional car is delayed, and climbing lanes,
although desirable, may not be justified economically even where the critical length of grade is
exceeded. For such cases, slow-moving vehicle turnouts should be considered to reduce delay to
occasional passenger cars from slow-moving vehicles. Turnouts are discussed in the section on
“Methods for Increasing Passing Opportunities on Two-Lane Roads” in this chapter.

The following three criteria, reflecting economic considerations, should be satisfied to justify
a climbing lane:

1. Upgrade traffic flow rate in excess of 200 vehicles per hour.

2. Upgrade truck flow rate in excess of 20 vehicles per hour.

3. One of the following conditions exists:
• A 15 km/h [10 mph] or greater speed reduction is expected for a typical heavy

truck.
• Level-of-service E or F exists on the grade.
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• A reduction of two or more levels of service is experienced when moving from the
approach segment to the grade.

In addition, safety considerations may justify the addition of a climbing lane regardless of
grade or traffic volumes.

The upgrade flow rate is determined by multiplying the predicted or existing design hour
volume by the directional distribution factor for the upgrade direction and dividing the result by
the peak hour factor (the peak hour and directional distribution factors are discussed in Chapter
2). The number of upgrade trucks is obtained by multiplying the upgrade flow rate by the
percentage of trucks in the upgrade direction.

Trucks. As indicated in the preceding section, only one of the three conditions specified in
criterion 3 must be met. The critical length of grade to effect a 15 km/h [10 mph] truck speed
reduction is found using Exhibit 3-63. This critical length is compared with the length of the
particular grade being evaluated. If the critical length of grade is less than the length of the grade
being studied, criterion 3 is satisfied. This evaluation should be done first because, where the
critical length of grade is exceeded, no further evaluations under criterion 3 will be needed.

Justification for climbing lanes where the critical length of grade is not exceeded should be
considered from the standpoint of highway capacity. The procedures used are those from the
HCM (14) for analysis of specific grades on two-lane highways. The remaining conditions in
criterion 3 are evaluated using these HCM procedures. The effect of trucks on capacity is
primarily a function of the difference between the average speed of the trucks and the average
running speed of the passenger cars on the highway. Physical dimensions of heavy trucks and
their poorer acceleration characteristics also have a bearing on the space they need in the traffic
stream.

On individual grades the effect of trucks is more severe than their average effect over a
longer section of highway. Thus, for a given volume of mixed traffic and a fixed roadway cross
section, a higher degree of congestion is experienced on individual grades than for the average
operation over longer sections that include downgrades as well as upgrades. Determination of the
design service volume on individual grades should use truck factors derived from the geometrics
of the grade and the level of service selected by the highway agency for use as the basis for
design of the highway under consideration.

If there is no 15-km/h [10-mph] reduction in speed (i.e., if the critical length of grade is not
exceeded), the level of service on the grade should be examined to determine if level-of-service E
or F exists. This is done by calculating the limiting service flow rate for level-of-service D and
comparing this rate to the actual flow rate on the grade. The actual flow rate is determined by
dividing the hourly volume of traffic by the peak hour factor. If the actual flow rate exceeds the
service flow rate at level-of-service D, criterion 3 is satisfied. When the actual flow rate is less
than the limiting value, a climbing lane is not warranted by this second element of criterion 3.

The remaining issue to examine if neither of the other elements of criterion 3 are satisfied is
whether there is a two-level reduction in the level of service between the approach and the
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upgrade. To evaluate this criterion, the level of service for the grade and the approach segment
should both be determined. Since this criterion needs consideration in only a very limited number
of cases, it is not discussed in detail here.

The HCM (14) provides additional details and worksheets to perform the computations
needed for analysis in the preceding criteria. This procedure is also available in computer
software, reducing the need for manual calculations.

Because there are so many variables involved that hardly any given set of conditions can be
properly described as typical, a detailed analysis such as the one described is recommended
wherever climbing lanes are being considered.

The location where an added lane should begin depends on the speeds at which trucks
approach the grade and on the extent of sight distance restrictions on the approach. Where there
are no sight distance restrictions or other conditions that limit speeds on the approach, the added
lane may be introduced on the upgrade beyond its beginning because the speed of trucks will not
be reduced beyond the level tolerable to following drivers until they have traveled some distance
up the grade. This optimum point for capacity would occur for a reduction in truck speed to 60
km/h [40 mph] , but a 15 km/h [10 mph] decrease in truck speed below the average running speed,
as discussed in the preceding section on “Critical Lengths of Grade for Design,” is the most
practical reduction obtainable from the standpoint of level of service and safety. This 15-km/h
[10-mph] reduction is the accepted basis for determining the location at which to begin climbing
lanes. The distance from the bottom of the grade to the point where truck speeds fall to 15 km/h
[10 mph] below the average running speed may be determined from Exhibit 3-59 or Exhibit 3-63
depending on the weight/power ratio of the appropriate truck. For example, assuming an
approach condition on which trucks with a 120-kg/kW [200-lb/hp] weight/power ratio are
traveling within a flow having an average running speed of 110 km/h [70 mph] , the resulting
15-km/h [10-mph] speed reduction occurs at distances of approximately 175 to 350 m
[600 to 1,200 ft] for grades varying from 7 to 4 percent. With a downgrade approach, these
distances would be longer and, with an upgrade approach, they would be shorter. Distances thus
determined may be used to establish the point at which a climbing lane should begin. Where
restrictions, upgrade approaches, or other conditions indicate the likelihood of low speeds for
approaching trucks, the added lane should be introduced near the foot of the grade. The beginning
of the added lane should be preceded by a tapered section with a desirable taper ratio of 25:1 that
should be at least 50 m [150 ft] long.

The ideal design is to extend a climbing lane to a point beyond the crest, where a typical
truck could attain a speed that is within 15 km/h [10 mph] of the speed of the other vehicles with
a desirable speed of at least 60 km/h [40 mph]. This may not be practical in many instances
because of the unduly long distance needed for trucks to accelerate to the desired speed. In such
situations, a practical point to end the added lane is where trucks can return to the normal lane
without undue interference with other traffic—in particular, where the sight distance becomes
sufficient to permit passing when there is no oncoming traffic or, preferably, at least 60 m [200 ft]
beyond that point. An appropriate taper length should be provided to permit trucks to return
smoothly to the normal lane. For example, on a highway where the passing sight distance
becomes available 30 m [100 ft] beyond the crest of the grade, the climbing lane should extend
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90 m [300 ft] beyond the crest (i.e., 30 m [100 ft] plus 60 m [200 ft]), and an additional tapered
section with a desirable taper ratio of 50:1 that should be at least 60 m [200 ft] long.

A climbing lane should desirably be as wide as the through lanes. It should be so constructed
that it can immediately be recognized as an added lane for one direction of travel. The centerline
of the normal two-lane highway should be clearly marked, including yellow barrier lines for
no-passing zones. Signs at the beginning of the upgrade such as “Slower Traffic Keep Right” or
“Trucks Use Right Lane” may be used to direct slow-moving vehicles into the climbing lane.
These and other appropriate signs and markings for climbing lanes are presented in the
MUTCD (6).

The cross slope of a climbing lane is usually handled in the same manner as the addition of a
lane to a multilane highway. Depending on agency practice, this design results in either a
continuation of the cross slope or a lane with slightly more cross slope than the adjacent through
lane. On a superelevated section, the cross slope is generally a continuation of the slope used on
the through lane.

Desirably, the shoulder on the outer edge of a climbing lane should be as wide as the
shoulder on the normal two-lane cross section, particularly where there is bicycle traffic.
However, this may be impractical, particularly when the climbing lane is added to an existing
highway. A usable shoulder of 1.2 m [4 ft] in width or greater is acceptable. Although not wide
enough for a stalled vehicle to completely clear the climbing lane, a 1.2-m [4-ft] shoulder in
combination with the climbing lane generally provides sufficient width for both the stalled
vehicle and a slow-speed passing vehicle without need for the latter to encroach on the through
lane.

In summary, climbing lanes offer a comparatively inexpensive means of overcoming
reductions in capacity and providing improved operation where congestion on grades is caused by
slow trucks in combination with high traffic volumes. As discussed earlier in this section,
climbing lanes also improve safety. On some existing two-lane highways, the addition of
climbing lanes could defer reconstruction for many years or indefinitely. In a new design,
climbing lanes could make a two-lane highway operate efficiently, whereas a much more costly
multilane highway would be needed without them.

Climbing Lanes on Freeways and Multilane Highways

General. Climbing lanes, although they are becoming more prevalent, have not been used as
extensively on freeways and multilane highways as on two-lane highways, perhaps for the reason
that multilane facilities more frequently have sufficient capacity to handle their traffic demands,
including the typical percentage of slow-moving vehicles with high weight/power ratios, without
being congested. Climbing lanes are generally not as easily justified on multilane facilities as on
two-lane highways because, on two-lane facilities, vehicles following other slower moving
vehicles on upgrades are frequently prevented by opposing traffic from using the adjacent traffic
lane for passing, whereas there is no such impediment to passing on multilane facilities. A slow-
moving vehicle in the normal right lane does not impede the following vehicles that can readily
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move left to the adjacent lane and proceed without difficulty, although there is evidence that
safety is enhanced when vehicles in the traffic stream move at the same speed.

Because highways are normally designed for 20 years or more in the future, there is less
likelihood that climbing lanes will be justified on multilane facilities than on two-lane roads for
several years after construction even though they are deemed desirable for the peak hours of the
design year. Where this is the case, there is economic advantage in designing for, but deferring
construction of, climbing lanes on multilane facilities. In this situation, grading for the future
climbing lane should be provided initially. The additional grading needed for a climbing lane is
small when compared to that needed for the overall cross section. If, however, even this
additional grading is impractical, it is acceptable, although not desirable, to use a narrower
shoulder adjacent to the climbing lane rather than the full shoulder provided on a normal section.

Although primarily applicable in rural areas, there are instances where climbing lanes are
need in urban areas. Climbing lanes are particularly important for freedom of operation on urban
freeways where traffic volumes are high in relation to capacity. On older urban freeways and
arterial streets with appreciable grades and no climbing lanes, it is a common occurrence for
heavy traffic, which may otherwise operate well, to platoon on grades.

Trucks. The principal determinants of the need for climbing lanes on multilane highways
are critical lengths of grade, effects of trucks on grades in terms of equivalent passenger-car flow
rates, and service volumes for the desired level of service and the next poorer level of service.

Critical length of grade has been discussed previously in this chapter. It is the length of a
particular upgrade that reduces the speed of low-performance trucks 15 km/h [10 mph] below the
average running speed of the remaining traffic. The critical length of grade that results in a
15-km/h [10-mph] truck speed reduction is found using Exhibit 3-63 and is then  compared to the
length of the particular grade being examined. If the critical length of grade is less than the length
of grade being evaluated, consideration of a climbing lane is warranted.

In determining service volume, the passenger-car equivalent for trucks is a significant factor.
It is generally agreed that trucks on multilane facilities have less effect in deterring following
vehicles than on two-lane roads. Comparison of passenger-car equivalents in the HCM (14) for
the same percent of grade, length of grade, and percent of trucks clearly illustrates the difference
in passenger-car equivalents of trucks for two-lane and multilane facilities.

To justify the cost of providing a climbing lane, the existence of a low level of service on the
grade should be the criterion, as in the case of justifying climbing lanes for two-lane roads,
because highway users will accept a higher degree of congestion (i.e., a lower level of service) on
individual grades than over long sections of highway. As a matter of practice, the service volume
on an individual grade should not exceed that for the next poorer level of service from that used
for the basic design. The one exception is that the service volume for level-of-service D should
not be exceeded.

Generally, climbing lanes should not be considered unless the directional traffic volume for
the upgrade is equal to or greater than the service volume for level-of-service D. In most cases
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when the service volume, including trucks, is greater than 1700 vehicles per hour per lane and the
length of the grade and the percentage of trucks are sufficient to consider climbing lanes, the
volume in terms of equivalent passenger cars is likely to approach or even exceed the capacity. In
this situation, an increase in the number of lanes throughout the highway section would represent
a better investment than the provision of climbing lanes.

Climbing lanes are also not generally warranted on four-lane highways with directional
volumes below 1000 vehicles per hour per lane regardless of the percentage of trucks. Although a
truck driver will occasionally pass another truck under such conditions, the inconvenience with
this low volume is not sufficient to justify the cost of a climbing lane in the absence of
appropriate criteria.

The procedures in the HCM (14) should be used to consider the traffic operational
characteristics on the grade being examined. The maximum service flow rate for the desired level
of service, together with the flow rate for the next poorer level of service, should be determined.
If the flow rate on the grade exceeds the service flow rate of the next poorer level of service,
consideration of a climbing lane is warranted. In order to use the HCM procedures, the free-flow
speed must be determined or estimated. The free-flow speed can be determined by measuring the
mean speed of passenger cars under low to moderate flow conditions (up to 1300 passenger cars
per hour per lane) on the facility or similar facility.

Recent data (14, 41) indicates that the mean free-flow speed under ideal conditions for
multilane highways ranges from 0.6 km/h [1 mph] lower than the 85th percentile speed of
65 km/h [40 mph] to 5 km/h [3 mph] lower than the 85th percentile speed of 100 km/h [60 mph].
Speed limit is one factor that affects free-flow speed. Recent research (14, 41) suggests that the
free-flow speed is approximately 11 km/h [7 mph] higher than the speed limit on facilities with
65- and 70-km/h [40- and 45-mph] speed limits and 8 km/h [5 mph] higher than the speed limit
on facilities with 80- and 90-km/h [50- and 55-mph] speed limits. Analysis based on these rules
of thumb should be used with caution. Field measurement is the recommended method of
determining the free-flow speed, with estimation using the above procedures employed only
when field data are not available .

Where the grade being investigated is located on a multilane highway, other factors should
sometimes be considered; such factors include median type, lane widths, lateral clearance, and
access point density. These factors are accounted for in the capacity analysis procedures by
making adjustments in the free-flow speed and are not normally a separate consideration in
determining whether a climbing lane would be advantageous.

For freeways, adjustments are made in traffic operational analyses using factors for restricted
lane widths, lateral clearances, recreational vehicles, and unfamiliar driver populations. The HCM
(14) should be used for information on considering these factors in analysis.

Under certain circumstances there should be consideration of additional lanes to
accommodate trucks in the downgrade direction. This is accomplished using the same procedure
as described above and using the passenger-car equivalents for trucks on downgrades in place of
the values for trucks and recreational vehicles on upgrades.
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Climbing lanes on multilane roads are usually placed on the outer or right-hand side of the
roadway as shown in Exhibit 3-66. The principles for cross slopes, for locating terminal points,
and for designing terminal areas or tapers for climbing lanes are discussed earlier in this chapter
in conjunction with two-lane highways; these principles are equally applicable to climbing lanes
on multilane facilities. A primary consideration is that the location of the uphill terminus of the
climbing lane should be at the point where a satisfactory speed is attained by trucks, preferably
about 15 km/h [10 mph] below the average running speed of the highway. Passing sight distance
need not be considered on multilane highways.

Exhibit 3-66.  Climbing Lane on Freeways and Multilane Highways

Methods for Increasing Passing Opportunities on
Two-Lane Roads

Several highway agencies have pioneered successful methods for providing more passing
opportunities along two-lane roads. Some of the more recognized of these methods, including
passing lanes, turnouts, shoulder driving, and shoulder use sections are described in the FHWA
informational guide Low Cost Methods for Improving Traffic Operations on Two-Lane Roads
(42). A synopsis of portions of material found in this guide pertaining to these designs is
presented in the succeeding sections. More detailed criteria for these methods are found in the
guide.

Passing Lanes

An added lane can be provided in one or both directions of travel to improve traffic
operations in sections of lower capacity to at least the same quality of service as adjacent road
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sections. Passing lanes can also be provided to improve overall traffic operations on two-lane
highways by reducing delays caused by inadequate passing opportunities over significant lengths
of highways, typically 10 to 100 km [6 to 60 miles]. Where passing lanes are used to improve
traffic operations over a length of road, they frequently are provided systematically at regular
intervals.

The location of the added lane should appear logical to the driver. The value of a passing
lane is more obvious at locations where passing sight distance is restricted than on long tangents
that may provide passing opportunities even without passing lanes. On the other hand, the
location of a passing lane should recognize the need for adequate sight distance at both the lane
addition and lane drop tapers. A minimum sight distance of 300 m [1,000 ft] on the approach to
each taper is recommended. The selection of an appropriate location also needs to consider the
location of intersections and high-volume driveways in order to minimize the volume of turning
movements on a road section where passing is encouraged. Furthermore, other physical
constraints such as bridges and culverts should be avoided if they restrict provision of a
continuous shoulder.

The following is a summary of the design procedure to be followed in providing passing
sections on two-lane highways:

1. Horizontal and vertical alignment should be designed to provide as much of the
highway as practical with passing sight distance (see Exhibit 3-7).

2. Where the design volume approaches capacity, the effect of lack of passing
opportunities in reducing the level of service should be recognized.

3. Where the critical length of grade exceeds the physical length of an upgrade,
consideration should be given to constructing added climbing lanes.  The critical length
of grade is determined as shown in Exhibits 3-65 and 3-66.

4. Where the extent and frequency of passing opportunities made available by application
of Criteria 1 and 3 are still too few, consideration should be given to the construction of
passing lane sections.

Passing- lane sections, which may be either three or four lanes in width, are constructed on
two-lane roads to provide the desired frequency of passing zones or to eliminate interference from
low-speed heavy vehicles, or both. Where a sufficient number and length of passing sections
cannot be obtained in the design of horizontal and vertical alignment alone, an occasional added
lane in one or both directions of travel may be introduced as shown in Exhibit 3-67 to provide
more passing opportunities. Such sections are particularly advantageous in rolling terrain,
especially where alignment is winding or the profile includes critical lengths of grade.

In rolling terrain a highway on tangent alignment may have restricted passing conditions
even though the grades are below critical length. Use of passing lanes over some of the crests
provides added passing sections in both directions where they are most needed. Passing-lane
sections should be sufficiently long to permit several vehicles in line behind a slow-moving
vehicle to pass before returning to the normal cross section of two-lane highway.
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Exhibit 3-67.  Passing Lanes Section on Two-Lane Roads

A minimum length of 300 m [1,000 ft], excluding tapers, is needed to assure that delayed
vehicles have an opportunity to complete at least one pass in the added lane. Where such a lane is
provided to reduce delays at a specific bottleneck, the needed length is controlled by the extent of
the bottleneck. A lane added to improve overall traffic operations should be long enough, over
0.5 km [0.3 mi] , to provide a substantial reduction in traffic platooning. The optimal length is
usually 0.8 to 3.2 km [0.5 to 2.0 mi], with longer lengths of added lane appropriate where traffic
volumes are higher. The HCM (14) provides guidance in the selection of a passing lane of
optimal length. Operational benefits typically result in reduced platooning for 5 to 15 km
[3 to 10 miles] downstream depending on volumes and passing opportunities. After that, normal
levels of platooning will occur until the next added lane is encountered.

The introduction of a passing-lane section on a two-lane highway does not necessarily
involve much additional grading. The width of an added lane should normally be the same as the
lane widths of the two-lane highway. It is also desirable for the adjoining shoulder to be at least
1.2 m [4 ft] wide and, whenever practical, the shoulder width in the added section should match
that of the adjoining two-lane highway. However, a full shoulder width is not as needed on a
passing lane section as on a conventional two-lane highway because the vehicles likely to stop are
few and there is little difficulty in passing a vehicle with only two wheels on the shoulder.  Thus,
if the normal shoulder width on the two-lane highway is 3.0 m [10 ft], a 1.8- to 2.4-m [6- to 8-ft]
widening of the roadbed on each side is all that may be needed.

Four-lane sections introduced explicitly to improve passing opportunities need not be
divided because there is no separation of opposing traffic on the two-lane portions of the
highway. The use of a median, however, is advantageous and should be considered on highways
carrying a total of 500 vehicles per hour or more, particularly on highways to be ultimately
converted to a four-lane divided cross section.

The transition tapers at each end of the added-lane section should be designed to encourage
safe and efficient operation. The lane drop taper length should be computed from the MUTCD (6)
formula L=0.6WS (L=Length in meters, W=Width in meters, S=Speed in km/h) or L=WS
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[L=Length in ft, W=Width in ft, S=Speed in mph] while the recommended length for the lane
addition taper is half to two-thirds of the lane drop length.

The signing and marking of an added lane is partially addressed in the MUTCD (6), which
indicates the appropriate centerline markings for such lanes as well as the signing and marking of
lane drop transitions. However, the MUTCD (6) does not address signing in advance of and at the
lane addition. A sign with the legend “Passing Lane 1 Kilometer” [“Passing Lane 1/2 Mile”]
should be placed in advance of each added lane in order that drivers of both slow-moving
vehicles and following vehicles can prepare to make effective use of the added lane. Additional
signs 3 to 10 km [2 to 5 mi] in advance are also desirable because they may reduce the frustration
and impatience of drivers following a slow-moving vehicle by assuring them that they will soon
have an opportunity to pass. In addition, a sign should be installed at the beginning of the lane
addition taper to encourage slower-moving vehicles to keep right.

The transitions between the two- and three- or four-lane pavements should be located where
the change in width is in full view of the driver. Sections of four-lane highway, particularly
divided sections, longer than about 3 km [2 mi] may cause the driver to lose his sense of
awareness that the highway is basically a two-lane facility. It is essential, therefore, that
transitions from a three- or four-lane cross section back to two lanes be properly marked and
identified with pavement markings and signs to alert the driver of the upcoming section of
two-lane highway. An advance sign before the end of the passing lane is particularly important to
inform drivers of the narrower roadway ahead; for more information, see the MUTCD (6).

Turnouts

A turnout is a widened, unobstructed shoulder area that allows slow-moving vehicles to pull
out of the through lane to give passing opportunities to following vehicles (42, 43). The driver of
the slow-moving vehicle, if there are following vehicles, is expected to pull out of the through
lane and remain in the turnout only long enough for the following vehicles to pass before
returning to the through lane. When there are only one or two following vehicles, this maneuver
can be accomplished without it being necessary for the driver of the vehicle in the turnout to stop.
However, when this number is exceeded, the driver may need to stop in the turnout in order for
all the following vehicles to pass. Turnouts are most frequently used on lower volume roads
where long platoons are rare and in difficult terrain with steep grades where construction of an
additional lane may not be cost effective. Such conditions are often found in mountain , coastal,
and scenic areas where more than 10 percent of the vehicle volumes are large trucks and
recreational vehicles.

The recommended length of turnouts including taper is shown in Exhibit 3-68. Turnouts
shorter than 60 m [200 ft] are not recommended even for very low approach speeds. Turnouts
longer than 185 m [600 ft] are not recommended for high-speed roads to avoid use of the turnout
as a passing lane. The recommended lengths are based on the assumption that slow-moving
vehicles enter the turnout at 8 km/h [5 mph] slower than the mean speed of the through traffic.
This length allows the entering vehicle to coast to the midpoint of the turnout without braking,
and then, if necessary, to brake to a stop using a deceleration rate not exceeding 3 m/s2 [10 ft/s2].
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The recommended lengths for turnouts include entry and exit tapers. Typical entry and exit taper
lengths range from 15 to 30 m [50 to 100 ft] (42, 43).

Metric US Customary
Approach

speed (km/h)
Minimum

length (m)a
Approach

speed (mph)
Minimum

length (ft)a

30 60 20 200
40 60 30 200
50 65 40 300
60 85 45 350
70 105 50 450
80 135 55 550
90 170 60 600

100 185
a  Maximum length should be 185 m (600 ft) to avoid use of the

turnout as a passing lane.

Exhibit 3-68.  Recommended Lengths of Turnouts Including Taper

The minimum width of the turnout is 3.6 m [12 ft] with widths of 5 m [16 ft] considered
desirable. Turnouts wider than 5 m [16 ft] are not recommended.

A turnout should not be located on or adjacent to a horizontal or vertical curve that limits
sight distance in either direction. The available sight distance should be at least 300 m [1,000 ft]
on the approach to the turnout.

Proper signing and pavement marking are also needed both to maximize turnout usage and
assure safe operation. An edge line marking on the right side of the turnout is desirable to guide
drivers, especially in wider turnouts.

Shoulder Driving

In parts of the United States, a long-standing custom has been established for slow-moving
vehicles to move to the shoulder when another vehicle approaches from the rear and return to the
traveled way after that following vehicle has passed. The practice generally occurs where
adequate paved shoulders exist and, in effect, these shoulders function as continuous turnouts.
This custom is regarded as a courtesy to other drivers requiring little or no sacrifice in speed by
either driver. While highway agencies may want to permit such use as a means of improving
passing opportunities without a major capital investment, they should recognize that in many
States shoulder driving is currently prohibited by law. Thus, a highway agency considering
shoulder driving as a passing aid may need to propose legislation to authorize such use as well as
develop a public education campaign to familiarize drivers with the new law.

Highway agencies should evaluate the mileage of two-lane highways with paved shoulders
as well as their structural quality before deciding whether to allow their use as a passing aid. It
should be recognized that, where shoulder driving becomes common, it will not be limited to
selected sites but rather will occur anywhere on the system where paved shoulders are provided.
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Another consideration is that shoulder widths of at least 3.0 m [10 ft], and preferably 3.6 m
[12 ft], are needed. The effect that shoulder driving may have on the use of the highway by
bicyclists should also considered. Because the practice of shoulder driving has grown up through
local custom, no special signing to promote such use has been created.

Shoulder Use Sections

Another approach to providing additional passing opportunities is to permit slow-moving
vehicles to use paved shoulders at selected sites designated by specific signing. This is a more
limited application of shoulder use by slow-moving vehicles than shoulder driving described in
the previous section. Typically, drivers move to the shoulder only long enough for following
vehicles to pass and then return to the through lane. Thus, the shoulder-use section functions as an
extended turnout. This approach enables a highway agency to promote shoulder use only where
the shoulder is adequate to handle anticipated traffic loads and the need for more frequent passing
opportunities has been established by the large amount of vehicle platooning.

Shoulder use sections generally range in length from 0.3 to 5 km [0.2 to 3 mi]. Shoulder use
should be allowed only where shoulders are at least 3.0 m [10 ft] and preferably 3.6 m [12 ft]
wide. Adequate structural strength to support the anticipated loads along with good surface
conditions are needed. Particular attention needs to be placed on the condition of the shoulder
because drivers are unlikely to use a shoulder if it is rough, broken, or covered with debris. Signs
should be erected at both the beginning and end of the section where shoulder use is allowed.
However, since signing of shoulder-use sections is not addressed in the MUTCD (6), special
signing should be used.

Emergency Escape Ramps

General

Where long, descending grades exist or where topographic and location controls require such
grades on new alignment, the design and construction of an emergency escape ramp at an
appropriate location is desirable to provide a location for out-of-control vehicles, particularly
trucks, to slow and stop away from the main traffic stream. Out-of-control vehicles are generally
the result of a driver losing braking ability either through overheating of the brakes due to
mechanical failure or failure to downshift at the appropriate time. Considerable experience with
ramps constructed on existing highways has led to the design and installation of effective ramps
that save lives and reduce property damage. Reports and evaluations of existing ramps indicate
that they provide acceptable deceleration rates and afford good driver control of the vehicle on
the ramp (44).

Forces that act on every vehicle to affect the vehicle’s speed include engine, braking, and
tractive resistance forces. Engine and braking resistance forces can be ignored in the design of
escape ramps because the ramp should be designed for the worst case, in which the vehicle is out
of gear and the brake system has failed. The tractive resistance force contains four subclasses:
inertial, aerodynamic , rolling, and gradient. Inertial and negative gradient forces act to maintain
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motion of the vehicle, while rolling, positive gradient, and air resistance forces act to retard its
motion. Exhibit 3-69 illustrates the action of the various resistance forces on a vehicle.

Exhibit 3-69.  Forces Acting on a Vehicle in Motion

Inertial resistance can be described as a force that resists movement of a vehicle at rest or
maintains a vehicle in motion, unless the vehicle is acted on by some external force. Inertial
resistance must be overcome to either increase or decrease the speed of a vehicle. Rolling and
positive gradient resistance forces are available to overcome the inertial resistance. Rolling
resistance is a general term used to describe the resistance to motion at the area of contact
between a vehicle’s tires and the roadway surface and is only applicable when a vehicle is in
motion. It is influenced by the type and displacement characteristics of the surfacing material of
the roadway. Each surfacing material has a coefficient, expressed in kg/1,000 kg [lb/1,000 lb] of
gross vehicle weight, which determines the amount of rolling resistance of a vehicle. The values
shown in Exhibit 3-70 for rolling resistance have been obtained from various sources throughout
the country and are a best available estimate.

Metric US Customary

Surfacing material

Rolling
resistance

(kg/1000 kg
GVM)

Equivalent
grade (%)a

Rolling
resistance
(lb/1000 lb

GVW)
Equivalent
grade (%)a

Portland cement
concrete 10 1.0 10 1.0

Asphalt concrete 12 1.2 12 1.2
Gravel, compacted 15 1.5 15 1.5
Earth, sandy, loose 37 3.7 37 3.7
Crushed aggregate,

loose
50 5.0 50 5.0

Gravel, loose 100 10.0 100 10.0
Sand 150 15.0 150 15.0
Pea gravel 250 25.0 250 25.0
a  Rolling resistance expressed as equivalent gradient.

Exhibit 3-70.  Rolling Resistance of Roadway Surfacing Materials
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Gradient resistance is due to the effect of gravity and is expressed as the force needed to
move the vehicle through a given vertical distance. For gradient resistance to provide a beneficial
force on an escape ramp, the vehicle must be moving upgrade, against gravity. In the case where
the vehicle is descending a grade, gradient resistance is negative, thereby reducing the forces
available to slow and stop the vehicle. The amount of gradient resistance is influenced by the total
weight of the vehicle and the magnitude of the grade. For each percent of grade, the gradient
resistance is 10 kg/1,000 kg [10 lb/1,000 lb] whether the grade is positive or negative.

The remaining component of tractive resistance is aerodynamic resistance, the force
resulting from the retarding effect of air on the various surfaces of the vehicle. Air causes a
significant resistance at speeds above 80 km/h [50 mph], but is negligible under 30 km/h
[20 mph]. The effect of aerodynamic resistance has been neglected in determining the length of
the arrester bed, thus introducing a small safety factor.

Need and Location for Emergency Escape Ramps

Each grade has its own unique characteristics. Highway alignment, gradient, length, and
descent speed contribute to the potential for out-of-control vehicles. For existing highways,
operational problems on a downgrade will often be reported by law enforcement officials, truck
drivers, or the general public. A field review of a specific  grade may reveal damaged guardrail,
gouged pavement surfaces, or spilled oil indicating locations where drivers of heavy vehicles had
difficulty negotiating a downgrade. For existing facilities an escape ramp should be provided as
soon as a need is established. Crash experience (or, for new facilities, crash experience on similar
facilities) and truck operations on the grade combined with engineering judgment are frequently
used to determine the need for a truck escape ramp. Often the impact of a potential runaway truck
on adjacent activities or population centers will provide sufficient reason to construct an escape
ramp.

Unnecessary escape ramps should be avoided. For example, a second escape ramp should
not be needed just beyond the curve that created the need for the initial ramp.

While there are no universal guidelines available for new and existing facilities, a variety of
factors should be considered in selecting the specific site for an escape ramp. Each location
presents a different array of design needs; factors that should be considered include topography,
length and percent of grade, potential speed, economics, environmental impact, and crash
experience. Ramps should be located to intercept the greatest number of runaway vehicles, such
as at the bottom of the grade and at intermediate points along the grade where an out-of-control
vehicle could cause a catastrophic crash.

A technique for new and existing facilities available for use in analyzing operations on a
grade, in addition to crash analysis, is the Grade Severity Rating System (45). The system uses a
predetermined brake temperature limit (260EC [500EF]) to establish a safe descent speed for the
grade. It also can be used to determine expected brake temperatures at 0.8 km [0.5 mi] intervals
along the downgrade. The location where brake temperatures exceed the limit indicates the point
that brake failures can occur, leading to potential runaways.
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Escape ramps generally may be built at any practical location where the main road alignment
is tangent. They should be built in advance of horizontal curves that cannot be negotiated safely
by an out-of-control vehicle and in advance of populated areas. Escape ramps should exit to the
right of the roadway. On divided multilane highways, where a left exit may appear to be the only
practical location, difficulties may be expected by the refusal of vehicles in the left lane to yield
to out-of-control vehicles attempting to change lanes.

Although crashes involving runaway trucks can occur at various sites along a grade,
locations having multiple crashes should be analyzed in detail. Analysis of crash data pertinent to
a prospective escape ramp site should include evaluation of the section of highway immediately
uphill, including the amount of curvature traversed and distance to and radius of the adjacent
curve.

An integral part of the evaluation should be the determination of the maximum speed that an
out-of-control vehicle could attain at the proposed site. This highest obtainable speed can then be
used as the minimum design speed for the ramp. The 130- to 140-km/h [80- to 90-mph] entering
speed, recommended for design, is intended to represent an extreme condition and therefore
should not be used as the basis for selecting locations of escape ramps. Although the variables
involved make it impractical to establish a maximum truck speed warrant for location of escape
ramps, it is evident that anticipated speeds should be below the range used for design. The
principal factor in determining the need for an emergency escape ramp should be the safety of the
other traffic on the roadway, the driver of the out-of-control vehicle, and the residents along and
at the bottom of the grade. An escape ramp, or ramps if the conditions indicate the need for more
than one, should be located wherever grades are of a steepness and length that present a
substantial risk of runaway trucks and topographic conditions will permit construction.

Types of Emergency Escape Ramps

Emergency escape ramps have been classified in a variety of ways. Three broad categories
used to classify ramps are gravity, sandpile, and arrester bed. Within these broad categories, four
basic emergency escape ramp designs predominate. These designs are the sandpile and three
types of arrester beds, classified by grade of the arrester bed: descending grade, horizontal grade,
and ascending grade. These four types are illustrated in Exhibit 3-71.

The gravity ramp has a paved or densely compacted aggregate surface, relying primarily on
gravitational forces to slow and stop the runaway. Rolling resistance forces contribute little to
assist in stopping the vehicle. Gravity ramps are usually long, steep, and are constrained by
topographic controls and costs. While a gravity ramp stops forward motion, the paved surface
cannot prevent the vehicle from rolling back down the ramp grade and jackknifing without a
positive capture mechanism. Therefore, the gravity ramp is the least desirable of the escape ramp
types.

Sandpiles, composed of loose, dry sand dumped at the ramp site, are usually no more than
120 m [400 ft] in length. The influence of gravity is dependent on the slope of the surface. The
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Exhibit 3-71.  Basic Types of Emergency Escape Ramps
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increase in rolling resistance is supplied by loose sand. Deceleration characteristics of sandpiles
are usually severe and the sand can be affected by weather. Because of the deceleration
characteristics, the sandpile is less desirable than the arrester bed. However, at locations where
inadequate space exists for another type of ramp, the sandpile may be appropriate because of its
compact dimensions.

Descending-grade arrester-bed escape ramps are constructed parallel and adjacent to the
through lanes of the highway. These ramps use loose aggregate in an arrester bed to increase
rolling resistance to slow the vehicle. The gradient resistance acts in the direction of vehicle
movement. As a result, the descending-grade ramps can be rather lengthy because the
gravitational effect is not acting to help reduce the speed of the vehicle. The ramp should have a
clear, obvious return path to the highway so drivers who doubt the effectiveness of the ramp will
feel they will be able to return to the highway at a reduced speed.

Where the topography can accommodate, a horizontal-grade arrester-bed escape ramp is
another option. Constructed on an essentially flat gradient, the horizontal-grade ramp relies on the
increased rolling resistance from the loose aggregate in an arrester bed to slow and stop the out-
of-control vehicle, since the effect of gravity is minimal. This type of ramp is longer than the
ascending-grade arrester bed.

The most commonly used escape ramp is the ascending-grade arrester bed. Ramp
installations of this type use gradient resistance to advantage, supplementing the effects of the
aggregate in the arrester bed, and generally, reducing the length of ramp needed to stop the
vehicle. The loose material in the arresting bed increases the rolling resistance, as in the other
types of ramps, while the gradient resistance acts downgrade, opposite to the vehicle movement.
The loose bedding material also serves to hold the vehicle in place on the ramp grade after it has
come to a safe stop.

Each of the ramp types is applicable to a particular situation where an emergency escape
ramp is desirable and should be compatible with established location and topographic controls at
possible sites. The procedures used for analysis of truck escape ramps are essentially the same for
each of the categories or types identified. The rolling resistance factor for the surfacing material
used in determining the length needed to slow and stop the runaway safely is the difference in the
procedures.

Design Considerations

The combination of the above external resistance and numerous internal resistance forces not
discussed acts to limit the maximum speed of an out-of-control vehicle. Speeds in excess of 130
to 140 km/h [80 to 90 mph] will rarely, if ever, be attained. Therefore, an escape ramp should be
designed for a minimum entering speed of 130 km/h [80 mph] , with a 140-km/h [90-mph] design
speed being preferred. Several formulas and software programs have been developed to
determine the runaway speed at any point on the grade. These methods can be used to establish a
design speed for specific grades and horizontal alignments (44, 45, 46).
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The design and construction of effective escape ramps involve a number of considerations as
follows:

• To safely stop an out-of-control vehicle, the length of the ramp should be sufficient to
dissipate the kinetic energy of the moving vehicle.

• The alignment of the escape ramp should be tangent or on very flat curvature to
minimize the driver’s difficulty in controlling the vehicle .

• The width of the ramp should be adequate to accommodate more than one vehicle
because it is not uncommon for two or more vehicles to have need of the escape ramp
within a short time. A minimum width of 8 m [26 ft] may be all that is practical in some
areas, though greater widths are preferred. Desirably, a width of 9 to 12 m [30 to 40 ft]
would more adequately accommodate two or more out-of-control vehicles. Ramp
widths less than indicated above have been used successfully in some locations where it
was determined that a wider width was unreasonably costly or not needed. Widths of
ramps in use range from 3.6 to 12 m [12 to 40 ft].

• The surfacing material used in the arrester bed should be clean, not easily compacted,
and have a high coefficient of rolling resistance. When aggregate is used, it should be
rounded, uncrushed, predominantly a single size, and as free from fine-size material as
practical. Such material will maximize the percentage of voids, thereby providing
optimum drainage and minimizing interlocking and compaction. A material with a low
shear strength is desirable to permit penetration of the tires. The durability of the
aggregate should be evaluated using an appropriate crush test. Pea gravel is
representative of the material used most frequently, although loose gravel and sand are
also used. A gradation with a top size of 40 mm [1.5 in] has been used with success in
several States. Material conforming to the AASHTO gradation No. 57 is effective if the
fine-sized materials is removed.

• Arrester beds should be constructed with a minimum aggregate depth of 1 m [3 ft].
Contamination of the bed material can reduce the effectiveness of the arrester bed by
creating a hard surface layer up to 300 mm [12 in] thick at the bottom of the bed.
Therefore, an aggregate depth up to 1,100 mm [42 in] is recommended. As the vehicle
enters the arrester bed, the wheels of the vehicle displace the surface, sinking into the
bed material, thus increasing the rolling resistance. To assist in decelerating the vehicle
smoothly, the depth of the bed should be tapered from a minimum of 75 mm [3 in] at
the entry point to the full depth of aggregate in the initial 30 to 60 m [100 to 200 ft] of
the bed.

• A positive means of draining the arrester bed should be provided to help protect the bed
from freezing and avoid contamination of the arrester bed material. This can be
accomplished by grading the base to drain, intercepting water prior to entering the bed,
underdrain systems with transverse outlets or edge drains. Geotextiles or paving can be
used between the subbase and the bed materials to prevent infiltration of fine materials
that may trap water. Where toxic contamination from diesel fuel or other material
spillage is a concern, the base of the arrester bed may be paved with concrete and
holding tanks to retain the spilled contaminants may be provided.

• The entrance to the ramp should be designed so that a vehicle traveling at a high rate of
speed can enter safely. As much sight distance as practical should be provided
preceding the ramp so that a driver can enter safely. The full length of the ramp should



AASHTO—Geometric Design of Highways and Streets

266

be visible to the driver. The angle of departure for the ramp should be small, usually
5 degrees or less. An auxiliary lane may be appropriate to assist the driver to prepare to
enter the escape ramp. The main roadway surface should be extended to a point at or
beyond the exit gore so that both front wheels of the out-of-control vehicle will enter
the arrester bed simultaneously; this also provides preparation time for the driver before
actual deceleration begins. The arrester bed should be offset laterally from the through
lanes by an amount sufficient to preclude loose material being thrown onto the through
lanes.

• Access to the ramp should be made obvious by exit signing to allow the driver of an
out-of-control vehicle time to react, so as to minimize the possibility of missing the
ramp. Advance signing is needed to inform drivers of the existence of an escape ramp
and to prepare drivers well in advance of the decision point so that they will have
enough time to decide whether or not to use the escape ramp. Regulatory signs near the
entrance should be used to discourage other motorists from entering, stopping, or
parking at or on the ramp. The path of the ramp should be delineated to define ramp
edges and provide nighttime direction; for more information, see the MUTCD (6).
Illumination of the approach and ramp is desirable.

• The characteristic that makes a truck escape ramp an effective safety device also makes
it difficult to retrieve a vehicle captured by the ramp. A service road located adjacent to
the arrester bed is needed so tow trucks and maintenance vehicles can use it without
becoming trapped in the bedding material. The width of this service road should be at
least 3 m [10 ft]. Preferably this service road should be paved but may be surfaced with
gravel. The road should be designed such that the driver of an out-of-control vehicle
will not mistake the service road for the arrester bed.

• Anchors, usually located adjacent to the arrester bed at 50 to 100 m [150 to 300 ft]
intervals, are needed to secure a tow truck when removing a vehicle from the arrester
bed. One anchor should be located about 30 m [100 ft] in advance of the bed to assist
the wrecker in returning a captured vehicle to a surfaced roadway. The local tow-truck
operators can be very helpful in properly locating the anchors.

As a vehicle rolls upgrade, it loses momentum and will eventually stop because of the effect
of gravity. To determine the distance needed to bring the vehicle to a stop with consideration of
the rolling resistance and gradient resistance, the following simplified equation may be used (33):
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where:

L = length of arrester bed, m;
V = entering velocity, km/h;
G = percent grade divided by 100;
R = rolling resistance, expressed

as equivalent percent gradient
divided by 100 (see
Exhibit 3-70)

where:

L = length of arrester bed, ft;
V = entering velocity, mph;
G = percent grade divided by 100;
R = rolling resistance, expressed

as equivalent percent gradient
divided by 100 (see
Exhibit 3-70)
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For example, assume that topographic conditions at a site selected for an emergency escape
ramp limit the ramp to an upgrade of 10 percent (G =+ 0.10). The arrester bed is to be constructed
with loose gravel for an entering speed of 140 km/h [90 mph]. Using Exhibit 3-70, R is
determined to be 0.10. The length of the arrester bed should be determined using the
Equation (3-41). For this example, the length of the arrester bed is about 400 m [1,350 ft].

When an arrester bed is constructed using more than one grade along its length, such as
shown in Exhibit 3-72, the speed loss occurring on each of the grades as the vehicle traverses the
bed should be determined using the following equation:

Metric US Customary
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where:

Vf = speed at end of grade, km/h;
Vi = entering speed at beginning

of grade, km/h;
L = length of grade, m;
R = rolling resistance, expressed

as equivalent percent
gradient divided by 100 (see
Exhibit 3-70);

G = percent grade divided by
100

where:

Vf = speed at end of grade, mph;
Vi = entering speed at beginning

of grade, mph;
L = length of grade, ft;
R = rolling resistance, expressed

as equivalent percent
gradient divided by 100 (see
Exhibit 3-70);

G = percent grade divided by
100

The final speed for one section of the ramp is subtracted from the entering speed to
determine a new entering speed for the next section of the ramp and the calculation repeated at
each change in grade on the ramp until sufficient length is provided to reduce the speed of the
out-of-control vehicle to zero.

Exhibit 3-72.  Typical Emergency Escape Ramp
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Exhibit 3-72 shows a plan and profile of an emergency escape ramp with typical
appurtenances.

Where the only practical location for an escape ramp will not provide sufficient length and
grade to completely stop an out-of-control vehicle, it should be supplemented with an acceptable
positive attenuation device.

Where a full-length ramp is to be provided with full deceleration capability for the design
speed, a “last-chance” device should be considered when the consequences of leaving the end of
the ramp are serious.

Any ramp-end treatment should be designed with care to ensure that its advantages outweigh
the disadvantages. The risk to others as the result of an out-of-control truck overrunning the end
of an escape ramp may be more important than the harm to the driver or cargo of the truck. The
abrupt deceleration of an out-of-control truck may cause shifting of the load, shearing of the fifth
wheel, or jackknifing, all with potentially harmful occurrences to the driver and cargo.

Mounds of bedding material between 0.6 and 1.5 m [2 and 5 ft] high with 1V:1.5H slopes
(i.e., slopes that change in elevation by one unit of length for each 1 to 5 units of horizontal
distance) have been used at the end of ramps in several instances as the “last-chance” device. At
least one escape ramp has been constructed with an array of crash cushions installed to prevent an
out-of-control vehicle from leaving the end of the ramp. Furthermore, at the end of a hard-
surfaced gravity ramp, a gravel bed or attenuator array may sufficiently immobilize a brakeless
runaway vehicle to keep it from rolling backward and jackknifing. Where barrels are used, the
barrels should be filled with the same material as used in the arrester bed, so that any finer
material does not result in contamination of the bed and reduction of the expected rolling
resistance.

Brake Check Areas

Turnouts or pulloff areas at the summit of a grade can be used for brake-check areas or
mandatory-stop areas to provide an opportunity for a driver to inspect equipment on the vehicle
and to ensure the brakes are not overheated at the beginning of the descent. In addition,
information about the grade ahead and the location of escape ramps can be provided by
diagrammatic signing or self-service pamphlets. An elaborate design is not needed for these
areas. A brake-check area can be a paved lane behind and separated from the shoulder or a
widened shoulder where a truck can stop. Appropriate signing should be used to discourage
casual stopping by the public.

Maintenance

After each use, aggregate arrester beds should be reshaped using power equipment to the
extent practical and the aggregate scarified as appropriate. Since aggregate tends to compact over
time, the bedding material should be cleaned of contaminants and scarified periodically to retain
the retarding characteristics of the bedding material and maintain free drainage. Using power
equipment for work in the arrester bed reduces the exposure time for the maintenance workers to
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the potential that a runaway truck may need to use the facility. Maintenance of the appurtenances
should be accomplished as appropriate.

Vertical Curves

General Considerations

Vertical curves to effect gradual changes between tangent grades may be any one of the crest
or sag types depicted in Exhibit 3-73. Vertical curves should be simple in application and should
result in a design that is safe and comfortable in operation, pleasing in appearance, and adequate
for drainage. The major control for safe operation on crest vertical curves is the provision of
ample sight distances for the design speed; while research (4) has shown that vertical curves with
limited sight distance do not necessarily experience safety problems, it is recommended that all
vertical curves should be designed to provide at least the stopping sight distances shown in
Exhibit 3-1. Wherever practical, more liberal stopping sight distances should be used.
Furthermore, additional sight distance should be provided at decision points.

Exhibit 3-73.  Types of Vertical Curves

For driver comfort, the rate of change of grade should be kept within tolerable limits. This
consideration is most important in sag vertical curves where gravitational and vertical centripetal
forces act in opposite directions. Appearance also should be considered in designing vertical
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curves. A long curve has a more pleasing appearance than a short one; short vertical curves may
give the appearance of a sudden break in the profile due to the effect of foreshortening.

Drainage of curbed roadways on sag vertical curves (Type III in Exhibit 3-73) needs careful
profile design to retain a grade of not less than 0.5 percent or, in some cases, 0.30 percent for the
outer edges of the roadway. Although not desirable, flatter grades may be appropriate in some
situations.

For simplicity, a parabolic curve with an equivalent vertical axis centered on the vertical
point of intersection (VPI) is usually used in roadway profile design. The vertical offsets from the
tangent vary as the square of the horizontal distance from the curve end (point of tangency). The
vertical offset from the tangent grade at any point along the curve is calculated as a proportion of
the vertical offset at the VPI, which is AL/800, where the symbols are as shown in Exhibit 3-73.
The rate of change of grade at successive points on the curve is a constant amount for equal
increments of horizontal distance, and is equal to the algebraic difference between intersecting
tangent grades divided by the length of curve in meters [feet], or A/L in percent per meter
[percent per foot]. The reciprocal L/A is the horizontal distance in meters [feet] needed to make a
1-percent change in gradient and is, therefore, a measure of curvature. The quantity L/A, termed
“K,” is useful in determining the horizontal distance from the vertical point of curvature (VPC) to
the high point of Type I curves or to the low point of Type III curves. This point where the slope
is zero occurs at a distance from the VPC equal to K times the approach gradient. The value of K
is also useful in determining minimum lengths of vertical curves for various design speeds. Other
details on parabolic vertical curves are found in textbooks on highway engineering.

On certain occasions, because of critical clearance or other controls, the use of asymmetrical
vertical curves may be appropriate. Because the conditions under which such curves are
appropriate are infrequent, the derivation and use of the relevant equations have not been
included herein. For use in such limited instances, refer to asymmetrical curve data found in a
number of highway engineering texts.

Crest Vertical Curves

Minimum lengths of crest vertical curves based on sight distance criteria generally are
satisfactory from the standpoint of safety, comfort, and appearance. An exception may be at
decision areas, such as sight distance to ramp exit gores, where longer lengths are needed; for
further information, refer to the section of this chapter concerning decision sight distance.

Exhibit 3-74 illustrates the parameters used in determining the length of a parabolic crest
vertical curve needed to provide any specified value of sight distance. The basic equations for
length of a crest vertical curve in terms of algebraic difference in grade and sight distance follow:
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where:

L = length of vertical curve, m;
S = sight distance, m;
A = algebraic difference in grades,

percent;
h1 = height of eye above roadway

surface, m;
h2 = height of object above

roadway surface, m

where:

L = length of vertical curve, m;
S = sight distance, m;
A = algebraic difference in grades,

percent;
h1 = height of eye above roadway

surface, m;
h2 = height of object above roadway

surface, m

Exhibit 3-74.  Parameters Considered in Determining the Length of a Crest Vertical Curve
to Provide Sight Distance

When the height of eye and the height of object are 1,080 mm and 600 mm [3.5 ft and
2.0 ft], respectively, as used for stopping sight distance, the equations become:
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Design controls—stopping sight distance. The minimum lengths of vertical curves for
different values of A to provide the minimum stopping sight distances for each design speed are
shown in Exhibit 3-75. The solid lines give the minimum vertical curve lengths, on the basis of
rounded values of K as determined from Equations (3-45) and (3-46).   

The short dashed curve at the lower left, crossing these lines, indicates where S = L. Note
that to the right of the S = L line, the value of K, or length of vertical curve per percent change in
A, is a simple and convenient expression of the design control. For each design speed this single
value is a positive whole number that is indicative of the rate of vertical curvature. The design
control in terms of K covers all combinations of A and L for any one design speed; thus, A and L
need not be indicated separately in a tabulation of design value. The selection of design curves is
facilitated because the minimum length of curve in meters [feet] is equal to K times the algebraic
difference in grades in percent, L = KA. Conversely, the checking of plans is simplified by
comparing all curves with the design value for K.

Exhibit 3-76 shows the computed K values for lengths of vertical curves corresponding to
the stopping sight distances shown in Exhibit 3-1 for each design speed. For direct use in design,
values of K are rounded as shown in the right column. The rounded values of K are plotted as the
solid lines in Exhibit 3-75. These rounded values of K are higher than computed values, but the
differences are not significant.

Where S is greater than L (lower left in Exhibit 3-75), the computed values plot as a curve
(as shown by the dashed line for 70 km/h [45 mph]) that bends to the left, and for small values of
A the vertical curve lengths are zero because the sight line passes over the high point. This
relationship does not represent desirable design practice. Most States use a minimum length of
vertical curve, expressed as either a single value, a range for different design speeds, or a function
of A. Values now in use range from about 30 to 100 m [100 to 325 ft]. To recognize the
distinction in design speed and to approximate the range of current practice, minimum lengths of
vertical curves are expressed as about 0.6 times the design speed in km/h, Lmin = 0.6V, where V is
in kilometers per hour and L is in meters, or about three times the design speed in mph, [Lmin =
3V], where V is in miles per hour and L is in feet. These terminal adjustments show as the
vertical lines at the lower left of Exhibit 3-75.
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Exhibit 3-75.  Design Controls for Crest Vertical Curves—Open Road Conditions
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Metric US Customary
Rate of vertical
curvature, Ka

Rate of vertical
curvature, KaDesign

speed
(km/h)

Stopping
sight

distance
(m) Calculated Design

Design
speed
(mph)

Stopping
sight

distance
(ft) Calculated Design

20 20 0.6 1 15 80 3.0 3
30 35 1.9 2 20 115 6.1 7
40 50 3.8 4 25 155 11.1 12
50 65 6.4 7 30 200 18.5 19
60 85 11.0 11 35 250 29.0 29
70 105 16.8 17 40 305 43.1 44
80 130 25.7 26 45 360 60.1 61
90 160 38.9 39 50 425 83.7 84

100 185 52.0 52 55 495 113.5 114
110 220 73.6 74 60 570 150.6 151
120 250 95.0 95 65 645 192.8 193
130 285 123.4 124 70 730 246.9 247

75 820 311.6 312
80 910 383.7 384

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in
intersecting grades (A).  K = L/A

Exhibit 3-76.  Design Controls for Stopping Sight Distance and for Crest and Sag Vertical
Curves

The values of K derived above when S is less than L also can be used without significant
error where S is greater than L. As shown in Exhibit 3-75, extension of the diagonal lines to meet
the vertical lines for minimum lengths of vertical curves results in appreciable differences from
the theoretical only where A is small and little or no additional cost is involved in obtaining
longer vertical curves.

For night driving on highways without lighting, the length of visible roadway is that
roadway that is directly illuminated by the headlights of the vehicle . For certain conditions, the
minimum stopping sight distance values used for design exceed the length of visible roadway.
First, vehicle headlights have limitations on the distance over which they can project the light
intensity levels that are needed for visibility. When headlights are operated on low beams, the
reduced candlepower at the source plus the downward projection angle significantly restrict the
length of visible roadway surface. Thus, particularly for high-speed conditions, stopping sight
distance values exceed road-surface visibility distances afforded by the low-beam headlights
regardless of whether the roadway profile is level or curving vertically. Second, for crest vertical
curves, the area forward of the headlight beam’s point of tangency with the roadway surface is
shadowed and receives only indirect illumination.

Since the headlight mounting height (typically about 600 mm [2 ft]) is lower than the driver
eye height used for design (1,080 mm [3.5 ft]), the sight distance to an illuminated object is
controlled by the height of the vehicle headlights rather than by the direct line of sight. Any
object within the shadow zone must be high enough to extend into the headlight beam to be
directly illuminated. On the basis of Equation (3-43), the bottom of the headlight beam is about
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400 mm [1.3 ft] above the roadway at a distance ahead of the vehicle equal to the stopping sight
distance. Although the vehicle headlight system does limit roadway visibility length as mentioned
above, there is some mitigating effect in that other vehicles, whose taillight height typically varies
from 450 to 600 mm [1.5 to 2.0 ft], and other sizable objects receive direct lighting from
headlights at stopping sight distance values used for design. Furthermore, drivers are aware that
visibility at night is less than during the day, regardless of road and street design features, and
they may therefore be more attentive and alert.

There is a level point on a crest vertical curve of Type I (see Exhibit 3-73), but no difficulty
with drainage on highways with curbs is typically experienced if the curve is sharp enough so that
a minimum grade of 0.30 percent is reached at a point about 15 m [50 ft] from the crest. This
corresponds to K of 51 m [167 ft] per percent change in grade, which is plotted in Exhibit 3-75 as
the drainage maximum. All combinations above or to the left of this line satisfy the drainage
criterion. The combinations below and to the right of this line involve flatter vertical curves.
Special attention is needed in these cases to ensure proper pavement drainage near the high point
of crest vertical curves. It is not intended that K of 51 m [167 ft] per percent grade  be considered
a design maximum, but merely a value beyond which drainage should be more carefully
designed.

Design controls—passing sight distance. Design values of crest vertical curves for passing
sight distance differ from those for stopping sight distance because of the different sight distance
and object height criteria. The general Equations (3-43) and (3-44) apply, but the 1,080 mm
[3.5 ft] height of object results in the following specific formulas with the same terms as shown
above:
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For the minimum passing sight distances shown in Exhibit 3-7, the minimum lengths of crest
vertical curves are substantially longer than those for stopping sight distances. The extent of
difference is evident by the values of K, or length of vertical curve per percent change in A, for
passing sight distances shown in Exhibit 3-77. These lengths are 7 to 10 times the corresponding
lengths for stopping sight distance.
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Metric US Customary

Design speed
(km/h)

Passing sight
distance (m)

Rate of
vertical

curvature, K*
design

Design speed
(mph)

Passing sight
distance (ft)

Rate of
vertical

curvature, K*
design

30 200 46 20 710 180
40 270 84 25 900 289
50 345 138 30 1090 424
60 410 195 35 1280 585
70 485 272 40 1470 772
80 540 338 45 1625 943
90 615 438 50 1835 1203

100 670 520 55 1985 1407
110 730 617 60 2135 1628
120 775 695 65 2285 1865
130 815 769 70 2480 2197

75 2580 2377
80 2680 2565

Note:  *Rate of vertical curvature, K, is the length of curve per percent algebraic difference in
intersecting grades (A).  K=L/A

Exhibit 3-77.  Design Controls for Crest Vertical Curves Based on Passing Sight Distance

Generally, it is impractical to design crest vertical curves to provide for passing sight
distance because of high cost where crest cuts are involved and the difficulty of fitting the
resulting long vertical curves to the terrain, particularly for high-speed roads. Passing sight
distance on crest vertical curves may be practical on roads with unusual combinations of low
design speeds and gentle grades or higher design speeds with very small algebraic differences in
grades. Ordinarily, passing sight distance is provided only at locations where combinations of
alignment and profile do not need the use of crest vertical curves.

Sag Vertical Curves

At least four different criteria for establishing lengths of sag vertical curves are recognized to
some extent. These are (1) headlight sight distance, (2) passenger comfort, (3) drainage control,
and (4) general appearance.

Headlight sight distance has been used directly by some agencies and for the most part is the
basis for determining the length of sag vertical curves recommended here. When a vehicle
traverses a sag vertical curve at night, the portion of highway lighted ahead is dependent on the
position of the headlights and the direction of the light beam. A headlight height of 600 mm [2 ft]
and a 1-degree upward divergence of the light beam from the longitudinal axis of the vehicle  is
commonly assumed. The upward spread of the light beam above the 1-degree divergence angle
provides some additional visible length of roadway, but is not generally considered in design. The
following equations show the relationships between S, L, and A, using S as the distance between
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the vehicle and point where the 1-degree upward angle of the light beam intersects the surface of
the roadway:
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where:

L = length of sag vertical curve,
m;

S = light beam distance, m;
A = algebraic difference in

grades, percent

where:

L = length of sag vertical curve,
ft;

S = light beam distance, ft;
A = algebraic difference in

grades, percent

For overall safety on highways, a sag vertical curve should be long enough that the light
beam distance is nearly the same as the stopping sight distance. Accordingly, it is appropriate to
use stopping sight distances for different design speeds as the value of S in the above equations.
The resulting lengths of sag vertical curves for the recommended stopping sight distances for
each design speed are shown in Exhibit 3-78 with solid lines using rounded values of K as was
done for crest vertical curves.

The effect on passenger comfort of the change in vertical direction is greater on sag than on
crest vertical curves because gravitational and centripetal forces are in opposite directions, rather
than in the same direction. Comfort due to change in vertical direction is not readily measured
because it is affected appreciably by vehicle body suspension, vehicle body weight, tire
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Exhibit 3-78.  Design Controls for Sag Vertical Curves—Open Road Conditions
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flexibility, and other factors. Limited attempts at such measurements have led to the broad
conclusion that riding is comfortable on sag vertical curves when the centripetal acceleration does
not exceed 0.3m/s2 [1 ft/s2]. The general expression for such a criterion is:

Metric US Customary

395

2AV
L =

5.46

2AV
L = ( 3-53 )

where:

L = length of sag vertical curve, m;
A = algebraic difference in grades,

percent;
V = design speed, km/h

where:

L = length of sag vertical curve, ft;
A = algebraic difference in grades,

percent;
V = design speed, mph

The length of vertical curve needed to satisfy this comfort factor at the various design speeds
is only about 50 percent of that needed to satisfy the headlight sight distance criterion for the
normal range of design conditions.

Drainage affects design of vertical curves of Type III (see Exhibit 3-73) where curbed
sections are used. An approximate criterion for sag vertical curves is the same as that expressed
for the crest conditions (i.e., a minimum grade of 0.30 percent should be provided within 15 m
[50 ft] of the level point). This criterion corresponds to K of 51 m [167 ft] per percent change in
grade, which is plotted in Exhibit 3-78 as the drainage maximum. The drainage criterion differs
from other criteria in that the length of sag vertical curve determined for it is a maximum,
whereas, the length for any other criterion is a minimum. The maximum length of the drainage
criterion is greater than the minimum length for other criteria up to 100 km/h [65 mph].

For general appearance of sag vertical curves, some use was formerly made of a rule-of-
thumb for minimum curve length of 30A [100A] or, in Exhibit 3-78, K = 30 [K = 100]. This
approximation is a generalized control for small or intermediate values of A. Compared with
headlight sight distance, it corresponds to a design speed of approximately 80 km/h [50 mph]. On
high-type highways, longer curves are appropriate to improve appearance.

From the preceding discussion, it is evident that design controls for sag vertical curves differ
from those for crests, and separate design values are needed. The headlight sight distance appears
to be the most logical criterion for general use, and the values determined for stopping sight
distances are within the limits recognized in current practice. The use of this criterion to establish
design values for a range of lengths of sag vertical curves is recommended. As in the case of crest
vertical curves, it is convenient to express the design control in terms of the K rate for all values
of A. This entails some deviation from the computed values of K for small values of A, but the
differences are not significant. Exhibit 3-79 shows the range of computed values and the rounded
values of K selected as design controls. The lengths of sag vertical curves on the basis of the
design speed values of K are shown by the solid lines in Exhibit 3-78. It is to be emphasized that
these lengths are minimum values based on design speed; longer curves are desired wherever
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practical, but special attention to drainage should be exercised where values of K in excess of 51
[167] are used.

Minimum lengths of vertical curves for flat gradients also are recognized for sag conditions.
The values determined for crest conditions appear to be generally suitable for sags. Lengths of
sag vertical curves, shown as vertical lines in Exhibit 3-78, are equal to 0.6 times the design speed
in km/h [three times the design speed in mph].

Sag vertical curves shorter than the lengths computed from Exhibit 3-79 may be justified for
economic reasons in cases where an existing feature, such as a structure not ready for
replacement, controls the vertical profile . In certain cases, ramps may also be designed with
shorter sag vertical curves. Fixed-source lighting is desirable in such cases. For street design,
some engineers accept design of a sag or crest where A is about 1 percent or less without a length
of calculated vertical curve. However, field modifications during construction usually result in
constructing the equivalent to a vertical curve, even if short.

Metric US Customary

Rate of vertical
curvature, Ka

Rate of vertical
curvature, Ka

Design
speed
(km/h)

Stopping
sight

distance
(m) Calculated Design

Design
speed
(mph)

Stopping
sight

distance
(ft) Calculated Design

20 20 2.1 3 15 80 9.4 10
30 35 5.1 6 20 115 16.5 17
40 50 8.5 9 25 155 25.5 26
50 65 12.2 13 30 200 36.4 37
60 85 17.3 18 35 250 49.0 49
70 105 22.6 23 40 305 63.4 64
80 130 29.4 30 45 360 78.1 79
90 160 37.6 38 50 425 95.7 96

100 185 44.6 45 55 495 114.9 115
110 220 54.4 55 60 570 135.7 136
120 250 62.8 63 65 645 156.5 157
130 285 72.7 73 70 730 180.3 181

75 820 205.6 206
80 910 231.0 231

a Rate of vertical curvature, K, is the length of curve (m) per percent algebraic difference
intersecting grades (A).  K = L/A

Exhibit 3-79.  Design Controls for Sag Vertical Curves

Sight Distance at Undercrossings

Sight distance on the highway through a grade separation should be at least as long as the
minimum stopping sight distance and preferably longer. Design of the vertical alignment is the
same as at any other point on the highway except in some cases of sag vertical curves
underpassing a structure illustrated in Exhibit 3-80. While not a frequent problem, the structure
fascia may cut the line of sight and limit the sight distance to less that otherwise is attainable . It is
generally practical to provide the minimum length of sag vertical curve discussed above at grade
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Exhibit 3-80.  Sight Distance at Undercrossings

separation structures, and even where the recommended grades are exceeded, the sight distance
should not need to be reduced below the minimum recommended values for stopping sight
distance.

For some conditions, the designer may wish to check the available sight distance at an
undercrossing, such as at a two-lane undercrossing without ramps where it would be desirable to
provide passing sight distance. Such checks are best made graphically on the profile, but may be
performed through computations.

The general equations for sag vertical curve length at undercrossings are:

Case 1—Sight distance greater than length of vertical curve (S>L):

Metric US Customary
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( 3-54 )

where:

L = length of vertical curve, m;
S = sight distance, m;
A = algebraic difference in grades,

percent;
C = vertical clearance, m;
h1 = height of eye, m;
h2 = height of object, m

where:

L = length of vertical curve, ft;
S = sight distance, ft;
A = algebraic difference in grades,

percent;
C = vertical clearance, ft;
h1 = height of eye, ft;
h2 = height of object, ft
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Case 2—Sight distance less than length of vertical curve (S<L):

Metric US Customary
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where:

L = length of vertical curve, m;
S = sight distance, m;
A = algebraic difference in grades,

percent;
C = vertical clearance, m;
h1 = height of eye, m;
h2 = height of object, m

where:

L = length of vertical curve, ft;
S = sight distance, ft;
A = algebraic difference in grades,

percent;
C = vertical clearance, ft;
h1 = height of eye, ft;
h2 = height of object, ft

Using an eye height of 2.4 m [8.0 ft] for a truck driver and an object height of 0.6 m [2.0 ft]
for the taillights of a vehicle , the following equations can be derived:

Case 1—Sight distance greater than length of vertical curve (S>L):

Metric US Customary
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Case 2—Sight distance less than length of vertical curve (S<L):

Metric US Customary
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General Controls for Vertical Alignment

In addition to the above specific controls for vertical alignment discussed above, there are
several general controls that should be considered in design.

• A smooth gradeline with gradual changes, as consistent with the type of highways,
roads, or streets and the character of terrain, should be sought for in preference to a line
with numerous breaks and short lengths of grades. Specific design criteria are the
maximum grade and the critical length of grade, but the manner in which they are
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applied and fitted to the terrain on a continuous line determines the suitability and
appearance of the finished product.

• The “roller-coaster” or the “hidden-dip” type of profile should be avoided. Such
profiles generally occur on relatively straight horizontal alignment where the roadway
profile closely follows a rolling natural ground line. Examples of such undesirable
profiles are evident on many older roads and streets; they are unpleasant aesthetically
and difficult to drive. Hidden dips may create difficulties for drivers who wish to pass
because the passing driver may be deceived if the view of the road or street beyond the
dip is free of opposing vehicles. Even with shallow dips, this type of profile may be
disconcerting because the driver cannot be sure whether or not there is an oncoming
vehicle hidden beyond the rise. This type of profile is avoided by use of horizontal
curves or by more gradual grades.

• Undulating gradelines, involving substantial lengths of momentum grades, should be
evaluated for their effect on traffic operation. Such profiles permit heavy trucks to
operate at higher overall speeds than is possible when an upgrade is not preceded by a
downgrade, but may encourage excessive speeds of trucks with attendant conflicts with
other traffic.

• A “broken-back” gradeline (two vertical curves in the same direction separated by a
short section of tangent grade) generally should be avoided, particularly in sags where
the full view of both vertical curves is not pleasing. This effect is particularly noticeable
on divided roadways with open median sections.

• On long grades, it may be preferable to place the steepest grades at the bottom and
flatten the grades near the top of the ascent or to break the sustained grade by short
intervals of flatter grade instead of providing a uniform sustained grade that is only
slightly below the recommended maximum. This is particularly applicable to roads and
streets with low design speeds.

• Where at-grade intersections occur on roadway sections with moderate to steep grades,
it is desirable to reduce the grade through the intersection. Such profile changes are
beneficial for vehicles making turns and serve to reduce the potential for crashes.

• Sag vertical curves should be avoided in cuts unless adequate drainage can be provided.

COMBINATIONS OF HORIZONTAL AND VERTICAL ALIGNMENT

General Considerations

Horizontal and vertical alignment are permanent design elements for which thorough study
is warranted. It is extremely difficult and costly to correct alignment deficiencies after a highway
is constructed. On freeways, there are numerous controls such as multilevel structures and costly
right-of-way. On most arterial streets, heavy development takes place along the property lines,
which makes it impractical to change the alignment in the future. Thus, compromises in the
alignment designs should be weighed carefully, because any initial savings may be more than
offset by the economic loss to the public in the form of crashes and delays.

Horizontal and vertical alignment should not be designed independently. They complement
each other, and poorly designed combinations can spoil the good points and aggravate the
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deficiencies of each. Horizontal alignment and profile are among the more important of the
permanent design elements of the highway. Excellence in the design of each and of their
combination increases usefulness and safety, encourages uniform speed, and improves
appearance, nearly always without additional cost (23, 47, 48, 49, 50, 51, 52, 53).

General Design Controls

It is difficult to discuss combinations of horizontal alignment and profile without reference
to the broader issue of highway location. These subjects are interrelated and what is said about
one is generally applicable to the other. It is assumed in this discussion that the general location
of a facility has been fixed and that the remaining task is the development of a specific design
harmonizing of the vertical and horizontal lines, such that the finished highway, road, or street
will be an economical, pleasant, and safe facility on which to travel. The physical constraints or
influences that act singly or in combination to determine the alignment are the character of
roadway based on the traffic, topography, and subsurface conditions, the existing cultural
development, likely future developments, and the location of the roadway’s terminals. Design
speed is considered in determining the general roadway location, but as design proceeds to the
development of more detailed alignment and profile it assumes greater importance. The selected
design speed serves to keep all elements of design in balance. Design speed determines limiting
values for many elements such as curvature and sight distance and influences many other
elements such as width, clearance, and maximum gradient, which are all discussed in the
preceding parts of this chapter.

Appropriate combinations of horizontal alignment and profile are obtained through
engineering studies and consideration of the following general guidelines:

• Curvature and grades should be in proper balance. Tangent alignment or flat curvature
at the expense of steep or long grades and excessive curvature with flat grades both
represent poor design. A logical design that offers the best combination of safety,
capacity, ease and uniformity of operation, and pleasing appearance within the practical
limits of terrain and area traversed is a compromise between these two extremes.

• Vertical curvature superimposed on horizontal curvature, or vice versa, generally results
in a more pleasing facility, but such combinations should be analyzed for their effect on
traffic . Successive changes in profile not in combination with horizontal curvature may
result in a series of humps visible to the driver for some distance which, as previously
discussed, represents an undesirable condition. The use of horizontal and vertical
alignments in combination, however, may also result in certain undesirable
arrangements, as discussed below.

• Sharp horizontal curvature should not be introduced at or near the top of a pronounced
crest vertical curve. This condition is undesirable because the driver may not perceive
the horizontal change in alignment, especially at night. The disadvantages of this
arrangement are avoided if the horizontal curvature leads the vertical curvature (i.e., the
horizontal curve is made longer than the vertical curve). Suitable designs can also be
developed by using design values well above the appropriate minimum values for the
design speed.
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• Somewhat related to the preceding guideline , sharp horizontal curvature should not be
introduced near the bottom of a steep grade approaching or near the low point of a
pronounced sag vertical curve. Because the view of the road ahead is foreshortened, any
horizontal curvature other than a very flat curve assumes an undesirable distorted
appearance. Further, vehic le speeds, particularly for trucks, are often high at the bottom
of grades, and erratic operations may result, especially at night.

• On two-lane roads and streets, the need for passing sections at frequent intervals and
including an appreciable percentage of the length of the roadway often supersedes the
general guidelines for combinations of horizontal and vertical alignment. In such cases,
it is appropriate to work toward long tangent sections to assure sufficient passing sight
distance in design.

• Both horizontal curvature and profile should be made as flat as practical at intersections
where sight distance along both roads or streets is important and vehicles may have to
slow or stop.

• On divided highways and streets, variation in width of median and the use of
independent profiles and horizontal alignments for the separate one-way roadways are
sometimes desirable . Where traffic justifies provision of four lanes, a superior design
without additional cost generally results from such practices.

• In residential areas, the alignment should be designed to minimize nuisance to the
neighborhood. Generally, a depressed facility makes a highway less visible and less
noisy to adjacent residents. Minor horizontal adjustments can sometimes be made to
increase the buffer zone between the highway and clusters of homes.

• The alignment should be designed to enhance attractive scenic views of the natural and
manmade environment, such as rivers, rock formations, parks, and outstanding
structures. The highway should head into, rather than away from, those views that are
outstanding; it should fall toward those features of interest at a low elevation, and it
should rise toward those features best seen from below or in silhouette against the sky.

Alignment Coordination in Design

Coordination of horizontal alignment and profile should not be left to chance but should
begin with preliminary design, at which time adjustments can be readily made. Although a
specific order of study cannot be stated for all highways, a general procedure applicable to most
facilities is described below.

The designer should use working drawings of a size, scale, and arrangement so that he or she
can study long, continuous stretches of highway in both plan and profile and visualize the whole
in three dimensions. Working drawings should be of a small scale, with the profile plotted jointly
with the plan. A continuous roll of plan-profile paper usually is suitable for this purpose. To assist
in this visualization, there also are programs available for personal computers (PCs) that allow
designers to view proposed vertical and horizontal alignments in three dimensions.

After study of the horizontal alignment and profile in preliminary form, adjustments in
either, or both, can be made jointly to obtain the desired coordination. At this stage, the designer
should not be concerned with line calculations other than known major controls. The study should
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be made largely on the basis of a graphical or computer analysis. The criteria and elements of
design covered in this and the preceding chapter should be kept in mind. For the selected design
speed, the values for controlling curvature, gradient, sight distance, and superelevation runoff
length should be obtained and checked graphically or with a PC or CADD system. Design speed
may have to be adjusted during the process along some sections to conform to likely variations in
speeds of operation. This need may occur where noticeable changes in alignment characteristics
are needed to accommodate unusual terrain or right-of-way controls. In addition, the general
design controls, as enumerated separately for horizontal alignment, vertical alignment, and their
combination, should be considered. All aspects of terrain, traffic operation, and appearance
should be considered and the horizontal and vertical lines should be adjusted and coordinated
before the costly and time-consuming calculations and the preparation of construction plans to
large scale are started.

The coordination of horizontal alignment and profile from the standpoint of appearance
usually can be accomplished visually on the preliminary working drawings or with the assistance
of PC programs that have been developed for this purpose. Generally, such methods result in a
satisfactory product when applied by an experienced designer. This means of analysis may be
supplemented by models, sketches, or images projected by a PC at locations where the
appearance of certain combinations of line and grade is unclear. For highways with gutters, the
effects of superelevation transitions on gutter-line profiles should be examined. This can be
particularly significant when flat grades are involved and can result in local depressions. Slight
shifts in profile  in relation to horizontal curves can sometimes eliminate the problem.

The procedures described above should obviously be modified for the design of typical local
roads or streets, as compared to higher type highways. The alignment of any local road or street,
whether for a new roadway or for reconstruction of an existing roadway, is governed by the
existing or likely future development along it. The crossroad or street intersections and the
location of driveways are dominant controls. Although they should be fully considered, they
should not override the broader desirable features described above. Even for street design, it is
desirable to work out long, flowing alignment and profile sections rather than a connected series
of block-by-block sections. Some examples of poor and good practice are illustrated in
Exhibit 3-81.

OTHER ELEMENTS AFFECTING GEOMETRIC DESIGN

In addition to the design elements discussed previously, several other elements affect or are
affected by the geometric design of a roadway. Each of these elements is discussed only to the
extent needed to show its relation to geometric design and how it, in turn, is affected thereby.
Detailed design of these elements is not covered here.

Drainage

Highway drainage facilities carry water across the right-of-way and remove storm water
from the roadway itself. Drainage facilities include bridges, culverts, channels, curbs, gutters, and
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Exhibit 3-81.  Alignment and Profile Relationships in Roadway Design (48)
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Exhibit 3-81.  Alignment and Profile Relationships in Roadway Design (Continued)
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Exhibit 3-81.  Alignment and Profile Relationships in Roadway Design (Continued)
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Exhibit 3-81.  Alignment and Profile Relationships in Roadway Design (Continued)
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various types of drains. Hydraulic capacities and locations of such structures should be designed
to take into consideration damage to upstream and downstream property and to secure as low a
degree of risk of traffic interruption by flooding as is consistent with the importance of the road,
the design traffic service needs, Federal and State regulations, and available funds. While
drainage design considerations are an integral part of highway geometric design, specific
drainage design criteria are not included in this policy. The AASHTO Highway Drainage
Guidelines (54) should be referred to for a general discussion of drainage, and the AASHTO
Model Drainage Manual (55) should be referred to for guidelines on major areas of highway
hydraulic design.

Many State highway agencies have excellent highway drainage manuals that may be used
for reference for hydraulic design procedures. Alternatively, the AASHTO Model Drainage
Manual (55) and computer software (56) may be referenced. In addition, other publications on
drainage are widely used and are available to highway agencies from FHWA or the National
Technical Information Service (56).

Hydraulic requirements for stream crossings and flood plain encroachments frequently affect
highway alignment and profile  (57). The probable effects of a highway encroachment on the risk
of flood damage to other property and the risk of flood damage to the highway should be
evaluated when a flood plain location is under consideration. Water surface elevations for floods
of various return periods will influence decisions regarding the highway profile where an
encroachment on the flood plain is considered. Highway profiles at stream crossings will often be
determined by hydraulic considerations. To the extent practical, stream crossings and other
highway encroachments on flood plains should be located and aligned to preserve the natural
flood flow distribution and direction. Stream stability and the stream environment are also
important and complex considerations in highway location and design.

Surface channels are used to intercept and remove surface runoff from roadways, wherever
practical. They should have adequate capacity for the design runoff and should be properly
located and shaped. Channels are usually lined with vegetation, and rock or paved channel linings
are used where vegetation will not control erosion. Runoff from roadway surfaces normally
drains down grass slopes to roadside or median channels. Curbs or dikes, inlets, and chutes or
flumes are used where runoff from the roadway would erode fill slopes. Where storm drains are
needed, curbs are usually provided. Care should be exercised to ensure that these curbs do not
encroach on the clear zone of the highway. For further guidance, refer to the discussion on
horizontal clearance to obstructions in Chapter 4.

Drainage inlets should be designed and located to limit the spread of water on the traveled
way to tolerable widths. Because grates may become blocked by trash accumulation, curb
openings or combination inlets with both grate and curb openings are advantageous for urban
conditions. Grate inlets and depressions or curb-opening inlets should be located outside the
through-traffic lanes to minimize the shifting of vehicles attempting to avoid riding over them.
Inlet grates should also be designed to accommodate bicycle and pedestrian traffic where
appropriate. Discontinuous sections of curbing, as at the gore of ramps, and variable curb offsets
should not be used as expedients to handle pavement drainage where these features would detract
from highway safety. Inlets should be designed and located to prevent silt and debris carried in
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suspension from being deposited on the traveled way where the longitudinal gradient is
decreased. Extra inlets should be installed near low points of sag vertical curves to take any
overflow from blocked inlets. Inlets should be located so that concentrated flow and heavy sheet
flow will not cross traffic lanes. Where roadway surfaces are warped, as at cross streets or ramps,
surface water should be intercepted just before the change in cross slope. Also, inlets should be
located just upgrade of pedestrian crossings. Storm drains should have adequate capacity to avoid
ponding of water on the roadway and bridges, especially in sag vertical curves. The general effect
of drainage on the geometry of roadways, shoulder ditches, or gutters and side slopes is discussed
further in Chapter 4.

Drainage is usually more difficult and costly for urban than for rural highways because of
more rapid rates and larger volumes of runoff, costlier potential damage to adjacent property by
flooding, higher overall costs because of more inlets and underground systems, greater
restrictions because of urban development, lack of natural areas of water bodies to receive flood
water, and higher volumes of traffic, including pedestrians. There is greater need to intercept
concentrated storm water before it reaches the highway and to remove over-the-curb flow and
surface water without interrupting traffic flow or causing a problem for vehicle occupants or
pedestrians. To accommodate such runoff, underground systems and numerous inlets, curbs, and
gutters are usually needed. Often new outfall drains of considerable length must be constructed
because existing storm water systems often lack capacity for highway surface drainage volumes.
A joint use storm water system, shared by the highway agency with others, can have economic
advantages to both parties, because it is normally more economical to build a common system
rather than two independent systems. Urban drainage design is discussed in the FHWA Urban
Drainage Design Manual (58).

Reduction of peak flows can be achieved by the storage of water that falls on the site in
detention basins, storm drainage pipes, swales and channels, parking lots, and rooftops. Storm
water is released to the downstream conveyance facility or stream at a reduced flow rate . This
concept should be considered for use in highway drainage design where existing downstream
conveyance facilities are inadequate to handle peak flow rates from highway storm drainage
facilities, where the highway would contribute to increased peak flow rates and aggravate
downstream flooding problems, and as a technique to reduce the construction costs of outfalls
from highway storm drainage facilities. Storm water detention may also be needed in order to
conform with Federal and State water quality regulations. Some States have environmental
regulations that require specific pollution/erosion measures.

The cost of drainage is neither incidental nor minor on most roads. Careful attention to needs
for adequate drainage and protection of the highway from floods in all phases of location and
design will prove to be effective in reducing costs in both construction and maintenance.

Erosion Control and Landscape Development

Erosion prevention is one of the major factors in design, construction, and maintenance of
highways. It should be considered early in the location and design stages. Some degree of erosion
control can be incorporated into the geometric design, particularly in the cross section elements.
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Of course, the most direct application of erosion control occurs in drainage design and in the
writing of specifications for landscaping and slope planting.

Erosion and maintenance are minimized largely by the use of flat side slopes, rounded and
blended with natural terrain; serrated cut slopes; drainage channels designed with due regard to
width, depth, slopes, alignment, and protective treatment; inlets located and spaced with erosion
control in mind; prevention of erosion at culvert outlets; proper facilities for groundwater
interception; dikes, berms, and other protective devices to trap sediment at strategic locations; and
protective ground covers and planting.

Landscape development should be in keeping with the character of the highway and its
environment. Programs include the following general areas of improvement: (1) preservation of
existing vegetation, (2) transplanting of existing vegetation where practical, (3) planting of new
vegetation, (4) selective clearing and thinning, and (5) regeneration of natural plant species and
material.

The objectives in planting or the retention and preservation of natural growth on roadsides
are closely related. In essence, they are to provide (1) vegetation that will be an aid to aesthetics
and safety, (2) vegetation that will aid in lowering construction and maintenance costs, and (3)
vegetation that creates interest, usefulness, and beauty for the pleasure and satisfaction of the
traveling public.

Landscaping of urban highways and streets assumes additional importance in mitigating the
many nuisances associated with urban traffic . Landscaping can reduce this contribution to urban
blight and make the urban highways and streets better neighbors.

Further information concerning landscape development and erosion control is presented in
the AASHTO Guide for Transportation Landscape and Environmental Design (49).

Rest Areas, Information Centers, and
Scenic Overlooks

Rest areas, information centers, and scenic overlooks are functional and desirable elements
of the complete highway facility and are provided for the safety and convenience of highway
users. A safety rest area is a roadside area, with parking facilities separated from the roadway,
provided for the travelers to stop and rest for short periods. The area may provide drinking water,
restrooms, tables and benches, telephones, information displays, and other facilities for travelers.
A rest area is not intended to be used for social or civic gatherings or for such active forms of
recreation as boating, swimming, or organized games. An information center is a staffed or
unstaffed facility at a rest area for the purpose of furnishing travel and other information or
services to travelers. A scenic overlook is a roadside area provided for motorists to park their
vehicles, beyond the shoulder, primarily for viewing the scenery or for taking photographs in
safety. Scenic overlooks need not provide comfort and convenience facilities.
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Site selection for rest areas, information centers, and scenic overlooks should consider the
scenic quality of the area, accessibility, and adaptability to development. Other essential
considerations include an adequate source of water and a means to treat and/or properly dispose
of sewage. Site plans should be developed through the use of a comprehensive site planning
process that should include the location of ramps, parking areas for cars and trucks, buildings,
picnic areas, water supply, sewage treatment facilities, and maintenance areas. The objective is to
give maximum weight to the appropriateness of the site rather than adherence to uniform distance
or driving time between sites.

Facilities should be designed to accommodate the needs of older persons and persons with
disabilities. Further information concerning rest area design is presented in the AASHTO Guide
for Development of Rest Areas on Major Arterials and Freeways (59).

Lighting

Lighting may improve the safety of a highway or street and the ease and comfort of
operation thereon. Statistics indicate that nighttime crash rates are higher than daytime crash
rates. To a large extent, this may be attributed to reduced visibility at night. There is evidence that
in urban and suburban areas, where there are concentrations of pedestrians and roadside
intersectional interferences, fixed-source lighting tends to reduce crashes. Lighting of rural
highways may be desirable, but the need for it is much less than on streets and highways in urban
areas. The general consensus is that lighting of rural highways is seldom justified except in
certain critical areas, such as interchanges, intersections, railroad grade crossings, long or narrow
bridges, tunnels, sharp curves, and areas where roadside interferences are present. Most modern
rural highways should be designed with an open cross section and horizontal and vertical
alignment of a fairly high type. Accordingly, they offer an opportunity for near maximum use of
vehicle headlights, resulting in reduced justification for fixed highway lighting.

On freeways where there are no pedestrians, roadside entrances, or other intersections at
grade, and where rights-of-way are relatively wide, the justification for lighting differs from that
of noncontrolled streets and highways. The AASHTO Informational Guide for Roadway Lighting
(60) was prepared to aid in the selection of sections of freeways, highways, and streets for which
fixed-source lighting may be warranted, and to present design guide values for their illumination.
This guide also contains a section on the lighting of tunnels and underpasses.

Whether or not rural at-grade intersections should be lighted depends on the layout and the
traffic volumes involved. Intersections that do not have channelization are frequently left
unlighted. On the other hand, intersections with substantial channelization, particularly multi-road
layouts and those designed on a broad scale, are often lighted. It is especially desirable to
illuminate large-scale channelized intersections. Because of the sharp curvatures, little of such
intersections is within the lateral range of headlights, and the headlights of other vehicles are a
hindrance rather than an aid because of the variety of directions and turning movements. There is
need to obtain a reduction in the speed of vehicles approaching some intersections. The indication
of this need should be definite and visible at a distance from the intersection that is beyond the
range of headlights. Illumination of the intersection with fixed-source lighting accomplishes  this.
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At interchanges it also is desirable, and sometimes essential, to provide fixed-source
lighting. Drivers should be able to see not only the road ahead, but also the entire turning
roadway area to properly discern the paths to be followed. They should also see all other vehicles
that may influence their own behavior. Without lighting, there may be a noticeable decrease in
the usefulness of the interchange at night; there would be more cars slowing down and moving
with uncertainty at night than during daylight hours. Consideration should be given to improving
visibility at night by roadway lighting (or reflectorizing devices) the parts of grade separation
structures that particularly should be avoided by motorists, such as curbs, piers, and abutments.
The greater the volume of traffic, particularly turning traffic, the more important the fixed-source
lighting at interchanges becomes. Illumination should also be considered on those sections of
major highways where there are turning movements to and from roadside development.

Floodlighting or highway lighting may be desirable at railroad-highway grade crossings
when there are nighttime movements of trains. In some cases, such treatments may apply also to
crossings operated with flashing signals, or gates, or both.

Tunnels, toll plazas, and movable bridges are nearly always lighted, as are bridges of
substantial length in urban and suburban areas. It is questionable whether the cost of lighting long
bridges in rural areas is justified or desirable.

To minimize the effect of glare and to provide the most economical lighting installation,
luminaires are mounted at heights of at least 9 m [30 ft]. Lighting uniformity is improved with
higher mounting heights, and in most cases, mounting heights of 10 to 15 m [35 to 50 ft] are
usually preferable . High mast lighting, special luminaires on masts of 30 m [100 ft], is used to
light large highway areas such as interchanges and rest areas. This lighting furnishes a uniform
light distribution over the whole area and may provide alignment guidance. However, it also has a
disadvantage in that the visual impact on the surrounding community from scattered light is
increased.

Luminaire supports (poles) should be placed outside the roadside clear zones whenever
practical. The appropriate clear zone dimensions for the various functional classifications will be
found in the discussion of horizontal clearance to obstructions in Chapter 4. Where poles are
located within the clear zone, regardless of distances from the traveled way, they should be
designed to have a suitable impact attenuation feature; normally, a breakaway design is used.
Breakaway poles should not be used on streets in densely developed areas, particularly with
sidewalks. When struck, these poles could interfere with pedestrians and cause damage to
adjacent buildings. Because of lower speeds and parked vehicles, there is much less chance of
injuries to vehicle occupants from striking fixed poles on a street as compared to a highway.
Poles should not be erected along the outside of curves on ramps where they are more susceptible
to being struck. Poles located behind longitudinal barriers (installed for other purposes) should be
offset sufficiently to allow for deflection of the longitudinal barriers under impact.

On a divided highway or street, luminaire supports may be located either in the median or on
the right side of the roadway. Where luminaire supports are located on the right side of the
roadway, the light source is usually closer to the more heavily used traffic lanes. However, with
median installation, the cost is generally lower and illumination is greater on the high-speed



AASHTO—Geometric Design of Highways and Streets

296

lanes. For median installations, dual-mast arms should be used, for which 12 to 15 m [40 to 50 ft]
mounting heights are favored. These should be protected with a suitable longitudinal barrier. On
narrow medians, it is usually preferable to place the luminaire supports so they are integral with
the median barrier.

Where highway lighting is being considered for future installation, considerable savings can
be effected through design and installation of necessary conduits under roadways and curbs as
part of initial construction.

Highway lighting for freeways is intimately associated with the type and location of highway
signs. For full effectiveness, the two should be designed jointly.

Utilities

Highway and street improvements, whether upgraded within the existing right-of-way or
entirely on new right-of-way, generally entail adjustment of utility facilities. Although utilities
generally have little effect on the geometric design of the highway or street, full consideration
should be given to measures, reflecting sound engineering principles and economic factors,
needed to preserve and protect the integrity and visual quality of the highway or street, its
maintenance efficiency, and the safety of traffic . The costs of utility adjustments vary
considerably because of the large number of companies, type and complexity of the facility, and
the degree of involvement with the improvement. Depending on the location of a project, the
utilities involved could include (1) sanitary sewers; (2) water supply lines; (3) oil, gas, and
petroleum product pipelines; (4) overhead and underground power and communications lines
including fiber optic cable; (5) cable television; (6) wireless communication towers; (7) drainage
and irrigation lines; (8) heating mains; and (9) special tunnels for building connections.

General

Utility lines should be located to minimize need for later adjustment, to accommodate future
highway or street improvements, and to permit servicing such lines with minimum interference to
traffic.

Longitudinal installation should be located on uniform alignment as near as practical to the
right-of-way line so as to provide a safe environment for traffic operation and preserve space for
future highway or street improvements or other utility installations. To the extent practical,
utilities along freeways should be constructed so they can be serviced from outside the controlled
access lines.

To the extent practical, utility line crossings of the highway should cross on a line generally
normal to the highway alignment. Those utility crossings that are more likely to need future
servicing should be encased or installed in tunnels to permit servicing without disrupting the
traffic flow.
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The horizontal and vertical location of utility lines within the highway right-of-way limits
should conform to the clear roadside policies applicable for the system, type of highway or street,
and specific conditions for the particular section involved. Safety of the traveling public should
be a prime consideration in the location and design of utility facilities on highway and street
rights-of-way. The clear roadside dimension to be maintained for a specific functional
classification is discussed in the section on “Horizontal Clearance to Obstructions” in Chapter 4.

Sometimes attachment of utility facilities to highway structures, such as bridges, is a
practical arrangement and may be authorized. Where it is practical to locate utility lines
elsewhere, attachment to bridge structures should be avoided.

On new installations or adjustments to existing utility lines, provision should be made for
known or planned expansion of the utility facilities, particularly those located underground or
attached to bridges.

All utility installations on, over, or under highway or street right-of-way and attached
structures should be of durable materials designed for long service-life expectancy, relatively free
from routine servicing and maintenance, and meet or exceed the applicable industry codes or
specifications.

Utilities that are to cross or otherwise occupy the right-of-way of rural or urban freeways
should conform to the AASHTO Policy on the Accommodation of Utilities Within Freeway
Right-of-Way (61). Those on non-controlled access highways and streets should conform to the
AASHTO Guide for Accommodating Utilities Within Highway Right-of-Way (62).

Urban

Because of lack of space in most metropolitan areas, special consideration should be given in
the initial highway design to the potential for joint usage of the right-of-way that is consistent
with the primary function of the highway or street.

Appurtenances to underground installations, such as vents, drains, markers, manholes, and
shutoffs, should be located so as not to interfere with the safety or maintenance of the highway or
street, and so as not to be concealed by vegetation. Preferably they should be located near the
right-of-way line.

Where there are curbed sections, utilities should be located in the border areas between the
curb and sidewalk, at least 0.5 [1.5 ft] behind the face of the curb, and where practical, behind the
sidewalk. Where shoulders are provided rather than curbs, a clear zone commensurate with rural
conditions should be provided.

Existing development and limited right-of-way widths may preclude location of some or all
utility facilities outside the roadway of the street or highway. Under some conditions, it may be
appropriate to reserve the area outside the roadway exclusively for the use of overhead lines with
all other utilities located under the roadway, and in some instances the location of all the facilities
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under the roadway may be appropriate. Location under the roadway is an exception to the stated
policy and as such requires special consideration and treatment. Accommodation of these
facilities under the roadway should be accomplished in a manner that will ensure a minimum
adverse effect on traffic as a result of future utility service and maintenance activities.

Rural

On new construction no utility should be situated under any part of the roadway, except
where it crosses the highway.

Normally, no poles should be located in the median of divided highways. Utility poles, vent
standpipes, and other above-ground utility appurtenances that may be struck by errant vehicles
should not be permitted within the highway clear zone. The only exceptions permitted would be
where the appurtenance is breakaway or could be installed behind a traffic barrier erected to
protect errant vehicles from some other potential risk. The AASHTO Roadside Design Guide (63)
discusses clear zone widths and may be used as a reference to determine appropriate widths for
freeways, rural arterials, and high-speed rural collectors. For low-speed rural collectors and rural
local roads, except for very low-volume local roads with ADTs less than or equal to 400 vehicles
per day, a minimum clear zone of 3 m [10 ft] should be provided.

Traffic Control Devices

Signing and Marking

Signing and marking are directly related to the design of the highway or street and are
features of traffic control and operation that the designer should consider in the geometric layout
of such a facility. The signing and marking should be designed concurrently with the geometrics.
The potential for future operational problems can be significantly reduced if signing and marking
are treated as an integral part of design. The extent to which signs and markings are used depends
on the traffic volume, the type of facility, and the extent of traffic control appropriate for safe and
efficient operation. Arterial highways are usually numbered routes of fairly high type and have
relatively high traffic volumes. On such highways, signs and markings are employed extensively.
Local roads are low-type highways and usually have low volumes and speeds. On these facilities
the use of complex traffic control devices is limited.

Although safety and efficiency of operation depend to a considerable degree on the
geometric design of the facility, the physical layout should also be supplemented by effective
signing as a means of informing, warning, and controlling drivers. Signing plans coordinated with
horizontal and vertical alignment, sight distance obstructions, operational speeds and maneuvers,
and other applicable items should be worked out before completion of design.

Highway signs are of three general types: regulatory signs, used to indicate the rules for
traffic movement; warning signs , used to indicate conditions that may involve risk to highway
users; and guide signs, used to direct traffic along a route or toward a destination. Uniformity in
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the use of signs and other traffic control devices is the main objective of the policies contained in
the MUTCD (6).

Location, reflectorization, and lighting of signs are important considerations in signing. For
details regarding design, location, and application of signs, reference should be made to the
MUTCD (6).

Because supports for highway signs have the potential of being struck by motorists, signs
should be placed on structures, outside the clear zone, or behind traffic barriers placed for other
reasons. If these measures are not practical, the sign supports should be breakaway or, for
overhead sign supports, shielded by appropriate traffic barriers. The AASHTO Standard
Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals (64)
provides the criteria for breakaway sign supports. Likewise, sign supports should not be placed to
block sidewalks. Sign supports in sidewalks can severely impact pedestrians with vision
impairments and are obstacles to all pedestrians.

Markings and markers, like signs, have the function of controlling traffic to encourage safe
and efficient operation. Markings or markers either supplement regulatory or warning signs or
serve independently to indicate certain regulations or warn of certain conditions present on the
highway. For highways and streets there are three general types of markings in use—pavement
markings, object markings, and delineators.

Pavement markings include centerline stripes, lane lines, and edge striping. These may be
supplemented by other pavement markings, such as approach to obstructions, stop and crosswalk
lines, and various word and symbol markings.

Physical obstructions in or near the roadway should be removed in order to provide the
appropriate clear zone. Where removal is impractical, such objects should be adequately marked
by painting or by use of other high-visibility material. Where the object is in the direct line of
traffic, the obstruction and marking thereon preferably should be illuminated at night by
floodlighting; where this is not practical, the object markings should be effectively reflectorized.

Post-mounted delineators are another type of marking device used to guide traffic,
particularly at night. Reflector units are installed at certain heights and spacings to delineate the
roadway where alignment changes may be confusing and not clearly defined. Refer to the
MUTCD (6) for marking criteria, methods, and policies.

Traffic Signals

Traffic-control signals are devices that control vehicular and pedestrian traffic by assigning
the right-of-way to various movements for certain pre-timed or traffic-actuated intervals of time.
They are one of the key elements in the function of many urban streets and of some rural
intersections. For this reason the planned signal operation for each intersection of a facility should
be integrated with the design so as to achieve optimum operational efficiency. Careful
consideration should be given in plan development to intersection and access locations, horizontal
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and vertical curvature with respect to signal visibility, pedestrian needs, and geometric schematics
to ensure effective signal operation (individual signal phasing and traffic coordination between
signals). In addition to initial installation, potential future signal needs should also be evaluated.
The design of traffic signal devices and warrants for their use are covered in the MUTCD (6).

Lane arrangement is the key to successful operation of signalized intersections. The crossing
distances for both vehicles and pedestrians should be kept as short as practical to reduce exposure
to conflicting movements. Therefore, the first step in the development of intersection geometrics
should be a complete analysis of current and future traffic demand. The need to provide right- and
left-turn lanes to minimize the interference of turning traffic with the movement of through traffic
should be evaluated concurrently with the potential for obtaining any additional right-of-way
needed. Along a highway or street with a number of signalized intersections, the locations where
turns will, or will not, be accommodated should also be examined to ensure a good fit with two-
way signal coordination. Because of the large volume of traffic turning into and out of large
parking areas, parking area entrances and exits should be designed in a manner that will simplify
the operation of the affected traffic signals.

Noise Barriers

In recognition of the adverse effect that noise can have on people living on, working on, or
otherwise using land adjacent to highways, noise barriers are being used to an increasing extent.
Such noise barriers have been constructed on both new and existing highways.

Careful consideration should be exercised to ensure that the construction of these noise
barriers will not compromise the safety of the highway. Every effort should be made to locate
noise barriers to allow for sign placement and to provide the horizontal clearances to obstructions
outside the edge-of-traveled way established in Chapter 4. It is recognized, however, that such a
setback may sometimes be impractical. In such situations, the largest practical width
commensurate with cost-effectiveness consideration should be provided. Stopping sight distance
is another important design consideration. Therefore, horizontal clearances should be checked for
adequate sight distances. Construction of a noise barrier should be avoided at a given location if it
would limit stopping sight distance below the minimum values shown in Exhibit 3-1. This
situation could be particularly critical where the location of the noise barrier is along the inside of
a curve. Some designs use a concrete safety shape either as an integral part of the noise barrier or
as a separate roadside barrier between the edge of roadway and the noise barrier. On non-tangent
alignments a separate concrete roadside barrier may obstruct sight distance even though the noise
barrier does not. In such instances it may be appropriate to install metal rather than concrete
roadside barriers in order to retain adequate sight distance. Care should be exercised in the
location of noise barriers near gore areas. Barriers at these locations should begin or terminate, as
the case may be, at least 60 m [200 ft] from the theoretical nose.

For further discussion on noise barriers, see the section on noise control in Chapter 4.
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Fencing

Highway agencies use fencing extensively to delineate the acquired control of access for a
highway. While provision of fencing is not a duty, fencing may also serve to reduce the likelihood
of encroachment onto the highway right-of-way.

Any portion of a highway with full control of access may be fenced except in areas of
precipitous slopes, natural barriers, or where it can be established that fencing is not needed to
preserve access control. Fencing is usually located at or near the right-of-way line or, where
frontage roads are used, in the area between the through highway and the frontage road (outer
separation).

Fencing for access control is usually owned by the highway agency so that the agency has
control of the type and location of fence. The lowest cost type of fence best suited to the specific
adjacent land use is generally provided. If fencing is not needed for access control, the fence
should be the property of the adjacent landowner.

Maintenance of Traffic Through Construction Areas

Maintenance of a safe flow of traffic during construction should be carefully planned and
executed. Although it is often better to provide detours, this is frequently impractical and flow of
traffic is maintained through the construction area. Sometimes traffic  lanes are closed, shifted, or
encroached upon in order that the construction can be undertaken. When this occurs, designs for
traffic control should minimize the effect on traffic operations by minimizing the frequency or
duration of interference with normal traffic flow. The development of traffic control plans is an
essential part of the overall project design and may affect the design of the facility itself. The
traffic control plan depends on the nature and scope of the improvement, volumes of traffic,
highway or street pattern, and capacities of available highways or streets. A well-thought-out and
carefully developed plan for the movement of traffic through a work zone will contribute
significantly to the safe and efficient flow of traffic as well as the safety of the construction
forces. It is desirable that such plans have some built-in flexibility to accommodate unforeseen
changes in work schedule, delays, or traffic patterns.

The goal of any traffic control plan should be to safely route vehicle, bicycle, worker access,
and pedestrian traffic , including persons with disabilities, through or around construction areas
with geometrics and traffic control devices as nearly comparable to those for normal operating
situations as practical, while providing room for the contractor to work effectively. Policies for
the use and application of signs and other traffic control devices when highway construction
occurs are set forth in the MUTCD (6). It cannot be emphasized too strongly that the MUTCD (6)
principles should be applied and a plan developed for the particular type of work performed.

Adequate advance warning and sufficient follow-up information should be provided to
drivers to prepare them for the changed operating conditions in construction areas. The distance
that such signing should be located in advance of the work zone varies with the speed on the
affected facility. Size of signs may vary depending on the need for greater legibility and emphasis
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or the type of highway. Construction operations frequently create the need for adjustments in
traffic patterns including the shifting of lanes. The minimum taper length for lane transitions in
construction areas can be computed by a formula found in the MUTCD (6). Various
configurations are illustrated in the MUTCD (6) and should be used in developing traffic control
plans.

The stopping of traffic by a flagger or any other means should be avoided wherever
practical. Designs that provide for constant movement around an obstruction in the roadway, even
if it is slow, are more acceptable and are less irritating to drivers than designs that require them to
stop.

When construction operations are scheduled to take place adjacent to passing traffic, a clear
zone should be included in the traffic control plans, wherever practical, between the work space
and the passing traffic . Under certain conditions, a positive barrier is justified.

Traffic operational considerations for the design of a detour are speed, capacity, travel
distance, and safety. The speed for a detour may be less than that on the facility being improved
but should be high enough so as not to affect the capacity. When an existing highway or street is
used as a detour, higher volumes result and it may be appropriate to increase the capacity of such
a route in advance. The capacity is generally increased by eliminating troublesome turning
movements, rerouting transit vehicles and trucks, banning parking, adopting and enforcing a
loading/unloading ban during peak hours, eliminating or adjusting certain transit stops,
coordinating signal timing, and sometimes physically widening the traveled way. An effective
means of increasing capacity is by instituting a one-way detour system, coupled with parking
restrictions. A detour plan is tested by comparing the traffic volumes expected to use the
rearranged plan to the calculated capacity of the detour system.

The roadway near construction access points should be well lighted and delineated.
Channelization of traffic should be accomplished by the use of signing on yielding supports,
pavement markings, and barricades.

Construction areas, detours, and temporary connections often include geometric features and
roadway environments that may need more caution and alertness than is normally expected of
drivers. Care in the layout of these areas, in the use of delineation and warning devices, and in the
establishment of areas for contractor operations is appropriate to minimize the impact on the
safety of both motorists and workers. Items that should be considered in developing traffic
control plans include the following:

• Diversion and detour alignments to allow traffic to pass smoothly around the work
zones. The surface of the traveled way, whether located within the construction area or
on a detour, should be maintained in a condition that will permit the safe movement of
traffic at a reasonable speed.

• Adequate tapers for lane drops or where traffic is shifted laterally. Appropriate values
for taper lengths can be found in the MUTCD (6).
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• In urban areas, diversion provisions for all existing pedestrian flows. The selected
diversion paths should include safe roadway crossings, a smooth surface, and adequate
width to accommodate persons with disabilities.

• Adequate traffic control devices and pavement markings for both daytime and
nighttime effectiveness, including specifying temporary marking materials that can be
removed when traffic-lane patterns change.

• Roadway illumination and warning lights where justified. Steady burning lights are
used to delineate a continuous travel path through or around a work zone. The very
short “on” time of flashing lights does not enable motorists to focus on the light and
make a depth perception estimate. The use of flashers should be limited to marking a
single object or condition, marking the start of a section using steady burn lights, and
for use with traffic control signs.

• The location of cones, delineators, drums, barriers, or barricades, to channelized traffic,
when special conditions exist or if not shown in the standard plans.

• Policies concerning the removal of signs and markings from the job site, when they are
no longer needed, if not provided for in the specifications.

• Except in extenuating circumstances, the removal of contractor equipment completely
off the roadways, medians, and shoulders at night, on weekends, and whenever
equipment is not in operation. In those instances where such removal is not practical,
appropriate signing, lighting, barricades, barriers, and similar devices to protect the
motorist from collision with the equipment should be specified. The storage of
hazardous materials, however, should not be permitted on roadways, medians, or
shoulders near the flow of traffic.

• A requirement in the plans or specifications for controlling or prohibiting the parking of
employee’s private vehicles in those areas on the project that may compromise the
safety of workers and through traffic .
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CHAPTER 4
CROSS SECTION ELEMENTS

GENERAL

To assure consistency in this policy, the terms “roadway” and “traveled way” are defined by
AASHTO as follows:

Roadway: The portion of a highway, including shoulders, for vehicular use. A divided
highway has two or more roadways (see Exhibits 4-1 and 4-2).

Traveled way: The portion of the roadway for the movement of vehicles, exclusive of
shoulders (see Exhibits 4-1 and 4-2).

PAVEMENT

Surface Type

The selection of pavement type is determined based on the traffic volume and composition,
soil characteristics, weather, performance of pavements in the area, availability of materials,
energy conservation, initial cost, and the overall annual maintenance and service-life cost. The
structural design of pavements is not included in this policy, but is addressed in the AASHTO
Guide for Design of Pavement Structures (1).

Important pavement characteristics that are related to geometric design are the effect on
driver behavior and the ability of a surface to retain its shape and dimensions, to drain, and to
retain adequate skid resistance. High-type pavements retain their shape and do not ravel at the
edges if placed on a stable subgrade. Their smoothness and proper cross-slope design enable
drivers to steer easily and keep their vehicles moving in the proper path. At the other extreme,
low-type surfaces have a tendency toward raveling, which reduces their effective width and
requires greater steering effort to maintain a correct path. Accordingly, low-type surfaces are used
where traffic volume is light.

While the selection of design speed is dependent on many factors other than pavement
surface type, high-type surfaces provide for higher operating speeds than do low-type surfaces.
Therefore, the surface type provided should be consistent with the selected design speed for the
highway.

Cross Slope

Undivided traveled ways on tangents, or on flat curves, have a crown or high point in the
middle and a cross slope downward toward both edges. Unidirectional cross slopes across the
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Exhibit 4-1. Typical Cross Section, Normal Crown
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Exhibit 4-2. Typical Cross Section, Superelevated
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entire width of the traveled way may be utilized. The downward cross slope may be a plane or
rounded section or a combination. With plane cross slopes, there is a cross slope break at the
crown line and a uniform slope on each side. Rounded cross sections usually are parabolic, with a
slightly rounded surface at the crown line and increasing cross slope toward the edge of the
traveled way. Because the rate of cross slope is variable, the parabolic section is described by the
crown height (i.e., the vertical drop from the center crown line to the edge of the traveled way).
The rounded section is advantageous in that the cross slope steepens toward the edge of the
traveled way, thereby facilitating drainage. Disadvantages are that rounded sections are more
difficult to construct, the cross slope of the outer lanes may be excessive, and warping of
pavement areas at intersections may be awkward or difficult to construct.

On divided highways each one-way traveled way may be crowned separately as on two-lane
highways, or it may have a unidirectional cross slope across the entire width of the traveled way,
which is almost always downward to the outer edge. A cross section with each roadway crowned
separately, as shown in Exhibit 4-3A through Exhibit 4-3C, has an advantage in rapidly draining
the pavement during rainstorms. In addition, the difference between high and low points in the
cross section is minimal. Disadvantages are that more inlets and underground drainage lines are
needed, and treatment of intersections is more difficult because of the number of high and low
points on the cross section. Use of such sections should preferably be limited to regions of high
rainfall or where snow and ice are major factors. Sections having no curbs and a wide depressed
median are particularly well-suited for these conditions.

Exhibit 4-3.  Roadway Sections for Divided Highway (Basic Cross Slope Arrangements)
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Roadways with unidirectional cross slopes, as shown in Exhibit 4-3D through Exhibit 4-3G,
tend to provide more comfort to drivers when they change lanes and may either drain away from
or toward the median. Drainage away from the median may effect a savings in drainage
structures, minimize drainage across the inner, higher-speed lanes, and simplify treatment of
intersecting streets. Drainage toward the median is advantageous in that the outer lanes, which are
used by most traffic, are more free of surface water. This surface runoff, however, should then be
collected into a single conduit under the median. Where curbed medians exist, drainage is
concentrated next to or on higher-speed lanes. When the median is narrow, this concentration
results in splashing on the windshields of opposing traffic.

The rate of cross-slope is an important element in cross-section design. Superelevation on
curves is determined by the speed-curvature relationships given in Chapter 3, but cross slope or
crown on tangents or on long-radius curves are complicated by two contradictory controls. On
one hand, a reasonably steep lateral slope is desirable to minimize ponding of water on pavements
with flat profile grades as a result of pavement imperfections or unequal settlement. A steep cross
slope is also desirable on curbed pavements to confine water flow to a narrow width of pavement
adjacent to the curb. On the other hand, steep cross slopes are undesirable on tangents because of
the tendency of vehicles to drift toward the low edge of the traveled way. This drifting becomes a
major concern in areas where snow and ice are common. Cross slopes up to and including
2 percent are barely perceptible in terms of vehicle steering. However, cross slopes steeper than
2 percent are noticeable and require a conscious effort in steering. Furthermore, steep cross slopes
increase the susceptibility to lateral skidding when vehicles brake on icy or wet pavements or
when stops are made on dry pavements under emergency conditions.

The prevalence of high winds may significantly alter the effect of cross slope on steering. In
rolling or mountainous terrain with alternate cut-and-fill sections or in areas alternately forested
and cleared, any substantial cross wind produces an intermittent impact on a vehicle moving
along the highway and affects its steering. In areas where such conditions are likely, it is desirable
to avoid high rates of cross slope.

On high-type two-lane roadways, crowned at the center, the accepted rate of cross slope
ranges from 1.5 to 2 percent. When three or more lanes are inclined in the same direction on
multilane highways, each successive pair of lanes or portion thereof outward from the first two
lanes from the crown line may have an increased slope. The two lanes adjacent to the crown line
should be pitched at the normal minimum slope, and on each successive pair of lanes or portion
thereof outward, the rate may be increased by about 0.5 to 1 percent. As shown in Exhibit 4-3G,
the left side has a continuous sloped pavement while the right has an increased slope on the outer
lane.

Use of cross slopes steeper than 2 percent on high-type, high-speed highways with a central
crown line is not desirable. In passing maneuvers, drivers cross and recross the crown line and
negotiate a total rollover or cross-slope change of over 4 percent. The reverse curve path of travel
of the passing vehicle causes a reversal in the direction of centrifugal force, which is further
exaggerated by the effect of the reversing cross slopes. Trucks with high centers of gravity
crossing over the crown line are caused to sway from side to side when traveling at high speed, at
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which time control may be difficult to maintain. Exhibits 4-3A through 4-3C are examples of
roadway conditions where this situation would be encountered.

In areas of intense rainfall, a somewhat steeper cross slope may be needed to facilitate
roadway drainage. In such cases, the cross slope on high-type pavements may be increased to
2.5 percent, with a corresponding crown line crossover of 5 percent. Where three or more lanes
are provided in each direction, the maximum cross slope should be limited to 4 percent. Use of
this increased cross slope should be limited to the condition described in the preceding
discussion. For all other conditions, a maximum cross slope of 2 percent should be used for high-
type pavements. In locations of intense rainfall and where the maximum cross slope is used,
consideration should be given to the use of grooving or open-graded mixes.

The cross slope rates discussed above pertain largely to high-type surfaces. A greater cross
slope should be utilized for low-type surfaces. Exhibit 4-4 shows a range of values applicable to
each type of surface.

Surface type Range in cross-slope rate (%)

High 1.5–2
Low 2–6

Exhibit 4-4.  Normal Traveled-Way Cross Slope

Because of the nature of the surfacing materials used and surface irregularities, low-type
surfaces such as earth, gravel, or crushed stone need an even greater cross slope on tangents to
prevent the absorption of water into the surface. Therefore, cross slopes greater than 2 percent
may be used on these types of surfaces.

Where roadways are designed with outer curbs, the lower values in the ranges of cross
slopes in Exhibit 4-4 are not recommended because of the increased likelihood of there being a
sheet of water over a substantial part of the traveled way adjacent to the curb. For any rate of
rainfall, the width of traveled way that is inundated with water varies with the rate of cross slope,
roughness of gutter, frequency of discharge points, and longitudinal grade. A cross slope greater
than 1 percent is desirable, and in some cases, a cross slope of more than 1.5 percent is needed to
limit inundation to about half of the outer traffic lane. A cross slope of 1.5 percent is suggested as
a practical minimum for curbed high-type pavement. Curbs with steeper adjacent gutter sections
may permit the use of lesser rates of cross slope. A preferred cross-section treatment is the use of
a straight shoulder slope and the avoidance of curbs, whenever practical.

Skid Resistance

Skidding crashes are a major concern in highway safety. It is not sufficient to attribute
skidding crashes merely to “driver error” or “driving too fast for existing conditions.”  The
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roadway should provide a level of skid resistance that will accommodate the braking and steering
maneuvers that can reasonably be expected for the particular site.

Research has demonstrated that highway geometrics affect skidding (2). Therefore, skid
resistance should be a consideration in the design of all new construction and major
reconstruction projects. Vertical and horizontal alignments can be designed in such a way that the
potential for skidding is reduced. Also, improvements to the vertical and horizontal alignments
should be considered as a part of any reconstruction project.

Pavement types and textures also affect a roadway’s skid resistance. The four main causes of
poor skid resistance on wet pavements are rutting, polishing, bleeding, and dirty pavements.
Rutting causes water accumulation in the wheel tracks. Polishing reduces the pavement surface
microtexture and bleeding can cover it. In both cases, the harsh surface features needed for
penetrating the thin water film are diminished. Pavement surfaces will lose their skid resistance
when contaminated by oil drippings, layers of dust, or organic matter. Measures taken to correct
or improve skid resistance should result in the following characteristics:  high initial skid
resistance durability, the ability to retain skid resistance with time and traffic, and minimum
decrease in skid resistance with increasing speed.

Tining during placement leaves indentations in the pavement surface and has proved to be
effective in reducing the potential for hydroplaning on roadways with portland cement concrete
surfaces. The use of surface courses or overlays constructed with polish-resistant coarse
aggregate is the most widespread method for improving the surface texture of bituminous
pavements. Overlays of open-graded asphalt friction courses are quite effective because of their
frictional and hydraulic properties. For further discussion, refer to the AASHTO Guidelines for
Skid Resistant Pavement Design (3).

LANE WIDTHS

The lane width of a roadway greatly influences the safety and comfort of driving. Lane
widths of 2.7 to 3.6 m [9 to 12 ft] are generally used, with a 3.6-m [12-ft] lane predominant on
most high-type highways. The extra cost of providing a 3.6-m [12-ft] lane width, over the cost of
providing a 3.0-m [10-ft] lane width is offset to some extent by a reduction in cost of shoulder
maintenance and a reduction in surface maintenance due to lessened wheel concentrations at the
pavement edges. The wider 3.6-m [12-ft] lane provides desirable clearances between large
commercial vehicles traveling in opposite directions on two-lane, two-way rural highways when
high traffic volumes and particularly high percentages of commercial vehicles are expected.

Lane widths also affect highway level of service. Narrow lanes force drivers to operate their
vehicles closer to each other laterally than they would normally desire. Restricted clearances have
much the same effect. In a capacity sense the effective width of traveled way is reduced when
adjacent obstructions such as retaining walls, bridge trusses or headwalls, and parked cars restrict
the lateral clearance.  Further information on the effect of lane width on capacity and level of
service is presented in the Highway Capacity Manual (HCM) (4). In addition to the capacity
effect, the resultant erratic  operation has an undesirable  effect on driver  comfort and crash rates.
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Where unequal-width lanes are used, locating the wider lane on the outside (right) provides
more space for large vehicles that usually occupy that lane, provides more space for bicycles, and
allows drivers to keep their vehicles at a greater distance from the right edge. Where a curb is
used adjacent to only one edge, the wider lane should be placed adjacent to that curb. The basic
design decision is the total roadway width, while the placement of stripes actually determines the
lane widths.

Although lane widths of 3.6 m [12 ft] are desirable on both rural and urban facilities, there
are circumstances where lanes less than 3.6 m [12 ft] wide should be used. In urban areas where
pedestrian crossings, right-of-way, or existing development become stringent controls, the use of
3.3-m [11-ft] lanes is acceptable. Lanes 3.0 m [10 ft] wide are acceptable on low-speed facilities,
and lanes 2.7 m [9 ft] wide are appropriate on low-volume roads in rural and residential areas. For
further information, see NCHRP Report 362, Roadway Widths for Low-Traffic Volume Roads (5).
In some instances, on multilane facilities in urban areas, narrower inside lanes may be utilized to
permit wider outside lanes for bicycle use. In this situation, 3.0-m to 3.3-m [10- to 11-ft] lanes are
common on inside lanes with 3.6-m to 3.9-m [12- to 13-ft] lanes utilized on outside lanes.

Auxiliary lanes at intersections and interchanges often help to facilitate traffic movements.
Such added lanes should be as wide as the through-traffic lanes but not less than 3.0 m [10 ft].
Where continuous two-way left-turn lanes are provided, a lane width of 3.0 m to 4.8 m [10 to
16 ft] provides the optimum design.

It may not be cost-effective to design the lane and shoulder widths of local and collector
roads and streets that carry less than 400 vehicles per day using the same criteria applicable to
higher volume roads or to make extensive operational and safety improvements to such very low-
volume roads. AASHTO is currently evaluating alternative design criteria for local and collector
roads and streets that carry less than 400 vehicles per day based on a safety risk assessment.

SHOULDERS

General Characteristics

A shoulder is the portion of the roadway contiguous with the traveled way that
accommodates stopped vehicles, emergency use, and lateral support of subbase, base, and surface
courses. In some cases, the shoulder can accommodate bicyclists. It varies in width from only
0.6 m [2 ft] on minor rural roads where there is no surfacing, or the surfacing is applied over the
entire roadbed, to approximately 3.6 m [12 ft] on major roads where the entire shoulder may be
stabilized or paved.

The term “shoulder” is variously used with a modifying adjective to describe certain
functional or physical characteristics. The following meanings apply to the terms used here:
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• The “graded” width of shoulder is that measured from the edge of the traveled way to
the intersection of the shoulder slope and the foreslope planes, as shown in
Exhibit 4-5A.

• The “usable” width of shoulder is the actual width that can be used when a driver makes
an emergency or parking stop. Where the sideslope is 1V:4H or flatter, the “usable”
width is the same as the “graded” width since the usual rounding 1.2 to 1.8 m [4 to 6 ft]
wide at the shoulder break will not lessen its useful width appreciably. Exhibits 4-5B
and 4-5C illustrate the usable shoulder width.

Exhibit 4-5.  Graded and Usable Shoulders

Shoulders may be surfaced either full or partial width to provide a better all-weather load
support than that afforded by native soils. Materials used to surface shoulders include gravel,
shell, crushed rock, mineral or chemical additives, bituminous surface treatments, and various
forms of asphaltic or concrete pavements.

The shoulder on minor rural roads with low traffic volume serves essentially as structural
lateral support for the surfacing and as an additional width for the traveled way. This permits
drivers meeting or passing other vehicles to drive on the edge of the roadway without leaving the
surfacing, thus making use of the shoulder itself. Roads with a narrow traveled way, narrow
shoulders, and an appreciable traffic volume tend to provide poor service, have a relatively higher
crash rate, and need frequent and costly maintenance.
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Well-designed and properly maintained shoulders are needed on rural highways with an
appreciable volume of traffic, on freeways, and on some types of urban highways. Their
advantages include:

• Space is provided away from the traveled way for vehicles to stop because of
mechanical difficulties, flat tires, or other emergencies.

• Space is provided for motorists to stop occasionally to consult road maps or for other
reasons.

• Space is provided for evasive maneuvers to avoid potential crashes or reduce their
severity.

• The sense of openness created by shoulders of adequate width contributes to driving
ease and reduced stress.

• Sight distance is improved in cut sections, thereby potentially improving safety.
• Some types of shoulders enhance highway aesthetics.
• Highway capacity is improved because uniform speed is encouraged.
• Space is provided for maintenance operations such as snow removal and storage.
• Lateral clearance is provided for signs and guardrails.
• Storm water can be discharged farther from the traveled way, and seepage adjacent to

the traveled way can be minimized. This may directly reduce pavement breakup.
• Structural support is given to the pavement.
• Space is provided for pedestrian and bicycle use, for bus stops, for occasional

encroachment of vehicles, for mail delivery vehicles, and for the detouring of traffic
during construction.

For further information on other uses of shoulders, refer to NCHRP Report 254, Shoulder
Geometrics and Use Guidelines (6).

Urban highways generally have curbs along the outer lanes. A stalled vehicle, during peak
hours, disturbs traffic flow in all lanes in that direction when the outer lane serves through-traffic.
Where on-street parking is permitted, the parking lane provides some of the same services listed
above for shoulders. Parking lanes are discussed later in this chapter in the section on  “On-Street
Parking.”

Width of Shoulders

Desirably, a vehicle stopped on the shoulder should clear the edge of the traveled way by at
least 0.3 m [1 ft], and preferably by 0.6 m [2 ft]. This preference has led to the adoption of 3.0 m
[10 ft] as the normal shoulder width that should be provided along high-type facilities. In difficult
terrain and on low-volume highways, shoulders of this width may not be practical. A minimum
shoulder width of 0.6 m [2 ft] should be considered for the lowest-type highway, and a 1.8- to
2.4-m [6- to 8-ft] shoulder width is preferable. Heavily traveled, high-speed highways and
highways carrying large numbers of trucks should have usable shoulders at least 3.0 m [10 ft]
wide and preferably 3.6 m [12 ft] wide; however, widths greater than 3.0 m [10 ft] may encourage
unauthorized use of the shoulder as a travel lane. Where bicyclists and pedestrians are to be
accommodated on the shoulders, a minimum usable shoulder width (i.e., clear of rumble strips) of
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1.2 m [4 ft] should be used. For additional information on shoulder widths to accommodate
bicycles, see the AASHTO Guide for the Development of Bicycle Facilities (7).  Shoulder widths
for specific classes of highways are discussed in Chapters 5 through 8.

Where roadside barriers, walls, or other vertical elements are present, it is desirable to
provide a wide enough graded shoulder that the vertical elements will be offset a minimum of
0.6 m [2 ft] from the outer edge of the usable shoulder. To provide lateral support for guardrail
posts and/or clear space for lateral dynamic deflection of the particular barrier in use, it may be
appropriate to provide a graded shoulder that is wider than the shoulder where no vertical
elements are present. On low-volume roads, roadside barriers may be placed at the outer edge of
the shoulder; however, a minimum clearance of 1.2 m [4 ft] should be provided from the traveled
way to the barrier.

Although it is desirable that a shoulder be wide enough for a vehicle to be driven completely
off the traveled way, narrower shoulders are better than none at all. For example, when a vehicle
making an emergency stop can pull over onto a narrow shoulder such that it occupies only 0.3 to
1.2 m [1 to 4 ft] of the traveled way, the remaining traveled way width can be used by passing
vehicles. Partial shoulders are sometimes used where full shoulders are unduly costly, such as on
long (over 60 m [200 ft]) bridges or in mountainous terrain.

Regardless of the width, a shoulder should be continuous. The full benefits of a shoulder are
not realized unless it provides a driver with refuge at any point along the traveled way. A
continuous shoulder provides a sense of security such that almost all drivers making emergency
stops will leave the traveled way.  With intermittent sections of shoulder, however, some drivers
will find it necessary to stop on the traveled way, creating an undesirable situation. A continuous
paved shoulder provides an area for bicyclists to operate without obstructing faster moving motor
vehicle traffic. Although continuous shoulders are preferable, narrow shoulders and intermittent
shoulders are superior to no shoulders. Intermittent shoulders are briefly discussed below in the
section on “Turnouts.”

Shoulders on structures should normally have the same width as usable shoulders on the
approach roadways. As previously discussed, the narrowing or loss of shoulders, especially on
structures, may cause serious operational and safety problems. Long, high-cost structures usually
warrant detailed special studies to determine practical dimensions. Reduced shoulder widths may
be considered in rare cases. A discussion of these conditions is provided in Chapters 7 and 10.

Shoulder Cross Sections

Important elements in the lateral drainage systems, shoulders should be flush with the
roadway surface and abut the edge of the traveled way. All shoulders should be sloped to drain
away from the traveled way on divided highways with a depressed median. With a raised narrow
median, the median shoulders may slope in the same direction as the traveled way. However, in
regions with snowfall, median shoulders should be sloped to drain away from the traveled way to
avoid melting snow draining across travel lanes and refreezing. All shoulders should be sloped
sufficiently to rapidly drain surface water, but not to the extent that vehicular use would be
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restricted. Because the type of shoulder construction has a bearing on the cross slope, the two
should be determined jointly. Bituminous and concrete-surfaced shoulders should be sloped from
2 to 6 percent, gravel or crushed-rock shoulders from 4 to 6 percent, and turf shoulders from 6 to
8 percent. Where curbs are used on the outside of shoulders, the cross slope should be
appropriately designed with the drainage system to prevent ponding on the traveled way.

It should be noted that rigid adherence to the slope rates outlined in this chapter may present
minor traffic operational problems if they are applied without regard to the cross section of the
paved surface. On tangent or long-radius curved alignment with normal crown and turf shoulders,
the maximum algebraic difference in the traveled way and shoulder grades should be from 6 to
7 percent. Although this maximum algebraic difference in slopes is not desirable, it is tolerable
due to the benefits gained in pavement stability by avoiding storm water detention at the
pavement edge.

Shoulder slopes that drain away from the paved surface on the outside of well-superelevated
sections should be designed to avoid too great a cross-slope break. For example, use of a
4 percent shoulder cross slope in a section with a traveled way superelevation of 8 percent results
in a 12 percent algebraic difference in the traveled way and shoulder grades at the high edge-of-
traveled way. Grade breaks of this order are not desirable and should not be permitted
(Exhibit 4-2A). It is desirable that all or part of the shoulder should be sloped upward at about the
same rate or at a lesser rate than the superelevated traveled way (see the dashed line labeled
Alternate in Exhibit 4-2A). Where this is not desirable because of storm water or melting snow
and ice draining over the paved surface, a compromise might be used in which the grade break at
the edge of the paved surface is limited to approximately 8 percent by flattening the shoulder on
the outside of the curve (Exhibit 4-2B).

One means of avoiding too severe of a grade break is the use of a continuously rounded
shoulder cross section on the outside of the superelevated traveled way (Exhibit 4-2C). The
shoulder in this case is a convex section continuing from the superelevation slope instead of a
sharp grade break at the intersection of the shoulder and traveled way slopes. In this method,
some surface water will drain upon the traveled way; however, this disadvantage is offset by the
benefit of a smoother transition for vehicles that may accidentally or purposely drive upon the
shoulder. It should also be noted that convex shoulders present more difficulties in construction
than do planar sections. An alternate method to the convex shoulder consists of a planar shoulder
section with multiple breaks in the cross slope. Shoulder cross slopes on the high side of a
superelevated section that are substantially less than those discussed above are generally not
detrimental to shoulder stability. There is no discharge of storm water from the traveled way to
the shoulder and, therefore, little likelihood of shoulder erosion damage.

In some areas, shoulders are designed with a curb or gutter at the outer edge to confine
runoff to the paved shoulder area. Drainage for the entire roadway is handled by these curbs, with
the runoff directed to selected outlets. The outer portion of the paved shoulder serves as the
longitudinal gutter. Cross slopes should be the same as for shoulders without a curb or gutter,
except that the slope may be increased somewhat on the outer portion of the shoulder. This type
of shoulder is advantageous in that the curb on the outside of the shoulder does not deter
motorists from driving off the traveled way, and the shoulder serves as a gutter in keeping storm
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water off the traveled lanes. Proper delineation should adequately distinguish the shoulder from
the traveled way.

Shoulder Stability

If shoulders are to function effectively, they should be sufficiently stable to support
occasional vehicle loads in all kinds of weather without rutting. Evidence of rutting, skidding, or
vehicles being mired down, even for a brief seasonal period, may discourage and prevent the
shoulder from being used as intended.

All types of shoulders should be constructed and maintained flush with the traveled way
pavement if they are to fulfill their intended function. Regular maintenance is needed to provide a
flush shoulder. Unstabilized shoulders generally undergo consolidation with time, and the
elevation of the shoulder at the traveled way edge tends to become lower than the traveled way.
The drop-off can adversely affect driver control when driving onto the shoulder at any
appreciable speed. In addition, when there is no visible assurance of a flush stable shoulder, the
operational advantage of drivers staying close to the pavement edge is reduced.

Paved or stabilized shoulders offer numerous advantages, including: (1) provision of refuge
for vehicles during emergency situations, (2) elimination of rutting and drop-off adjacent to the
edge of the traveled way, (3) provision of adequate cross slope for drainage of roadway, (4)
reduction of maintenance, and (5) provision of lateral support for roadway base and surface
course.

Shoulders with turf growth may be appropriate, under favorable climatic and soil conditions,
for local roads and some collectors. Turf shoulders are subject to a buildup that may inhibit
proper drainage of the traveled way unless adequate cross slope is provided. When wet, the turf
may be slippery unless closely mowed and on granular soil. Turf shoulders offer good traveled-
way delineation and do not invite use as a traffic lane. Stabilized turf shoulders need little
maintenance other than mowing.

Based on experience, drivers are wary of unstabilized shoulders, especially on high-volume
highways, such as suburban expressways. Such experience has led to the replacement of
unstabilized shoulders with some form of stabilized or surfaced shoulders.

In some areas, rural highways are built with surfacing over the entire width, including
shoulders. Depending upon the conditions, this surfacing may be from about 8.4 to 13.2 m
[28 to 44 ft] wide for two-lane roads. This type of treatment protects shoulders from erosion and
also protects the subgrade from moisture penetration, thereby enhancing the strength and
durability of the pavement. Also, edge stripes are generally used to delineate the edge of the
traveled way, but in some cases there is no indication of the edge of traveled way. This design is
desirable because a continuous shoulder is provided, even if its separate width is not apparent.

Experience on heavy-volume facilities shows that, on occasion, traffic will use smooth-
surfaced shoulders as through-traffic lanes. On moderate-to-steep grades, trucks may pull to the
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right and encroach upon the shoulder. While such shoulder encroachments are undesirable, this
does not warrant the elimination of the surfaced shoulder because of factors such as high-volume
traffic and truck usage.

Shoulder Contrast

It is desirable that the color and texture of shoulders be different from those of the traveled
way. This contrast serves to clearly define the traveled way at all times, particularly at night and
during inclement weather, while discouraging the use of shoulders as additional through lanes.
Bituminous, crushed stone, gravel, and turf shoulders all offer excellent contrast with concrete
pavements. Satisfactory contrast with bituminous pavements is more difficult to achieve. Various
types of stone aggregates and turf offer good contrast. Several states have attempted to achieve
contrast by seal-coating shoulders with lighter color stone chips. Unfortunately, the color
distinction may diminish in a few years. The use of edge lines as described in the Manual on
Uniform Traffic Control Devices (MUTCD) (8) reduces the need for shoulder contrast. Edge lines
should be applied where shoulder use by bicycles is expected. Some states have provided
depressed rumble strips in the shoulder to provide an audible alert to the motorists that they have
crossed over onto the shoulder. This is particularly effective at night and during inclement
weather. However, care should be used if the shoulders are to be used by bicyclists.

Turnouts

It is not always economically practical to provide wide shoulders continuously along the
highway, especially where the alignment passes through deep rock cuts or where other conditions
limit the cross-section width. In such cases, consideration should be given to the use of
intermittent sections of shoulder or turnouts along the highway. Such turnouts provide an area for
emergency stops and also allow slower moving vehicles to pull out of the through lane to permit
following vehicles to pass.

Proper design of turnouts should consider turnout length, including entry and exit tapers,
turnout width, and the location of the turnout with respect to horizontal and vertical curves where
sight distance is limited. Turnouts should be located so that approaching drivers have a clear view
of the entire turnout in order to determine whether the turnout is available for use (9). Where
bicycle traffic is expected, turnouts should be paved so bicyclists may move aside to allow faster
traffic to pass.

HORIZONTAL CLEARANCE TO OBSTRUCTIONS

The term “clear zone” is used to designate the unobstructed, relatively flat area provided
beyond the edge of the traveled way for the recovery of errant vehicles. The clear zone includes
any shoulders or auxiliary lanes.

The AASHTO Roadside Design Guide (10) discusses clear zone widths as related to speed,
volume, and embankment slope. The Guide may be used as a reference for determination of
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clear-zone widths for freeways, rural arterials, and high-speed rural collectors. For low-speed
rural collectors and rural local roads, a minimum clear-zone width of 3.0 m [10 ft] should be
provided.

For urban arterials, collectors, and local streets where curbs are utilized, space for clear
zones is generally restricted. A minimum offset distance of 500 mm [18 in] should be provided
beyond the face of the curb, with wider offsets provided where practical. This “operational” offset
will generally permit curbside parking and will not have a negative impact on traffic flow.
However, since most curbs do not have a significant capability to redirect vehicles, a minimum
clear zone distance commensurate with prevailing traffic volumes and vehicle speeds should be
provided where practical.

CURBS

General Considerations

The type and location of curbs affects driver behavior and, in turn, the safety and utility of a
highway. Curbs serve any or all of the following purposes: drainage control, roadway edge
delineation, right-of-way reduction, aesthetics, delineation of pedestrian walkways, reduction of
maintenance operations, and assistance in orderly roadside development. A curb, by definition,
incorporates some raised or vertical element.

Curbs are used extensively on all types of low-speed urban highways. In the interest of
safety, caution should be exercised in the use of curbs on high-speed rural highways. Where curbs
are needed along high-speed rural highways due to drainage considerations, the need for access
control, restricted right-of-way, or other reasons, they should always be located at the outside
edge of the shoulder.

While cement concrete curbs are installed by some highway agencies, granite curbs are used
where the local supply makes them economically competitive. Because of its durability, granite is
preferred over cement concrete where deicing chemicals are used for snow and ice removal.

Conventional concrete or bituminous curbs offer little visible contrast to normal pavements,
particularly during fog or at night when surfaces are wet. The visibility of channelizing islands
with curbs and of continuous curbs along the edges of the traveled way may be improved through
the use of reflectorized markers that are attached to the top of the curb.

In another form of high-visibility treatment, reflectorized paints or other reflectorized
surfaces, such as applied thermoplastic, can make curbs more conspicuous. However, to be kept
fully effective, reflectorized curbs need periodic cleaning or repainting, which usually involves
substantial maintenance costs. Curb markings should be placed in accordance with the
MUTCD (8).
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Curb Configurations

Curb configurations include both vertical and sloping curbs. Exhibit 4-6 illustrates several
curb configurations that are commonly used. A curb may be designed as a separate unit or
integrally with the pavement. Vertical and sloping curb designs may include a gutter, forming a
combination curb and gutter section.

Vertical curbs may be either vertical or nearly vertical and are intended to discourage
vehicles from leaving the roadway. As shown in Exhibit 4-6A, they range from 150 to 200 mm
[6 to 8 in] in height. Vertical curbs should not be used along freeways or other high-speed
roadways because an out-of-control vehicle may overturn or become airborne as a result of an
impact with such a curb. Since curbs are not adequate to prevent a vehicle from leaving the
roadway, a suitable traffic barrier should be provided where redirection of vehicles is needed.

Vertical curbs and safety walks may be desirable along the faces of long walls and tunnels,
particularly if full shoulders are not provided. These curbs tend to discourage vehicles from
driving close to the wall, and thus the safety walk, reducing the risk to persons walking from
disabled vehicles.

Sloping curbs are designed so vehicles can cross them readily when the need arises. As
shown in Exhibit 4-6B through 4-6G, sloping curbs are low with flat sloping faces. The curbs
shown in Exhibits 4-6B, 4-6C, and 4-6D are considered to be mountable under emergency
conditions although such curbs will scrape the undersides of some vehicles. For ease in crossing,
sloping curbs should be well rounded as in Exhibits 4-6B through 4-6G.

Extruded curbs of either cement or bituminous concrete are used in many states. Extruded
curbs usually have sloping faces because they provide better initial stability, are easier to
construct, and are more economical than steep faces. Typical extruded curb designs are shown in
Exhibits 4-6C, 4-6E, and 4-6G.

When the slope of the curb face is steeper than 1V:1H, vehicles can mount the curb more
readily when the height of the curb is limited to at most 100 mm [4 in] and preferably less.
However, when the face slope is between 1V:1H and 1V:2H, the height should be limited to
about 150 mm [6 in]. Some highway agencies construct a vertical section on the lower face of the
curb (Exhibits 4-6C, 4-6D, and 4-6F) as an allowance for future resurfacing. This vertical portion
should not exceed approximately 50 mm [2 in], and where the total curb height exceeds 150 mm
[6 in], it may be considered a vertical curb rather than a sloping curb.

Sloping curbs can be used at median edges, to outline channelizing islands in intersection
areas, or at the outer edge of the shoulder. For example, any of the sloping configurations in
Exhibit 4-6 might be used for a median curb. When curbs are used to outline channelizing islands,
an offset should be provided. Offsets to curbed islands are discussed in Chapter 9.
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Exhibit 4-6.  Typical Highway Curbs

Shoulder curbs are placed at the outer edge of the shoulder to control drainage, improve
delineation, control access, and reduce erosion. These curbs, combined with a gutter section, may
be part of the longitudinal drainage system. If the surfaced shoulders are not wide enough for a
vehicle to park, the shoulder curb should appear to be easily mountable to encourage motorists to
park clear of the traveled way. Where it is expected that bicyclists will use the roadway, sufficient
width from the face of the curb should be provided so bicyclists can avoid conflict with motorists
while not having to travel too close to the curb. For further information, see the AASHTO Guide
for the Development of Bicycle Facilities (7).

Gutter sections may be provided on the traveled-way side of a vertical or sloping curb to
form the principal drainage system for the roadway. Inlets are provided in the gutter or curb, or
both. Gutters are generally 0.3 to 1.8 m [1 to 6 ft] wide, with a cross slope of 5 to 8 percent to
increase the hydraulic capacity of the gutter section. In general, the 5 to 8 percent slope should be
confined to the 0.6 to 0.9 m [2 to 3 ft] adjacent to the curb. Shallow gutters without a curb have
small flow capacity and thus limited value for drainage. Generally, it is not practical to design
gutter sections to contain all of the runoff; some overflow onto the surface can be expected. The
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spread of water on the traveled way is kept within tolerable limits by the proper size and spacing
of inlets. Grate inlets and depressions for curb-opening inlets should not be placed in the lane
because of their adverse effect on drivers who veer away from them. Bicycle-safe grates should
be used everywhere bicyclists are permitted. Warping of the gutter for curb-opening inlets should
be limited to the portion within 0.6 to 0.9 m [2 to 3 ft] of the curb to minimize adverse driving
effects.

The width of a vertical or sloping curb is considered a cross-section element entirely outside
the traveled way. Also, a gutter of contrasting color and texture should not be considered part of
the traveled way. When a gutter has the same surface color and texture as the traveled way, and is
not much steeper in cross slope than the adjoining traveled way, it may be considered as part of
the traveled way. This arrangement is used frequently in urban areas where restricted right-of-
way width does not allow for the provision of a gutter. However, with any form of curb there is
some effect on the lateral position of drivers; drivers tend to move away from a curb, which
reduces effective through-lane width. A gutter with an evident longitudinal joint and somewhat
steeper cross slope than the adjacent lane is a greater deterrent to driving near the gutter than the
situation in which the traveled way and gutter are integral.

Curb Placement

Vertical or sloping curbs located at the edge of the traveled way may have some effect on
lateral placement of moving vehicles, depending on the curb configuration and appearance. Curbs
with low, sloping faces may encourage drivers to operate relatively close to them. Curbs with less
sloping faces may encourage drivers to shy away from them and, therefore, should incorporate
some additional roadway width. Sloping curbs placed at the edge of the traveled way, although
considered mountable in emergencies, can be mounted satisfactorily only at reduced speeds. For
low-speed urban street conditions, curbs may be placed at the edge of the traveled way, although
it is preferable that the curbs be offset 0.3 to 0.6 m [1 to 2 ft].

Data on the lateral placement of vehicles with respect to high vertical curbs show that drivers
will shy away from curbs that are high enough to damage the underbody and fenders of vehicles
(4). The exact relationship is not known precisely, but it has been established that the lateral
placement varies with the curb height and steepness and the location of other obstructions outside
the curb. The lateral placement with respect to the curb is somewhat greater where the curb is first
introduced than where the curb is continuous for some distance. The shying away at the
beginning of the curb will be lessened if the curb is introduced with the end flared away from the
pavement edge.

Vertical curbs should not be used along freeways or other high-speed arterials, but if a curb
is needed, it should be of the sloping type and should not be located closer to the traveled way
than the outer edge of the shoulder. In addition, sloping-end treatments should be provided.
Vertical curbs introduced intermittently along streets should be offset 0.6 m [2 ft] from the edge
of the traveled way. Where a continuous curb is used along a median or channelizing island
through an intersection or interchange, curbs should be offset at least 0.3 m [1 ft], and preferably
0.6 m [2 ft], from the traveled way.
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When using curbs in conjunction with traffic barriers, such as on bridges, consideration
should be given to the type and height of barrier. Curbs placed in front of traffic barriers can
result in unpredictable impact trajectories. If a curb is used in conjunction with a traffic barrier,
the height of a vertical curb should be limited to 100 mm [4 in] or it should be of the sloping type,
ideally, located flush with or behind the face of the barrier. Curbs should not be used with
concrete median barriers. Improperly placed curbs may cause errant vehicles to vault the concrete
median barrier or to strike it, causing the vehicle to overturn. For a more detailed discussion on
curb usage and location in relation to railings, refer to the AASHTO Roadside Design Guide (10).

DRAINAGE CHANNELS AND SIDESLOPES

General Considerations

Modern highway drainage design should incorporate safety, good appearance, control of
pollutants, and economical maintenance. This may be accomplished with flat sideslopes, broad
drainage channels, and liberal warping and rounding.

An important part of highway design is consistency, which prevents discontinuities in the
highway environment and considers the interrelationship of all highway elements. The
interrelationship between the drainage channel and sideslopes is important for safety because
good roadside design can reduce the potential severity of crashes that occur when a vehicle leaves
the roadway.

Drainage Channels

Drainage channels perform the vital function of collecting and conveying surface water from
the highway right-of-way. Drainage channels, therefore, should have adequate capacity for the
design runoff, provide for unusual storm water with minimum damage to the highway, and be
located and shaped to provide a safe transition from the roadway to the backslope. Channels
should be protected from erosion with the least expensive protective lining that will withstand the
expected flow velocities. Channels should be kept clean and free of material that would lower the
channel’s capacity. Channel deterioration can reduce the capacity of the channel, which may
result in overflow, often with erosion or deposition in the area adjacent to the channel.

Where the construction of a highway would have an adverse effect on drainage conditions
downstream, drainage channels can be an effective means of flood storage within the highway
right-of-way. Drainage channels include (1) roadside channels in cut sections to remove water
from the highway cross section, (2) toe-of-slope channels to convey the water from any cut
section and from adjacent slopes to the natural watercourse, (3) intercepting channels placed back
of the top of cut slopes to intercept surface water, and (4) flumes to carry collected water down
steep cut or fill slopes.

The primary purpose for construction of roadside channels is to control surface drainage.
The most economical method of constructing a roadside channel usually entails the formation of



AASHTO—Geometric Design of Highways and Streets

328

open-channel ditches by cutting into the natural roadside terrain to produce a drainage channel.
From a standpoint of hydraulic efficiency, the most desirable channel contains steep sides.
However, limitations on slope stability usually require somewhat flatter slopes. Construction and
maintenance factors also impose restrictions on the degree of slope steepness that is practical
alongside a highway. The offsetting factor of right-of-way costs should also be considered when
selecting combinations of slopes to be used.

The effect of slope combinations and safety during traversal by an errant vehicle is also an
important consideration in designing the roadside. In general, the severity of traversal of roadside
channels less than about 1.2 to 2.4 m [4 to 8 ft] wide is essentially the same for comparable slope
combinations regardless of channel shape. Slope combinations forming these narrow channels
can be selected to produce cross sections that can be safely traversed by an unrestrained vehicle
occupant.

The use of foreslopes steeper than 1V:4H severely limits the range of backslopes. Flatter
foreslopes permit greater flexibility in the selection of backslopes to permit safe traversal. The
flatter foreslope also provides greater recovery distance for an errant vehicle. For additional
information, refer to the AASHTO Roadside Design Guide (10).

The depth of channel should be sufficient to remove surface water without saturation of the
subgrade. The depth of water that can be tolerated, particularly on flat channel slopes, depends
upon the soil characteristics. In regions with severe winter climates, channel sideslopes of 1V:5H
or 1V:6H are preferable to reduce snow drifts.

A broad, flat, rounded drainage channel also provides a sense of openness that reduces driver
tension. With a channel sideslope of 1V:4H or flatter and a 3.0 m [10 ft] shoulder, the entire
roadside channel is visible to the driver. This lessens the driver’s feeling of restriction and adds
measurably to the driver’s willingness to use the shoulder in an emergency.

The minimum desirable grade for channels should be based upon the drainage velocities
needed to avoid sedimentation. The maximum desirable grade for unpaved channels should be
based upon a tolerable velocity for vegetation and shear on soil types. Refer to the AASHTO
Highway Drainage Guidelines (11) for further guidance in this area. The channel grade does not
have to follow that of the roadbed, particularly if the roadbed is flat. Although desirable, it is
unnecessary to standardize the design of roadside drainage channels for any length of highway.
Not only can the depth and width of the channel be varied to meet different amounts of runoff,
slopes of channel, types of lining, and distances between discharge points, but the lateral distance
between the channel and the edge of the traveled way can also be varied. Usually, liberal offsets
can be obtained where cuts are slight and where cuts end and fills begin. Care should be taken,
however, to avoid abrupt major changes in the roadway section that would result in such a
discontinuity of the highway environment as to violate driver expectancy. Care should also be
taken to avoid major breaks in channel grade that would cause unnecessary scour or silt
deposition.

Intercepting channels generally have a flat cross section, preferably formed by a dike made
with borrow material to avoid disturbing the natural ground surface. Intercepting channels should
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have ample capacity and should follow the contour as much as practical, except when located on
top of a slope that is subject to sliding. In slide areas, storm water should be intercepted and
removed as rapidly as practical. Sections of channels that cross highly permeable soil might need
lining with impermeable material.

Median drainage channels are generally shallow depressed areas, or swales, located at or
near the center of the median, and formed by the flat sideslopes of the divided roadways. The
swale is sloped longitudinally for drainage and water is intercepted at intervals by inlets or
transverse channels and discharged from the roadway in storm drains or culverts. Flat, traversable
drainage dikes are sometimes used to increase the efficiency of the inlets. Refer to the section on
medians in this chapter for further discussion. Safety grates on median drains and cross drains,
while enhancing safety for errant vehicles, can reduce the hydraulic efficiency of the drainage
structures if not properly designed. The reduced inlet capacity is compounded by the
accumulation of debris on the grates, occasionally resulting in roadway flooding. If the use of
grates significantly reduces the hydraulic capacity or causes clogging problems to occur, other
methods of drainage, or shielding of the structure, should be considered.

Flumes are used to carry the water collected by intercepting channels down cut slopes and to
discharge the water collected by shoulder curbs. Flumes can either be open channels or pipes.
High velocities preclude sharp turns in open flumes and generally need some means of dissipating
the energy of flow at the outlet of the flume. Closed flumes or pipes are preferred to avoid failure
due to settlement and erosion. Generally in highly erodible soil, watertight joints should be
provided to prevent failure of the facility. Caution should be exercised to avoid splash, which
causes erosion.

Channel erosion may be prevented with the use of linings that withstand the velocity of
storm runoff. The type of linings used in roadside channels depends upon the velocity of flow,
type of soil, and grade and geometry of the channel. Grass is usually the most economical channel
lining except on steep slopes where the velocity of flow exceeds the permissible velocities for
grass protection. Other materials that can be used for channel lining where grass will not provide
adequate protection include concrete, asphalt, stone, and nylon. Smooth linings generate higher
velocities than rough linings such as stone and grass. Provision should be made to dissipate the
energy of the high-velocity flow before it is released to avoid scour at the outlet and damage to
the channel lining. If erosive velocities are developed, a special channel design or energy
dissipater may be needed.

Refer to the AASHTO Highway Drainage Guidelines (11) and drainage design manuals, as
well as handbooks and publications from the Soil Conservation Service, U. S. Army Corps of
Engineers, and Bureau of Reclamation, for details on design and protective treatments, including
filter requirements. In addition, FHWA publications, such as Design of Stable Channels With
Flexible Linings (12), provide excellent references. For further information on drainage design,
see Chapter 3.
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Sideslopes

Sideslopes should be designed to ensure roadway stability and to provide a reasonable
opportunity for recovery for an out-of-control vehicle.

Three regions of the roadside are important to safety: the top of the slope (hinge point), the
foreslope, and the toe of the slope (intersection of the foreslope with level ground or with a
backslope, forming a ditch). Exhibit 4-7 illustrates these three regions.

The hinge point contributes to loss of steering control because vehicles tend to become
airborne in crossing this point. The foreslope region is important in the design of high slopes
where a driver could attempt a recovery maneuver or reduce speed before impacting the ditch
area. The toe of the slope is often within the roadside clear zone and therefore, the probability that
an out-of-control vehicle will reach the ditch is high. In this case, a safe transition between fore-
and backslopes should be provided.

Exhibit 4-7.  Designation of Roadside Regions

Research on these three regions of the roadside has found that rounding at the hinge point,
though not essential to reduce vehicle rollovers, can increase the general safety of the roadside
(13). Rounded slopes reduce the chances of an errant vehicle becoming airborne, thereby
reducing the likelihood of encroachment and affording the driver more control over the vehicle.
Foreslopes steeper than 1V:4H are not desirable because their use severely limits the choice of
backslopes. Slopes 1V:3H or steeper are recommended only where site conditions do not permit
use of flatter slopes. When slopes steeper than 1V:3H are used, consideration should be given to
the use of a roadside barrier.

Another important safety factor for intersecting roadways is the angle of break between a
sideslope and a transverse slope. Field observations indicate that more consideration should be
given in roadway design to carrying the desirable flat sideslopes through intersections, driveway
approaches, median openings, and cut sections. Providing a flatter slope between the shoulder
edge and the ditch bottom, locating the ditch a little farther from the roadway, or even enclosing
short sections of drainage facilities will enhance the safety of the roadside, often at a small
increase in cost.



Cross Section Elements

331

Earth cut and fill slopes should be flattened and liberally rounded as fitting with the
topography and consistent with the overall type of highway. Effective erosion control, low-cost
maintenance, and adequate drainage of the subgrade are largely dependent upon proper shaping
of the sideslopes. Slope and soil data are used in combination to approximate the stability of the
slopes and the erosion potential. Overall economy depends not only on the initial construction
cost but also on the cost of maintenance, which is dependent on slope stability. Furthermore, flat
or rounded natural slopes with good overall appearance are appropriate for any roadside located
near developed and populated areas.

Normally, backslopes should be 1V:3H or flatter, to accommodate maintenance equipment.
In developed areas, sufficient space may not be available to permit the use of desirable slopes.
Backslopes steeper than 1V:3H should be evaluated with regard to soil stability and traffic safety.
Retaining walls should be considered where space restrictions would otherwise result in slopes
steeper than 1V:2H. On the other hand, soil characteristics may necessitate the use of slopes
flatter than 1V:2H or even 1V:3H. If adequate width is not available in such cases, retaining walls
may be needed. The type of retaining structure should be compatible with the area traversed and
the grade separation structures. To minimize the feeling of constriction, walls should be set back
as far as practical from the traveled way. Where retaining walls are used in combination with
earth slopes, the walls may be located either at the roadway level adjacent to the shoulder or on
the outer portion of the separation width above the depressed roadway.

On freeways and other arterials with relatively wide roadsides, sideslopes should be
designed to provide a reasonable opportunity for recovery of an out-of-control vehicle. Where the
roadside at the point of departure is reasonably flat, smooth, and clear of fixed objects, many
potential crashes can be averted. A rate of slope of 1V:6H or flatter on embankments can be
negotiated by a vehicle with a good chance of recovery and should, therefore, be provided where
practical. For moderate heights with good roundings, steeper slopes up to about 1V:3H can also
be traversable (though not recoverable). On intermediate-height fills, the cost of a continuous flat
slope may be prohibitive, but it may be practical to provide a recovery area that is reasonably flat
and rounded adjacent to the roadway. The recovery area should extend well beyond the edge of
the shoulder as specific conditions may permit.

Consistent with traffic demand, roads and streets with wide borders should also be designed
with a similar clear roadside. However, because of generally lower speeds and narrower side
clearances along streets, the clear roadside area concept, at best, can only be partially used. This
is also true for widening and other reconstruction within limited right-of-way.

Desirably, slope combinations would be selected so that unrestrained occupants could be
expected to sustain no injury, or only minor injuries, and the vehicle would not incur major
damage during traversal. However, site conditions such as restricted right-of-way or the cost
effectiveness of such design may dictate the use of slope combinations steeper than desirable. If
constraints make it impractical to provide the appropriate roadside recovery distance, the need for
a roadside barrier should be considered. Where the height and slope of roadway embankments are
such that the severity of potential crashes will be reduced by the placement of a roadside barrier,
the cross section  should be designed  to allow adequate slope rounding and to support the barrier.
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Flat and well-rounded sideslopes simplify the establishment of turf and its subsequent
maintenance. Grasses usually can be readily established on sideslopes as steep as 1V:2H in
favorable climates and 1V:3H in semiarid climates. With slopes of 2V:3H and steeper, it is
difficult to establish turf, even in areas of abundant rainfall. Because of the greater velocity of
runoff, sufficient water for the maintenance of grass does not seep into the soil. Deep-rooted
plants that do not depend upon surface water alone may be appropriate where slopes are
excessively steep. Slopes of the order of 1V:3H and flatter can be mechanically mowed. Although
steeper slopes reduce the mowing area considerably, the slow, time-consuming manual methods
required to mow the area add substantially to maintenance costs.

With some types of soils, it is essential for stability that slopes be reasonably flat. Soils that
are predominantly clay or gumbo are particularly susceptible to erosion, and slopes of 1V:3H or
flatter should be used. The intersections of slope planes in the highway cross section should
complement the earth forms of the terrain being traversed. Some earth forms are well-rounded
and others are steeply sloped. The designer should strive to create a natural look that is
aesthetically pleasing. Since rounded landforms are the natural result of erosion, such rounded
forms are stable; therefore, use of well-rounded forms in the design of the highway cross section
is likely to result in stability.

To attain a natural appearance along the roadside, flat, well-rounded sideslopes should be
provided. A uniform slope through a cut or fill section often results in a formal or stilted
appearance. This appearance can be softened and made more natural by flattening the slopes on
the ends where the cut or fill is minimal and by gradually steepening it toward the controlling
maximum slope of the cut or fill. This design may be readily accomplished by liberal rounding of
the hinge point in the transition area. On short cut or fill sections the result may be one of
continuous longitudinal rounding whereas, on sections of substantial length the effect will be one
of funneling. The transitioning of sideslopes is especially effective at the ends of cuts when
combined with an increased lateral offset of the drainage channel and a widened shoulder.

The combination of flat slopes and rounding is frequently referred to as a streamlined cross
section. With this shape, the cross winds sweep along the surface without forming eddies that
contribute to the wind erosion and drifting of snow. The streamlined cross section usually results
in a minimum expenditure for snow removal because the winds blow the snow off the traveled
way instead of drifting it, as happens in cross sections with steep slopes and no rounding. When
combined with the design of an elevated roadway on earth embankment to ensure drainage of the
subgrade, the streamlined cross section results in a roadway that needs minimal maintenance and
operating costs and operates safely.

In some cases, an irregular slope stake line results from the strict adherence to specified cut
or fill slopes. It may be more aesthetically pleasing to vary the slope to yield a neat stake line.

Design slopes for rock vary widely, depending upon the materials. A commonly used slope
for rock cuts is 2V:1H. With modern construction methods, such as pre-splitting, slopes ranging
as steep as 6V:1H may be used in good-quality rock. Deep cuts in rock often require the
construction of benches in the slopes.
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Slope stability as well as appearance may be enhanced in poor-quality rock by the
establishment of vegetative cover. In some parts of the country, serrated cut slopes aid in the
establishment of vegetative cover on decomposed rock or shale slopes. Serration may be
constructed in any material that can be ripped or that will hold a vertical face long enough to
establish vegetation (14).

Desirably, the toe of the rock-cut slope should be located beyond the minimum lateral
distance from the edge of the traveled way needed by the driver of an errant vehicle to either
regain control and begin a return to the roadway or to slow the vehicle. Wide shelves at the
bottom of rock cuts have advantages in that a safe landing area is provided for falling boulders
and space is available for snow storage in colder climates. This width can also be shaped to
provide a clear roadside recovery area.

Rock outcroppings are frequently left in place during construction of new highways for
economic or aesthetic purposes. These should be eliminated within the clear roadside recovery
area where removal is practical. Alternatively, if they cannot be removed, they should be shielded
by the installation of a roadside barrier.

For additional guidance on sideslope design, refer to the AASHTO Roadside Design
Guide (10).

ILLUSTRATIVE OUTER CROSS SECTIONS

Exhibits 4-1 and 4-2 illustrate typical combinations of outer cross-section elements—
shoulders, side-drainage channels, sidewalks, curbs, and sideslopes—for superelevated sections
and normal crowned sections, respectively. Only a few of the desirable arrangements are
illustrated, but other practical arrangements are discussed.

Normal Crown Sections

Exhibit 4-1A shows the most widely used cross section in modern highway practice. The
combination of elements is simple and forms a streamlined cross section. Usable shoulder widths
are included on both the fill and cut sections. The controlling shoulder slopes range from
2 percent, for a paved or impervious surface, to 8 percent, the maximum slope applicable to a turf
surface.

In Exhibit 4-1A the drainage channel at the right is formed by the foreslope on the roadway
side and the cut slope, or backslope, on the outer side. The foreslope and backslope combination
should be designed such that it can be safely traversed by an errant vehicle. The channel should
be wide enough to provide sufficient drainage capacity and deep enough to ensure roadbed
stability. A depth of 0.3 to 1.2 m [1 to 4 ft] below the shoulder break is recommended.

In areas where an errant vehicle may tend to encroach the roadside, it is desirable to provide
rounding at the intersection of slope planes. Rounding of all slope intersections also improves
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appearance and simplifies maintenance. In general, 1.2 to 1.8 m [4 to 6 ft] of rounding is the
minimum desirable at the edge of the shoulder. The rounding needed at the top of cut slopes is
dependent upon a number of factors, including the type of soil, slope ratio and height, and the
natural ground slopes. The rounding may vary from 1.2 m [4 ft] to 4.5 m [15 ft]. Toe-of-slope
rounding minimizes slope change and offers an increase in fill stability. Toe-of-slope rounding
also varies with slopes and fill heights, and has the same general dimensions as on cut slopes.

Exhibit 4-1B illustrates a type of curb treatment that can be used for drainage control or to
separate roadways and sidewalks. The left side of the exhibit shows a curb or dike that is used for
fill slope protection. The shoulder slope of this section should be designed in conjunction with the
drainage system to prevent ponding upon the roadway. Frequent outlets are needed for drainage.
To the extent possible, sidewalks should be separated from the roadway. In areas fully developed
with retail stores and offices, it may not be practical to offset the sidewalk from the roadway
because of the right-of-way considerations. In such cases, curbs are used to separate the sidewalk
from the edge of the roadway. This section is shown on the right side of the exhibit.

Exhibit 4-1C shows a steep fill section with guardrail at the edge of the shoulder on the left
side of the roadway. Where a sidewalk is needed, it should be located behind the guardrail. For
shallow fill sections, roadside safety may be enhanced by enclosing sections of drainage facilities,
as shown on the right side of the roadway.

Superelevated Sections

The low sides of the three superelevated cross sections of Exhibit 4-2 are similar to those of
Exhibit 4-1 except for the shoulder slope in those cases where the superelevation rate is greater
than the normal shoulder slope. It is desirable from an operational standpoint that the shoulder
slope on the low side be the same as the traveled way superelevation slope.

In Exhibit 4-2A the direction of shoulder slope on the high side of the cross section is the
same as that for normal crowned traveled ways except that its rate of slope should be limited. To
avoid an undesirable rollover effect, the algebraic difference in cross slopes at the edge of the
traveled way should not exceed 8 percent. Accordingly, use of this cross section should be
reserved for low rates of superelevation and shoulder slope. The shoulder slope on the alternate
section of Exhibit 4-2A is a projection of the superelevated traveled way.

In Exhibit 4-2B the level shoulder on the high edge of this cross section represents a
compromise that prevents the shoulder from draining to the traveled way while complying with
the 8 percent rollover control. The use of this cross section should be reserved for stable soils
where the percolation, caused by the water falling directly upon the shoulder, is not very great.
Where snowfall is prevalent, this cross section would tend to allow snow melt from a windrow on
the shoulder to flow across the traveled way, creating a potential icing situation when refreezing
occurs.

Exhibit 4-2C shows the high-side shoulder rolled over in a well-rounded transverse vertical
curve so that the water falling upon the shoulder is divided between the traveled way and the side
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channel or fill slope. On this rounded shoulder, any vehicle would stand nearly level as needed to
facilitate tire changes and other repairs. The vertical curve should not be less than 1.2 m [4 ft]
long, and at least the inner 0.6 m [2 ft] of the shoulder should be held at the superelevated slope.
The shoulder slope on the alternate section of Exhibit 4-2C is a planar section with multiple
breaks.

Superelevation is advantageous for traffic operations on less developed arterials, as well as
for rural highways and urban freeways; however, in built-up areas, the combination of wide
pavements, proximity of adjacent development, control of cross slope and profile for drainage,
frequency of cross streets, and other urban features combine to make superelevation impractical
or undesirable. Usually, superelevation is not provided on local streets in residential, commercial,
or industrial areas. For further information on superelevation, refer to Chapter 3.

TRAFFIC BARRIERS

General Considerations

Traffic barriers are used to prevent vehicles that leave the traveled way from hitting an
object that has greater crash severity potential than the barrier itself. Because barriers are a source
of crash potential themselves, their use should be carefully considered. For more detailed
information regarding traffic barriers, refer to the AASHTO Roadside Design Guide  (10).

Research continues to develop improved and more cost-effective barriers. The criteria
discussed herein will undoubtedly be refined and amended in the future. Therefore, the designer
should remain current on new barrier concepts and criteria.

Traffic barriers include both longitudinal barriers and crash cushions. The primary function
of longitudinal barriers is to redirect errant vehicles. The primary function of crash cushions is to
decelerate errant vehicles to a stop.

Longitudinal barriers are located along the roadside and in medians. Bridge parapets or rails
are covered in AASHTO design criteria and specifications for highway bridges. Longitudinal
barriers are generally denoted as one of three types: flexible, semirigid, or rigid. The major
difference between these types is the amount of barrier deflection that takes place when the
barrier is struck.

Flexible barrier systems undergo considerable dynamic deflection upon impact and generally
impose lower impact forces on the vehicle than semirigid and rigid systems. The resistance of this
system is derived from tensile force in the longitudinal member. Within the impact zone, the
cable or beams tear away from the support post upon impact; thus, the post offers negligible
resistance. However, the posts outside the impact zone provide sufficient resistance to keep the
deflection of the longitudinal member within an acceptable limit. This system is designed
primarily to contain rather than redirect the vehicle and needs more lateral clearance from fixed
objects due to the deflection during impact.
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In the semirigid system, resistance is achieved through the combined flexure and tensile
strength of the rail. The posts near the point of impact are designed to break or tear away, thereby
distributing the impact force by beam action to adjacent posts. However, posts outside the impact
zone provide sufficient resistance to control the deflection of the longitudinal member to an
acceptable limit and redirect the errant vehicle along the path of traffic flow.

A rigid system does not deflect substantially upon impact. During collisions, energy is
dissipated by the raising and lowering of the vehicle and by deformation of the vehicle sheet
metal. As the angle of impact increases, barrier deceleration forces increase because of the
absence of barrier deflection. Therefore, installation of a rigid system is most appropriate where
shallow impact angles are expected, such as along narrow medians or shoulders. The rigid system
has proved to be very effective as a protective shield where deflection cannot be tolerated, such as
at a work zone. Because this system suffers little or no damage on impact, hence needing little
maintenance, it should be considered where heavy traffic volumes hamper replacement of
damaged rail.

Important factors to consider in the selection of a longitudinal system include barrier
performance, lateral deflection characteristics, and the space available to accommodate barrier
deflection. Consideration should also be given to the adaptability of the system to operational
transitions and end treatments and to the initial and future maintenance cost.

Six options are available for the treatment of roadside obstacles: (1) remove or redesign the
obstacle so it can be safely traversed, (2) relocate the obstacle to a point where it is less likely to
be struck, (3) reduce impact severity by using an appropriate breakaway device, (4) redirect a
vehicle by shielding the obstacle with a longitudinal traffic barrier and/or crash cushion, (5)
delineate the obstacle if the above alternatives are not appropriate, or (6) take no action.

Roadway cross section significantly affects traffic barrier performance. Curbs, dikes, sloped
shoulders, and stepped medians can cause errant vehicles to vault or submarine a barrier or to
strike a barrier so that the vehicle overturns. Optimum barrier system performance is provided by
a relatively level surface in front of the barrier and, for semirigid and flexible barriers, beneath
and behind the barrier. Where curbs and dikes are used to control drainage, they should be located
flush with the face of the barrier or slightly behind it.

In new construction, all curbs and dikes that are not an integral part of the barrier system
should be avoided; drainage should be controlled by gentle swales or other means that will not
adversely affect barrier performance. Where a barrier is to be installed in the vicinity of an
existing curb and the cost of removing the curb cannot be justified, the designer should select a
barrier and locate it so that the adverse effect of the curb on barrier performance is minimized.
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Longitudinal Barriers

Roadside Barriers

A roadside barrier is a longitudinal system used to shield motorists from obstacles or slopes
located along either side of a roadway. It may occasionally be used to protect pedestrians,
bystanders, and cyclists from vehicular traffic. Elements which may warrant shielding by a
roadside barrier include embankment obstacles, roadside obstacles, and sensitive areas such as
playgrounds.

Recent studies indicate that rounding at the shoulder and at the toe of an embankment slope
can reduce its crash severity potential. Rounded slopes reduce the chances that an errant vehicle
will become airborne, thereby reducing the potential consequences of an encroachment and
affording the driver more vehicle control.

The height and slope of an embankment are the key factors in determining barrier need
through a fill section. The designer should refer to current warrants and criteria for determination
of barrier needs (10).

A clear, unobstructed, flat roadside is desirable. When these conditions do not exist, criteria
to determine the need for a barrier should be consulted. Roadside obstacles include non-
traversable areas and fixed objects. If it is not practical to remove, modify, or relocate an obstacle,
then a barrier may be needed. The purpose of a barrier is to enhance safety. Therefore, a barrier
should be installed only if it is clear that the barrier will have lower crash severity potential than
the roadside obstacle.

Short lengths of roadside barriers are discouraged. Where a barrier is needed in two or more
closely spaced locations, continuous barrier should be provided.

Barriers should be located beyond the edge of the shoulder to ensure that the full shoulder
width may be used. The fill supporting the barrier should be sufficiently wide to provide lateral
support. At bridge locations, roadside barriers should be aligned with the bridge rail and properly
secured to the bridge to minimize the possibility of a vehicle striking the barrier and snagging or
colliding with a bridge rail or curb. Proper treatment of the exposed end of the barrier is also
important. An untreated or square approach end of a barrier presents a formidable roadside
obstacle. To provide safe barriers, ends may be buried, covered with a mound of earth, flared
back, or protected with a crash cushion or an approved crash tested terminal. Buried barrier ends
should be designed to minimize ramping of impacting vehicles. The AASHTO Roadside Design
Guide (10) provides more information on crashworthy end treatments.

The need for a barrier in rock cuts and near large boulders is a matter of judgment by the
highway designer and depends on the potential severity of a crash and the lateral clearance
available.

For additional material on roadside barriers, refer to the AASHTO Roadside Design Guide
(10).
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Median Barriers

A median barrier is a longitudinal system used to minimize the possibility of an errant
vehicle crossing into the path of traffic traveling in opposite directions. When traffic volumes are
low, the probability of a vehicle crossing a median and colliding with a vehicle in the opposing
direction is relatively low. Likewise, for relatively wide medians the probability of a vehicle
crossing the median and colliding with a vehicle in the opposing roadway is also relatively low.
In these instances, median barriers are generally recommended only when there has been a
history of cross-median collisions or, for new roadways, where an incidence of high crash rates of
this type would be expected. Although cross-median collisions may be reduced by median
barriers, total crash frequency will generally increase because the space available for return-to-
the-road maneuvers is decreased.

Special consideration should be given to barrier needs for medians separating traveled ways
at different elevations. The ability of an errant driver leaving the higher elevated roadway to
return to the road or to stop diminishes as the difference in elevations increases. Thus, the
potential for cross-median head-on collisions increases.

An important safety consideration in the design of median barriers is shielding motorists
from the exposed end of the barrier. As discussed previously, exposed ends may be buried,
covered with a mound of earth, flared back, or protected with an end terminal end or a crash
cushion. For more information on crashworthy end treatments, refer to the AASHTO Roadside
Design Guide (10).

For all divided highways, regardless of median width and traffic volume, the median
roadside should also be examined for other factors, such as obstacles and lateral drop-off, as
discussed earlier.

Careful consideration should be given to the installation of median barriers on multilane
expressways or other highways with partial control of access. Even medians that are narrow
permit inadvertent encroachments with a chance for motorist recovery and can also include
geometric features to accommodate crossing or left-turn traffic. With the addition of a barrier,
barrier ends at median openings present formidable obstacles. Crash cushions, although needing
maintenance and imposing a high initial cost, may be needed to shield an errant motorist from
barrier ends. Consequently, an evaluation of the number of median openings, crash history,
alignment, sight distance, design speed, traffic volume, and median width should be conducted
prior to installation of median barriers on non-freeway facilities.

Barriers should also be considered on outer separations of 15 m [50 ft] or less where the
frontage roads carry two-way traffic.

Common types of median barrier include double-faced steel W-beam (blocked-out) installed
on strong posts, box beam installed on weak posts, and concrete barrier. Less common types of
median barrier include two- or three-cable barrier installed on light steel posts, double-faced steel
W-beam installed on weak posts, double-faced steel three-beam (blocked-out) installed on strong
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posts, and a cable-chainlink fence combination. For additional data on median barrier types, refer
to the AASHTO Roadside Design Guide (10).

In selecting the type of median barrier, it is important to match the dynamic lateral deflection
characteristics to the site. The maximum deflection should be less than one-half the median width
to prevent penetration into the opposing lanes of traffic. The median barrier should be designed to
redirect the colliding vehicle in the same direction as the traffic flow. In addition, the design
should be aesthetically pleasing.

On heavily traveled facilities, a concrete barrier with a sloping face has many advantages.
For example, this type of barrier deflects a vehicle striking it at a slight impact angle. It is
aesthetically pleasing and needs little maintenance. The latter is an important consideration on
highways with narrow medians since maintenance operations encroach on the high-speed traveled
way and may require closure of one of the traffic lanes during repair time. The designer should
also bear in mind that even though a concrete barrier does not deflect, there may be significant
intrusion into the air space above and beyond the barrier by high-center-of-gravity vehicles
striking the barrier at high speeds or large angles. A bus or tractor-trailer may lean enough to
strike objects mounted on top of the barrier or within a distance of up to 3.0 m [10 ft] of the
barrier face. While piers and abutments may be able to withstand such impacts, other structures
such as sign trusses and luminaire supports may become involved in secondary collisions.

The appropriate types of median barriers are different for stepped median sections
(i.e., where the median is between roadways of different elevations). Cable, W-beam on weak
posts, and box-beam systems are generally limited to relatively flat medians and may not be
appropriate for some stepped median sections. The AASHTO Roadside Design Guide (10)
provides further guidance in this area.

It is important that, during the selection and design of a median barrier, consideration is
given to the potential effect of the barrier on sight distance on horizontal curves.

Due to ongoing research and development, the design of median barriers and terminals is
continually improving. Reference should be made to the latest developments in median barrier
and terminal design.

Precast concrete median barrier can be used for temporary protection of work areas and for
guiding traffic during construction. It can also be incorporated permanently as part of the
completed facility.

Bridge Railings

Bridge railings prevent vehicles, pedestrians, or cyclists from falling off the structure.
AASHTO’s Standard Specifications for Highway Bridges (15) specifies geometric, design load,
and maximum allowable material stress requirements for the design of traffic railings for
pedestrians, bicycles, and combination types. Bridge railings are longitudinal traffic barriers that
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differ from other traffic barriers primarily in their foundations. These railings are a structural
extension of a bridge while other traffic barriers are usually set in or on soil.

The need for a traffic barrier rarely ends at the end of a bridge. Therefore, the bridge railing
should be extended with a roadside barrier, which in turn should have a crash-worthy terminal. At
the juncture between a bridge railing and roadside barrier, an incompatibility usually exists in the
stiffness of the two barrier types. This stiffness should be carefully transitioned over a length to
prevent the barrier system from pocketing or snagging an impacting vehicle.

Where a roadside barrier is provided between the edge of the traveled way and the bridge
railing so that a sidewalk can be included, special attention should be given to the barrier end
treatment. End treatments that are both functional and safe are difficult to design. The end
treatments should safely accommodate vehicles, yet not impede pedestrian usage of the walkway.

The recommended lateral clearances between the traveled way and bridge railings usually
exceed curb offset distances. This may create a problem in a bridge railing where a curbed cross
section is used on a bridge approach and a flush cross section is used on the bridge. Such
problems may result if the length of the bridge and its approaches make the bridge resemble a
controlled-access facility where traffic will operate at speeds in excess of 80 km/h [50 mph], even
though the approach speeds are less than 80 km/h [50 mph]. Such high speeds may render curb
usage acceptable away from but not on the bridge. In such cases, it may be reasonable to drop the
curb at the first intersection away from the end of the bridge. Another option is to reduce the curb
to a low, sloping curb with a gently sloped traffic face, well in advance of the introduction of the
traffic barrier. This would be reasonably compatible with the traffic barrier even if continued into
the high-speed region of the bridge.

Crash Cushions

Crash cushions are protective systems that prevent errant vehicles from impacting roadside
obstacles by decelerating the vehicle to a safe stop when hit head-on or redirecting it away from
the obstacle (10). A common application of a crash cushion is at the end of a bridge rail located in
a gore area. Where site conditions permit, a crash cushion should also be considered as an
alternative to a roadside barrier for shielding rigid objects such as bridge piers, overhead sign
supports, abutments, and retaining-wall ends. Crash cushions may also be used to shield roadside
and median barrier terminals.

Site preparation is important in using crash cushion design. Inappropriate site conditions
may compromise cushion effectiveness. Crash cushions should be located on a level area free
from curbs or other physical obstacles. The design of new highway facilities should consider
alternatives to use of crash cushions where appropriate.
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MEDIANS

A median is the portion of a highway separating opposing directions of the traveled way.
Medians are highly desirable on arterials carrying four or more lanes. Median width is expressed
as the dimension between the edges of traveled way and includes the left shoulders, if any. The
principal functions of a median are to separate opposing traffic, provide a recovery area for out-
of-control vehicles, provide a stopping area in case of emergencies, allow space for speed
changes and storage of left-turning and U-turning vehicles, minimize headlight glare, and provide
width for future lanes. Additional benefits of a median in an urban area are that it may offer an
open green space, may provide a refuge area for pedestrians crossing the street, and may control
the location of intersection traffic conflicts. For maximum efficiency, a median should be highly
visible both night and day and should contrast with the traveled way. Medians may be depressed,
raised, or flush with the traveled way surface.

In determining median width, consideration should be given to the potential need for median
barrier. Where practical, median widths should be such that a median barrier is not needed. The
general range of median widths is from 1.2 to 24 m [4 to 80 ft] or more. Economic factors often
limit the median width that can be provided. Cost of construction and maintenance increases as
median width increases, but the additional cost may not be appreciable compared with the total
cost of the highway and may be justified in view of the benefits gained.

At unsignalized intersections on rural divided highways, the median should generally be as
wide as practical. In urban and suburban areas, however, narrower medians appear to operate
better at unsignalized intersections; therefore, wider medians should only be used in urban and
suburban areas where needed to accommodate turning and crossing maneuvers by larger vehicles
(16). Medians at unsignalized intersections should be wide enough to allow selected design
vehicles to safely make a selected maneuver. The appropriate design vehicle for determining the
median width should be chosen based on the actual or anticipated vehicle mix of crossroad and
U-turn traffic. A consideration in the use of wider medians on roadways other than freeways is
the provision of adequate storage area for vehicles crossing the highway at unsignalized
intersections and at median openings serving commercial and private driveways. Such median
openings may need to be controlled as intersections (see Chapter 9). Wide medians may be a
disadvantage when signalization is needed. The increased time for vehicles to cross the median
can lead to inefficient signal operation.

If right-of-way is restricted, a wide median may not be justified if provided at the expense of
narrowed border areas. A reasonable border width is needed to adequately serve as a buffer
between the private development along the road and the traveled way, particularly where zoning
is limited or non-existent. Space should be provided on the borders for sidewalks, highway signs,
utility lines, parking, drainage channels, structures, proper slopes, clear recovery zones, and any
retained native growth. Narrowing the border areas may create obstacles and hindrances similar
to those that the median is designed to avoid.

A depressed median is generally preferred on freeways for more efficient drainage and snow
removal. Median side slopes should preferably be 1V:6H, but slopes of 1V:4H may be adequate.
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Drainage inlets in the median should be designed either with the top of the inlet flush with the
ground or with culvert ends provided with traversable safety grates.

Raised medians have application on arterial streets where it is desirable to regulate left-turn
movements. They are also frequently used where the median is to be planted, particularly where
the width is relatively narrow. Careful consideration should be given to the location and type of
plantings. Plantings, particularly in narrow medians, may create problems for maintenance
activities. Also, plantings such as trees in the median can also cause visual obstructions for
turning motorists if not carefully located. Plantings and other landscaping features in median
areas may constitute roadside obstacles and should be consistent with the AASHTO Roadside
Design Guide (10).

Flush medians are commonly used on urban arterials. Where used on freeways, a median
barrier may be needed. The crowned type is frequently used because it eliminates the need for
collecting drainage water in the median. In general, however, the slightly depressed median is
preferred either with a cross slope of about 4 percent or with a minor steepening of the roadway
cross slope.

The concept of converting flush medians to two-way left-turn lanes on urban streets has
become widely accepted. This concept offers several advantages when compared to no median.
Among these advantages are reduced travel time; improved capacity; reduced crash frequency,
particularly of the rear-end type; more flexibility (because the median lane can be used as a travel
lane during closure of a through lane); and public preference both from drivers and owners of
abutting properties. Median widths of 3.0 to 4.8 m [10 to 16 ft] provide the optimum design for
two-way left-turn lanes. Refer to the MUTCD (8) for appropriate lane markings and to Chapter 2
for additional discussion and details.

Two-way left-turn lanes may be inappropriate at many locations and conversion of existing
two-way left-turn lanes to nontraversable medians should be considered. Two-way left-turn lanes
have been widely used to provide access to closely spaced, low-volume commercial driveways
along arterial roads. From an access management perspective, they increase rather than control
access opportunities. Highway agencies have installed raised-curb or concrete median barriers on
existing highways in place of flush medians to better manage highway access as traffic and safety
concerns increase. In addition, some median openings for minor streets have been closed,
permitting only right turns in and out of these streets. This median treatment can reduce the
number and location of conflicts along a section of roadway. It should be recognized that diverted
left-turn volumes may increase congestion and collisions at downstream intersections; provisions
to accommodate U-turn traffic should also be considered at downstream locations.

Where there is no fixed-source lighting, headlight glare across medians or outer separations
can be a nuisance, particularly where the highway has relatively sharp curves or if the profiles of
the opposing roadways are uneven. Under these conditions, some form of antiglare treatment
should be considered as part of the median barrier installation, provided it does not act as a snow
fence and does not create drifting problems.
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When medians are about 12 m [40 ft] or wider, drivers have a sense of separation from
opposing traffic; thus, a desirable ease and freedom of operation is obtained, the noise and air
pressure of opposing traffic is not noticeable, and the glare of headlights at night is greatly
reduced. With widths of 18 m [60 ft] or more, the median can be pleasingly landscaped in a park-
like manner. Plantings used to achieve this park-like appearance need not compromise the
roadside recovery area.

There is demonstrated benefit in any separation, raised or flush. Wider medians are desirable
at rural unsignalized intersections, but medians as wide as 18 m [60 ft] may not be desirable at
urban and suburban intersections or at intersections that are signalized or may need signalization
in the foreseeable future. For further guidance in the selection of median widths for divided
highways with at-grade intersections, refer to NCHRP Report 375, Median Intersection
Design (16).

FRONTAGE ROADS

Frontage roads serve numerous functions, depending on the type of arterial they serve and
the character of the surrounding area. They may be used to control access to the arterial, function
as a street facility serving adjoining properties, and maintain circulation of traffic on each side of
the arterial. Frontage roads segregate local traffic from the higher speed through-traffic and
intercept driveways of residences and commercial establishments along the highway. Cross
connections provide access between the traveled way and frontage roads and are usually located
in the vicinity of the crossroads. Thus, the through character of the highway is preserved and
unaffected by subsequent development of the roadsides.

Frontage roads are used on all types of highways. Each chapter pertaining to a particular
type of highway includes a discussion on the use of frontage roads with that highway type.
Frontage roads are used most frequently on freeways where their primary function is to distribute
and collect traffic between local streets and freeway interchanges. In some circumstances,
frontage roads are desirable on arterial streets both in downtown and suburban areas. Frontage
roads not only provide more favorable access for commercial and residential development than
the faster moving arterial street but also help to preserve the safety and capacity of the latter. In
rural areas, development of expressways may need separated frontage roads that are somewhat
removed from the right-of-way and serve as access connections between crossroads and adjacent
farms or other development.

Despite the advantages of using frontage roads on arterial streets, the use of continuous
frontage roads on relatively high-speed arterial streets with intersections may be undesirable.
Along cross streets, the various through and turning movements at several closely spaced
intersections may greatly increase crash potential. Multiple intersections are also vulnerable to
wrong-way entrances. Traffic operations are improved if the frontage roads are located a
considerable distance from the main line at the intersecting cross roads in order to lengthen the
spacing between successive intersections along the crossroads. In urban areas, a minimum
spacing of about 50 m [150 ft] between the arterial and the frontage roads is desirable. For further
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discussion on frontage roads at intersections, refer to the section in Chapter 9 on “Intersection
Design Elements With Frontage Roads.”

In general, frontage roads are parallel to the traveled way, may be provided on one or both
sides of the arterial, and may or may not be continuous. Where the highway crosses a grid street
system on a diagonal course or where the street pattern is irregular, the frontage roads may be a
variable distance from the traveled way. Arrangements and patterns of frontage roads are shown
in Exhibits 4-8 and 4-9. Exhibit 4-8A illustrates the most common arrangement, two frontage
roads running parallel and approximately equidistant from a freeway. In urban areas, continuous
frontage roads that are parallel to the freeway permit the use of the frontage roads as a backup
system in case of an accident on the freeway or other freeway disruption. Exhibit 4-8B shows a
freeway with one frontage road. On the side without the frontage road, the local streets serve to
collect and distribute the traffic. Exhibit 4-9 shows an irregular pattern of frontage roads.

Exhibit 4-8.  Typical Frontage Road Arrangements

From an operational and safety standpoint, one-way frontage roads are much preferred to
two-way frontage roads. While one-way operation inconveniences local traffic to some degree,
the reduction in vehicular and pedestrian conflicts at intersecting streets generally compensate for
this inconvenience. In addition, there is some reduction in the roadway and right-of-way width
required. Two-way frontage roads at busy intersections complicate crossing and turning
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movements. Where offramps join a two-way frontage road, the potential for wrong-way entry is
increased. This problem is greatest where the ramp joins the frontage road at an acute angle, thus
giving the appearance of an onramp to the wrong-way driver.

Two-way frontage roads may be considered for partially developed urban areas where the
adjoining street system is so irregular or so disconnected that one-way operation would introduce
considerable added travel distance and cause undue inconvenience. Two-way frontage roads may
also be appropriate for suburban or rural areas where points of access to the through facility are
infrequent, where only one frontage road is provided, or where roads or streets connecting with
the frontage roads are widely spaced. In urban areas that are developed or likely to be developed,
two-way frontage roads should be considered where there is no parallel street within reasonable
distance of the frontage roads.

Connections between the arterial and frontage road are an important element of design. On
arterials with slow-moving traffic and one-way frontage roads, slip ramps or simple openings in a
narrow outer separation may work reasonably well. Slip ramps from a freeway to two-way
frontage roads are generally unsatisfactory because they may induce wrong-way entry to the
freeway traveled way and create an increased crash potential at the intersection of the ramp and
frontage road. On freeways and other arterials with high operating speeds, the ramps and their
terminals should be liberally designed to provide for speed changes and storage. Details of ramp
design are covered in later chapters.

Exhibits 4-10 and 4-11 each illustrate an arrangement of frontage roads with entrance and
exit ramps that are applicable to freeways and other higher speed arterials. The one-way frontage
roads illustrated in Exhibit 4-10 are designed to ensure good operation on both freeways and
frontage roads. Exhibit 4-11 shows an arrangement of entrance and exit ramps at two-way
frontage roads. This design incorporates a wide outer separation that is not always practical in

Exhibit 4-9.  Frontage Roads, Irregular Pattern
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urban areas. The actual width would depend on the design of the ramps and their terminals. In
most cases, the width of outer separation would be greater than 60 m [200 ft] in the area of the
ramp terminals. The offramp is connected to the frontage road at a right angle to discourage
wrong-way entry. Careful attention needs to be given to the placement of signs and the use of
traffic markings to prohibit wrong-way movements. Because of the potential for wrong-way
movements, the offramp should not intersect the frontage road opposite a two-way side street
access.

Exhibit 4-10.  One-way Frontage Roads, Entrance and Exit Ramps

The design of a frontage road is influenced by the type of service it is intended to provide.
Where a frontage road is continuous and passes through highly developed areas, it assumes the
character of an important street, serving both local traffic as well as overflow from the traveled
way. Where the frontage roads are not continuous or are only a few blocks in length, follow an
irregular pattern, border the rear and sides of buildings, or serve only scattered development,
traffic will be light and operation will be local in character. Refer to Chapter 6 for guidelines on
the widths of two-lane frontage roads for rural and urban collectors.

Exhibit 4-11.  Two-way Frontage Roads, Entrance and Exit Ramps

OUTER SEPARATIONS

The area between the traveled way of a through-traffic roadway and a frontage road or street
is referred to as the “outer separation.”  Such separations function as buffers between the through-
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traffic on the arterial and the local traffic on the frontage road and provide space for a shoulder
for the through roadway and ramp connections to or from the through facility.

The wider the outer separation, the less influence local traffic will have on through-traffic.
Wide separations lend themselves to landscape treatment and enhance the appearance of both the
highway and the adjoining property. A substantial width of outer separation is particularly
advantageous at intersections with cross streets because it minimizes vehicle and pedestrian
conflicts.

Where ramp connections are provided between the through roadway and the frontage road,
the outer separation should be substantially wider than typical. The needed width will depend
mostly upon the design of the ramp termini.

Where two-way frontage roads are provided, a driver on the through facility faces
approaching traffic on the right (opposing frontage road traffic) as well as opposing arterial traffic
on the left. Desirably, the outer separation should be sufficiently wide to minimize the effects of
approaching traffic, particularly the potentially confusing and distracting nuisance of headlight
glare at night. With one-way frontage roads the outer separation need not be as wide as with two-
way frontage roads.

The one-lane, one-way frontage road with parking illustrated in Exhibit 4-12 serves
businesses along a major undivided arterial street in a densely developed area of a large city. The
raised and curbed outer separation creates a buffer between through-traffic and local traffic and
provides a refuge for pedestrians.

Exhibit 4-12.  Frontage Road in Business Area With Narrow Outer Separation

The cross section and treatment of an outer separation depend largely upon its width and the
type of arterial and frontage road. Preferably, the strip should drain away from the through
roadway either to a curb and gutter at the frontage road or to a swale within the strip. Typical
cross sections of outer separations for various types of arterials are illustrated in Exhibit 4-13.
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The cross section in Exhibit 4-13A is applicable to low-speed arterial streets in densely
developed areas. Exhibit 4-13B shows a minimal outer separation that may be applicable to
ground-level freeways and high-speed arterial streets. This outer separation consists simply of the
shoulders of the through roadway and the frontage road, as well as a physical barrier.
Exhibit 4-13C shows a depressed arterial with a cantilevered frontage road. In this example, the
inside edge of the frontage road is located directly over the outside edge of the through roadway.
Exhibit 4-13D illustrates a common type of outer separation along a section of depressed
freeway, Exhibit 4-13E shows a walled section at a depressed arterial with a ramp, and
Exhibit 4-13F shows a typical freeway outer separation with a ramp.

NOISE CONTROL

General Considerations

Noise may be defined as unwanted sound. Motor vehicles generate traffic noise from the
motor, aerodynamics, exhaust, and interaction of the tires with the roadway. Efforts should be
made to minimize the radiation of noise into noise-sensitive areas along the highway. The
designer should evaluate existing or potential noise levels and estimate the effectiveness of
reducing highway traffic noise through location and design considerations.

Exhibit 4-13.  Typical Outer Separations

The physical measurement of human reaction to sound is difficult because there is no
instrument that will measure this directly. A close correlation can be obtained by using the
A-scale on a standard sound level meter. The meter yields a direct reading in effective decibels
(dBA).
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A few general relationships may be helpful in understanding some of the principles of sound
generation and transmission. Because noise is measured on a logarithmic scale, a decrease of
10 dBA will appear to an observer as only half of the original noise level. For example, a noise of
70 dBA sounds only one-half as loud as 80 dBA, assuming the same frequency composition and
other things being equal. A doubling of the noise source produces a 3 dBA increase in the noise
level. For example, if a single vehicle produces a noise level of 60 dBA at a certain distance from
the receiver, two of these vehicles at a common point of origin will produce 63 dBA, four
vehicles will produce 66 dBA, eight vehicles will produce 69 dBA, and so forth.

Noise decreases with distance, but not as quickly as one might expect. For example, the
sound level will decrease approximately 3 to 4.5 dBA for each doubling of distance from a
highway.

The same traffic noise level will produce different human reactions depending on the
environment in which the noise is heard. The actual noise level is not, in itself, a good predictor
of public annoyance. For example, the reaction is usually less if the noise source is hidden from
view. The type of development in an area is another factor that affects the annoyance level. High
traffic noise levels are usually more tolerable in industrial than in residential areas. Other factors
that influence human reactions to noise are pitch and intermittency. The higher the pitch or more
pronounced the intermittency of the noise, the greater the degree of annoyance.  For further
information, see the AASHTO Guide on Evaluation and Abatement of Traffic Noise (32).

General Design Procedures

The first step in analyzing the effects of noise from a proposed highway facility is to define
the criteria for noise impacts. With these criteria defined, the location of noise-sensitive areas can
be identified. These may include residential areas, schools, churches, motels, parks, hospitals,
nursing homes, libraries, etc. The existing noise levels are determined by measurement of
identified noise-sensitive land uses or activities.

The highway-generated noise level is then predicted by one of the noise prediction methods
presently available. Pertinent factors are traffic characteristics (speed, volume, and composition),
topography (vegetation, barriers, and distance), and roadway characteristics (configuration,
pavement type, grades, and type of facility). The prediction is normally based on the highway
traffic that will yield the worst hourly traffic noise on a regular basis for the design year. More
detailed information on noise prediction is available (17, 18, 19, 20, 21).

Exhibit 4-14 provides FHWA noise-abatement criteria for various land uses. These sound
levels are used to determine the noise impact on each land use. Traffic noise impacts occur under
two criteria: 1) when the predicted levels approach or exceed the noise-abatement criteria and,
2) when predicted noise levels substantially exceed the existing noise level, even though the
predicted levels may not exceed the noise-abatement criteria. To adequately assess the traffic
noise impact of a proposed project, both criteria should be analyzed.
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Design noise levels
(dBA)aActivity

category Category description Leq(h)b L10(h)

A Tracts of land in which serenity and quiet are of
extraordinary significance and serve an important
public need and where the preservation of those
qualities is essential if the area is to continue to serve
its intended purpose. Such areas could include
amphitheaters, particular parks or portions of parks,
open spaces or historic districts which are dedicated
or recognized by appropriate local officials for
activities requiring special qualities of serenity and
quiet.

57 60
(Exterior)

B Picnic areas, recreation areas, playgrounds active
sports areas and parks not included in Category A
and residences, motels, hotels, public meeting
rooms, schools, churches, libraries, and hospitals.

67 70
(Exterior)

C Developed lands, properties or activities not included
in Categories A or B above.

72 75
(Exterior)

D Undeveloped lands which do not contain
improvements or activities devoted to frequent
human habitation or use and for which such
improvements or activities are unplanned and not
programmed.

–c

E Residences, motels, hotels, public meeting rooms,
schools, churches, libraries, hospitals, and
auditoriums.

52 55d

(Interior)

a Source: Federal Aid Highway Program Manual, Vol. 7, Ch. 7, Sec. 3 Transmittal 348, August 9,
1982.

b Either L10(h) or Leq(h) (but not both) may be used for a specific project.
c Noise-abatement criteria have not been established for these lands. They may be treated as

developed lands if the probability for development is high. Provisions for noise abatement
would be based on the need, expected benefits, and costs of such measures.

d Interior noise abatement criteria in this category apply to (1) indoor activities where no extreme
noise-sensitive land use or activity is identified, and (2) exterior activities that are either remote
from the highway or shielded so that they will not be significantly affected by the noise, but the
interior activities will.

Exhibit 4-14.  Noise-Abatement Criteria for Various Land Uses

Noise Reduction Designs

Potential noise problems should be identified early in the design process.  Line, grade,
earthwork balance, and right-of-way should all be worked out with noise in mind.  Noise
attenuation may be inexpensive and practical if built in the design and expensive if not considered
until the end of the design process. An effective method of reducing traffic noise from adjacent
areas is to design the highway so that some form of solid material blocks the line of sight between
the noise source and the receptors.  Advantage should be taken of the terrain in forming a natural
barrier so that the appearance remains aesthetically pleasing.
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In terms of noise considerations, a depressed highway section is the most desirable.
Depressing the roadway below ground level has the same general effect as erecting barriers (i.e.,
a shadow zone is created where noise levels are reduced [see Exhibit 4-15]).  Where a highway is
constructed on an embankment, the embankment beyond the shoulders will sometimes block the
line of sight to receptors near the highway, thus reducing the potential noise impacts (see
Exhibit 4-16).

Special sound barriers may be justified at certain locations, particularly along ground-level
or elevated highways through noise-sensitive areas. Concrete, wood, metal, or masonry walls are
very effective. One of the more aesthetically pleasing barriers is the earth berm that has been
graded to achieve a natural form blending with the surrounding topography. The practicality of
berm construction should be considered as part of the overall grading plan for the highway. There
will be instances where an effective earth berm can be constructed within normal right-of-way or
with a minimal additional right-of-way purchase. If right-of-way is insufficient to accommodate a
full-height earth berm, a lower earth berm can be constructed in combination with a wall or
screen to achieve the desired height.

Exhibit 4-15.  Effects of Depressing the Highway
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Exhibit 4-16.  Effects of Elevating the Highway

ROADSIDE CONTROL

General Considerations

The efficiency and safety of a highway without control of access depend greatly upon the
amount and character of roadside interference, characterized by vehicle movements to and from
businesses, residences, or other development along the highway. Abutting property owners have
rights of access, but it is desirable that the highway authority be empowered to regulate and
control the location, design, and operation of access driveways and other roadside elements such
as mailboxes. Such access control minimizes interference to through traffic on the highway.
Interference resulting from indiscriminate roadside development and uncontrolled driveway
connections results in lowered capacity, increased conflict, and early obsolescence of the
highway.

Driveways

Driveway terminals are, in effect, low-volume intersections; thus, their design and location
merit special consideration. The operational effects of driveways are directly related to the
functional classification of the roadway to which they provide access. For example, whereas
driveways might adversely affect the operation of arterials, they become important links on local
streets that provide access to local establishments.
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Driveways used for right turns only are desirable where the cross section includes a curbed
median or a flush median and median barrier. Driveways used for both right and left turns offer
considerably more interference to through traffic and are undesirable on arterial streets. However,
on major streets with numerous motorist-oriented businesses, the elimination of left turns at
driveways may worsen traffic operations by forcing large volumes of traffic to make U-turns or
travel around the block in order to reach their destination.

The regulation and design of driveways is intimately linked with the available right-of-way
and the land use and zoning control of the adjacent property. On new facilities, the needed right-
of-way can be obtained to provide the desired degree of driveway regulation and control. To
prohibit undesirable access conditions on existing facilities, either additional right-of-way can be
acquired or agreements can be made with property owners to improve existing conditions. Often
the desired degree of driveway control must be effected through the use of police powers by
requiring permits for all new driveways and adjustment of existing that do not conform to
established regulations. The objective of driveway regulations is to preserve efficiency and
promote operational efficiency by prescribing desirable spacing and proper layout of driveways.
The attainment of these objectives is dependent upon the type and extent of legislative authority
granted to the highway agency. Many states and local municipalities have developed design
policies for driveways and formed separate units to issue permits for new, or for changes in
existing, driveway connections to main highways. For further information on the regulation and
design of driveways, refer to Guidelines for Driveway Design and Location (22).

Driveway regulations generally control right-of-way encroachment, driveway location,
driveway design, sight distance, drainage, use of curbs, parking, setback, lighting, and signing.
Some of the principles of intersection design can also be applied directly to driveways. An
important feature of driveway design is the elimination of large graded or paved areas adjacent to
the traveled way upon which drivers can enter and leave the facility at will. Another feature is the
provision of adequate driveway widths, throat dimensions, and proper layout to accommodate the
types of vehicles patronizing the roadside establishment.

Sight distance, another important design control, can be limited by the presence of
unnecessary roadside structures. Therefore, no advertising signs should be permitted in the right-
of-way. Billboards or other elements outside the right-of-way that obstruct sight distance should
be controlled by statutory authority or by purchase of easements.

For roadways without access control but with concentrated business development along the
roadside, consideration should be given to the use of a frontage road. This type of control and
design is particularly pertinent to a main highway or street on a new location for which sufficient
right-of-way can be acquired. In the first stage, intermittent sections of frontage roads are
constructed to connect the few driveways initially needed. Then, in succeeding stages, extensions
or additional sections of frontage roads are provided to intercept driveways resulting from further
development of the roadsides. Thus, serious roadside interference is prevented at all stages, and
the through character of the highway or street is preserved by gradual and judicious provision of
frontage roads.
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Mailboxes

Mailboxes and appurtenant newspaper tubes served by carriers in vehicles may very well
constitute a risk to motorists either directly or indirectly, depending upon the placement of the
mailbox, the cross-section dimensions of the highway or street, sight distance conditions in the
vicinity of the mailbox, traffic volume, and impact resistance of the mailbox support. The safety
of both the carrier and the motoring public is affected whenever the carrier slows for a stop and
then resumes travel along the highway. The risk is greatly increased if the cross section of the
highway and the lateral placement of mailboxes are such that the vehicle occupies a portion of the
traveled way while the mailbox is being serviced.

The mounting height of the box places the box in a direct line with the windshield on many
vehicles. This situation is more critical where multiple box installations are encountered. In many
areas, the typical multiple mailbox installation consists of two or more posts supporting a
horizontal member, usually a timber plank, which carries the group of mailboxes. The horizontal
support element tends to penetrate the windshield and enter the passenger compartment when
struck by a vehicle. Such installations are to be avoided where exposed to traffic. In fact, the
mailbox and support should be, where practical, located in an area not exposed to through traffic.

Mailboxes should be placed for maximum convenience to the patron, consistent with safety
considerations for highway traffic, the carrier, and the patron. Consideration should be given to
minimum walking distance within the roadway for the patron, available stopping sight distance in
advance of the mailbox site (especially on older roads), and potential restriction to corner sight
distance at driveway entrances. The placing of mailboxes along high-speed, high-volume
highways should be avoided if other practical locations are available. New installations should,
where practical, be located on the far right side of an intersection with a public road or private
driveway entrance. Boxes should be placed only on the right-hand side of the highway in the
direction of travel of the carrier except on one-way streets where they may also be placed on the
left-hand side.

Preferably, a mailbox should be placed so that it is not susceptible to being struck by an out-
of-control vehicle. Where this placement is not practical, the supports should be of a type that will
yield or break away safely if struck. The mailbox should be firmly attached to the support to
prevent it from breaking loose and flying through the windshield. The same safety criteria also
apply to multiple box installations.

One of the primary considerations is the location of the mailbox in relation to the traveled
way. Basically, a vehicle stopped at a mailbox should be clear of the traveled way. The higher the
traffic volume or the speed, the greater the clearance should be. An exception to this may be
considered on low-volume, low-speed roads and streets.

Most vehicles stopped at a mailbox will be clear of the traveled way when the mailbox is
placed outside a 2.4 m [8 ft] wide usable shoulder or turnout. This position is recommended for
most rural highways. For high-volume, high-speed highways, it is recommended that the width of
shoulder in front of the mailbox or turnout be increased to 3.0 m [10 ft] or even 3.6 m [12 ft] for
some conditions. However, it may not be practical to consider even a 2.4-m [8-ft] shoulder or
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turnout on low-volume, low-speed roads or streets. To provide space for opening the mailbox
door, it is recommended that the roadside face of a mailbox be set 200 to 300 mm [8 to 12 in]
outside the shoulder or turnout. Current postal regulations should be consulted for specific set-
back criteria.

In areas of heavy or frequent snowfall, mailboxes may be placed at about the customary line
of the plowed windrow, but no closer than about 3.0 m [10 ft] to the edge-of-traveled way if the
shoulder is wider than 3.0 m [10 ft]. Cantilever mailbox supports may prove advantageous for
snow-plowing operations. Wherever practical, mailboxes should be located behind existing
guardrail.

In some urban and suburban areas, mailboxes are located along selected streets and
highways where the local post office has established delivery routes. In these areas when the
roadway has a curb and gutter section, mailboxes should be located with the front of the box 150
to 300 mm [6 to 12 in] back of the face of curb. On residential streets without curbs or shoulder
and which carry low-traffic volumes operating at low speeds, the roadside face of a mailbox
should be offset between 200 to 300 mm [8 to 12 in] behind the edge of the traveled way.

For guidance on mailbox installations, refer to the latest editions of AASHTO’s A Guide for
Erecting Mailboxes on Highways (23) and Roadside Design Guide (10).

TUNNELS

General Considerations

Development of streets or highways may include sections constructed in tunnels either to
carry the streets or highways under or through a natural obstacle or to minimize the impact of the
freeway on the community. General conditions under which tunnel construction may be
warranted include:

• Long, narrow terrain ridges where a cut section may either be costly or carry
environmental consequences

• Narrow rights-of-way where all of the surface area is needed for street purposes
• Large intersection areas or a series of adjoining intersections on an irregular or diagonal

street pattern
• Railroad yards, airport runways, or similar facilities
• Parks or similar land uses, existing or planned
• Where right-of-way acquisition costs exceed cost of tunnel construction and operation.

Although the costs of operation and maintenance of tunnels are beyond the scope of this
policy, these costs should nevertheless be considered.

Additional construction and design features of tunnel sections are discussed below. It is not
intended that this section be considered complete on the subject of highway tunnels. Instead, the
material that follows provides highway planners and designers with general background
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information. To accomplish this basic objective, some simplification of subject matter is
appropriate. As with any highly specialized branch of engineering, such simplified information
should be used with caution. In addition, the ventilating, lighting, pumping, and other mechanical
or electrical considerations in tunnel design are regarded as outside the scope of this policy.

Types of Tunnels

Tunnels can be classified into two major categories: (1) tunnels constructed by mining
methods, and (2) tunnels constructed by cut-and-cover methods.

The first category refers to those tunnels that are constructed without removing the overlying
rock or soil. Usually this category is subdivided into two very broad groups according to the
appropriate construction method. The two groups are named to reflect the overall character of the
material to be excavated: hard rock and soft ground.

Of particular interest to the highway designer are the structural requirements of these
construction methods and their relative costs. As a general rule, hard-rock tunneling is less
expensive than soft-ground tunneling. A tunnel constructed through solid, intact, and
homogeneous rock will normally represent the lower end of the scale with respect to structural
demands and construction costs. A tunnel located below water in material needing immediate and
heavy support will require extremely expensive soft-ground tunneling techniques such as shield
and compressed air methods.

The shape of the structural cross section of the tunnel varies with the type and magnitude of
loadings. In those cases where the structure will be subjected to roof loads with little or no side
pressures, a horseshoe-shaped cross section is used. As side pressures increase, curvature is
introduced into the sidewalls and invert struts added. When the loadings approach a distribution
similar to hydrostatic pressures, a full circular section is usually more efficient and economical.
All cross sections are dimensioned to provide adequate space for ventilation ducts.

The second category of tunnel classification deals with the two types of tunnels that are
constructed from the surface: trench and cut-and-cover tunnels. The latter are used exclusively for
subaqueous work. In the trench method, prefabricated tunnel sections are constructed in shipyards
or dry docks, floated to the site, sunk into a dredged trench, and joined together underwater. The
trench is then backfilled. When conditions are favorable with respect to subsurface soil, amount
of river current, volume and character of river traffic, availability of construction facilities, and
type of existing waterfront structures, the trench method may prove more economical than
alternative methods.

The cut-and-cover method is by far the most common type of tunnel construction for
shallow tunnels, which often occurs in urban areas. As the name implies, the method consists of
excavating an open cut, building the tunnel within the cut, and backfilling over the completed
structure. Under ideal conditions, this method is the most economical for constructing tunnels
located at a shallow depth. However, it should be noted that surface disruption and problems with
utilities generally make this method very expensive and difficult.



Cross Section Elements

357

General Design Considerations

Tunnels should be made as short as practical because the feeling of confinement and
magnification of traffic noise can be unpleasant to motorists, and tunnels are the most expensive
highway structures to construct. The horizontal alignment through the tunnel is an important
design consideration as well. Keeping as much of the tunnel length as practical on tangent will
not only minimize the length but also improve operating efficiency. Tunnels designed with
extreme curvature may result in limited stopping sight distance. Therefore, sight distance across
the face of the tunnel wall should be carefully examined.

The vertical alignment through the tunnel is another important design consideration. Grades
in tunnels should be determined primarily on the basis of driver comfort while striving to reach a
point of economic balance between construction costs and operating and maintenance expenses.
Many factors have to be considered in tunnel lengths and grades and their effects on tunnel
lighting and ventilation. For example, lighting expenses are highest near portals and depend
heavily on availability of natural light and the need to make a good light transition. Ventilation
costs depend on length, grades, natural and vehicle-induced ventilation, type of system, and air
quality constraints.

The overall roadway design should avoid the need for guide signs within tunnels, because
normal vertical and lateral clearances are usually insufficient for such signing and additional
clearance can be provided only at very great expense. Exit ramps should be located a sufficient
distance downstream from the tunnel portal to permit needed guide signs between the tunnel and
the point of exit. This distance should be a minimum of 300 m [1,000 ft]. It is also highly
undesirable that traffic be expected to merge, diverge, or weave within a tunnel, as might be the
case if the tunnel is located between two closely spaced interchanges. Therefore, forks and exit or
entrance ramps should be avoided within tunnels.

Tunnel Sections

From the standpoint of service to traffic, the design criteria used for tunnels should not differ
materially from those used for grade separation structures. The same design criteria for alignment
and profile and for vertical and horizontal clearances generally apply to tunnels except that
minimum values are typically used because of high cost and restricted right-of-way.

Full left- and right-shoulder widths of the approach freeway desirably should be carried
through the tunnel. Actually, the need for added lateral space is greater in tunnels than under
separation structures because of the greater likelihood of vehicles becoming disabled in the longer
lengths. If shoulders are not provided, intolerable delays may result when vehicles become
disabled during periods of heavy traffic. However, the cost of providing shoulders in tunnels may
be prohibitive, particularly on long tunnels that are constructed by the boring or shield-drive
methods. Thus, the determination of the width of shoulders to be provided in a tunnel should be
based on an in-depth analysis of all factors involved. Where it is not practical to provide
shoulders in a tunnel, arrangements should be made for around-the-clock emergency service
vehicles that can promptly remove any stalled vehicles.
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Exhibit 4-17 illustrates the minimum and desirable cross sections for two-lane tunnels. The
minimum roadway width between curbs, as shown in Exhibit 4-17A, should be at least 0.6 m
[2 ft] greater than the approach traveled way, but not less than 7.2 m [24 ft]. The curb or sidewalk
on either side should be a minimum of 0.5 m [1.5 ft]. The total clearance between walls of a two-
lane tunnel should be a minimum of 9 m [30 ft]. The total width and the curb or sidewalk width
can be varied as needed within the 9-m [30-ft] minimum wall clearance; however, each width
should not be less than the minimum value stated above.

Exhibit 4-17.  Typical Two-lane Tunnel Sections
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The minimum vertical clearance is 4.9 m [16 ft] for freeways and 4.3 m [14 ft] for other
highways. However, the minimum clear height should not be less than the maximum height of
load that is legal in a particular state, and it is desirable to provide an allowance for future
repaving of the roadways.

Exhibit 4-17B illustrates the desirable section with two 3.6-m [12-ft] lanes, a 3.0-m [10-ft]
right shoulder, a 1.5-m [5-ft] left shoulder, and a 0.7-m [2.5-ft] curb or sidewalk on each side.
The roadway width may be distributed to either side in a different manner if needed to better fit
the dimensions of the tunnel approaches. The vertical clearance for the desirable section is 4.9 m
[16 ft] for freeways and 4.3 m [14 ft] for other highways.

Normally, pedestrians are not permitted in freeway tunnels; however, space should be
provided for emergency walking and for access by maintenance personnel. Raised sidewalks,
0.7 m [2.5 ft] wide, are desirable beyond the shoulder areas to serve the dual purpose of a safety
walk and a buffer to prevent the overhang of vehicles from damaging the wall finish or the tunnel
lighting fixtures. Separate tunnels may be warranted for pedestrians or other special uses, such as
bicycle routes.

Exhibit 4-18 shows several tunnel sections as well as a partially covered highway.
Directional traffic should be separated for safety reasons and to relieve the dizzying effect of two-
way traffic in a confined space. This separation can be achieved by providing a twin opening as
shown in Exhibit 4-18A, by multilevel sections as shown in Exhibits 4-18B and 4-18C, or by
terraced structures as shown in Exhibit 4-18D. The terraced roadways are open on the outside for
light, view, and ventilation. Exhibit 4-18E illustrates roadways that are tunneled under hillside
buildings. A partially covered section, as shown in Exhibit 4-18F, provides light and ventilation to
the motorist while minimizing freeway intrusion on the community traversed. This type of cross
section is covered in the section “Depressed Freeways” in Chapter 8.

Examples of Tunnels

Exhibit 4-19 shows a freeway tunneling through a hillside. The portals are staggered and
attractively designed. The interchange is located a sufficient distance from the tunnel to allow
space for effective signing and the necessary traffic maneuvers.

Exhibit 4-20 illustrates the interior of a three-lane directional tunnel. Note the two rows of
lighting fixtures on each wall in the foreground. The upper row of lights provides supplemental
daytime lighting at the entrance portal to reduce the optical shock of traveling from natural to
artificial lighting. The ceramic-tile finish on the walls and ceiling provides reflective surfaces that
increase the brightness level and uniformity of lighting. A curb-to-curb width of 12.3 m [41 ft] is
provided with 0.7 m [2.5 ft] wide safety walks along each wall.
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Exhibit 4-18.  Diagrammatic Tunnel Sections

Exhibit 4-19.  Entrance to a Freeway Tunnel
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Exhibit 4-20.  Interior of a 3-lane One-way Tunnel

PEDESTRIAN FACILITIES

Sidewalks

Sidewalks are an integral part of city streets but are rarely provided in rural areas. However,
the potential for collisions with pedestrians is higher in many rural areas due to the higher speeds
and general absence of lighting. The limited data available suggest that sidewalks in rural areas
do reduce pedestrian collisions.

Sidewalks in rural and suburban areas are more often justified at points of community
development, such as residential areas, schools, local businesses, and industrial plants, that result
in pedestrian concentrations near or along the highways. When suburban residential areas are
developed, initial roadway facilities are needed for the development to function, but the
construction of sidewalks is sometimes deferred.  However, if pedestrian activity is anticipated,
sidewalks should be included as part of the construction. Shoulders may obviate the need for
sidewalks if they are of a type that encourages pedestrian use in all weather conditions. If
sidewalks are utilized, they should be separated from the shoulder. If the sidewalk is raised above
the level of the shoulder, the cross section typically approaches that of an urban highway.

In suburban and urban locations, a border area generally separates the roadway from a
community’s homes and businesses. The main function of the border is to provide space for
sidewalks. Other functions are to provide space for streetlights, fire hydrants, street hardware, and
aesthetic vegetation and to serve as a buffer strip. Border width varies considerably, but 2.4 m
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[8 ft] is considered an appropriate minimum width. Swale ditches may be located in these borders
to provide an economical alternative to curb and gutter sections.

Sidewalk widths in residential areas may vary from 1.2 to 2.4 m [4 to 8 ft]. The width of a
planted strip between the sidewalk and traveled-way curb, if provided, should be a minimum of
0.6 m [2 ft] to allow for maintenance activities. Sidewalks covering the full border width are
generally justified and often appropriate in commercial areas, through adjoining multiple-
residential complexes, near schools and other pedestrian generators, and where border width is
restricted.

Where sidewalks are placed adjacent to the curb, the widths should be approximately 0.6 m
[2 ft] wider than those widths used when a planted strip separates the sidewalk from the curb.
This additional width provides space for roadside hardware and snow storage outside the width
needed by pedestrians. It also allows for the proximity of moving traffic, the opening of doors of
parked cars, and bumper overhang on angled parking.

Justification for the construction of sidewalks depends upon the potential for vehicle-
pedestrian conflicts. Traffic volume-pedestrian warrants for sidewalks along highways have not
been established. In general, wherever roadside and land development conditions affect regular
pedestrian movement along a highway, a sidewalk or path area, as suitable to the conditions,
should be furnished.

As a general practice, sidewalks should be constructed along any street or highway not
provided with shoulders, even though pedestrian traffic may be light. Where sidewalks are built
along a high-speed highway, buffer areas should be established so as to separate them from the
traveled way.

Sidewalks should have all-weather surfaces to ensure their intended use. Without them,
pedestrians often choose to use the traveled way. Pedestrian crosswalks are regularly marked in
urban areas but are rarely marked on rural highways. However, where there are pedestrian
concentrations, appropriate traffic -control devices should be used, together with appropriate
walkways constructed within the right-of-way.

When two urban communities are in proximity to one another, consideration should be given
to connecting the two communities with sidewalks, even though pedestrian traffic may be light.
This may avoid driver-pedestrian conflicts on these sections of a through route.

Pedestrian facilities such as sidewalks must be designed to accommodate persons with
disabilities. See the sections on “Grade-separated Pedestrian Crossings” and “Sidewalk Curb
Ramps” later in this chapter for further discussion on this point.

Generally, the guidelines set forth in this section for the accommodation of pedestrians are
also applicable to bridges. However, because of the high cost of bridges and the operational
features that may be unique to bridge sites, pedestrian-way details on a bridge will often differ
from those on its approaches. For example, where a planted strip between a sidewalk and the
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traveled way approaches a bridge, continuation of the offset, affected by the planted strip, will
seldom be justified.

Where flush shoulders approach a bridge and light pedestrian traffic is anticipated on the
shoulders, the shoulder width should be continued across the bridge, and possibly increased, to
account for the restriction to pedestrian escape imposed by the bridge rail. A flush roadway
shoulder should not be interrupted by a raised walkway on a bridge. Where such installations
already exist, and removal is not economically justified, the ends of the walkway should be
ramped into the shoulder at a rate of approximately 1:20 with the shoulder grade.

Provisions for pedestrians are often appropriate on street overcrossings and on longer bridge
crossings. On lower-speed streets, a vertical curb at the edge of the sidewalk is usually sufficient
to separate pedestrians from vehicular traffic . Continuity of curb height should be maintained on
the approaches to and over structures. For higher-speed roadways on structures, a barrier-type rail
of adequate height may be used to separate the walkway and the traveled way. A pedestrian-type
rail or screen should be used at the outer edge of the walkway. On long bridges (greater than 60 m
[200 ft]), a single walkway may be provided. However, care should be taken to ensure that
approach walkways provide safe and relatively direct access to the bridge walkway. Fences may
need to be erected to channelize pedestrians and prevent or control conflicts between pedestrians
and vehicular traffic.

For a discussion of the potential problems associated with the introduction of a traffic barrier
between a roadway and a walkway, see the section on “Bridge Railings,” earlier in this chapter.
For a discussion on designing sidewalks to accommodate persons with disabilities, see the section
on “Sidewalk Curb Ramps,” later in this chapter. Further guidance on sidewalk and pedestrian
crossing design can be found in current Americans with Disabilities Act Accessibility Guidelines
(ADAAG) (24) and in the AASHTO Guide for the Planning, Design, and Operation of
Pedestrian Facilities (25).

Grade-Separated Pedestrian Crossings

A grade-separated pedestrian facility allows pedestrians and motor vehicles to cross at
different levels, either over or under a roadway. It provides pedestrians with a safe refuge for
crossing the roadway without vehicle interference. Pedestrian separations should be provided
where pedestrian volume, traffic volume, intersection capacity, and other conditions favor their
use, although their specific location and design require individual study. They may be warranted
where there are heavy peak pedestrian movements, such as at central business districts, factories,
schools, or athletic fields, in combination with moderate to heavy vehicular traffic or where
unusual risk or inconvenience to pedestrians would otherwise result. Pedestrian separations,
usually overpasses, may be needed at freeways or expressways where cross streets are terminated.
On many freeways, highway overpasses for cross streets may be limited to three- to five-block
intervals. As this situation imposes an extreme inconvenience on pedestrians desiring to cross the
freeway at the terminated streets, pedestrian separations may be provided. Local, State, and
Federal laws and codes should be consulted for possible additional criteria concerning need, as
well as additional design guidance.
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Where there are frontage roads adjacent to the arterial highway, the pedestrian crossing may
be designed to span the entire or only the through roadway. Separations of both through roadways
and frontage roads may not be justified if the frontage roads carry light and relatively slow-
moving traffic; however, in some cases the separation should span the frontage roads as well.
Fences may be needed to prevent pedestrians from crossing the arterial at locations where a
separation is not provided.

Pedestrian crossings or overcrossing structures at arterial streets are not likely to be used
unless it is obvious to the pedestrian that it is easier to use such a facility than to cross the traveled
way. Generally, pedestrians are more reluctant to use undercrossings than overcrossings. This
reluctance may be minimized by locating the undercrossing on line with the approach sidewalk
and ramping the sidewalk gently to permit continuous vision through the undercrossing from the
sidewalk. Good sight lines and lighting are needed to enhance a sense of security. Ventilation
may be needed for very long undercrossings.

Pedestrian ramps should be provided at all pedestrian separation structures. Where warranted
and practical, a stairway can be provided in addition to the ramp. Elevators should be considered
where the length of ramp would result in a difficult path of travel for a person with or without a
disability.

Walkways for pedestrian separations should have a minimum width of 2.4 m [8 ft]. Greater
widths may be needed where there are exceptionally high volumes of pedestrian traffic, such as in
the downtown areas of large cities and around sports stadiums.

A serious problem associated with pedestrian overcrossings and highway overpasses with
sidewalks is vandals dropping objects into the path of traffic moving under the structure. The
consequences of objects being thrown from bridges can be very serious. In fact, there are frequent
reports of fatalities and major injuries caused by this type of vandalism. There is no practical
device or method yet devised that can be universally applied to prevent a determined individual
from dropping an object from an overpass. For example, small objects can be dropped through
mesh screens. A more effective deterrent is a solid plastic enclosure. However, these are
expensive and may be insufferably hot in the summer. They also obscure and darken the
pedestrian traveled way, which may be conducive to other forms of criminal activity. Any
completely enclosed pedestrian overpass has an added problem that children may walk or play on
top of the enclosure. In areas subject to snow and icing conditions, the possibility that melting
snow and ice may drop from the roof of a covered overpass and fall onto the roadway below
should be considered.

At present it is not practical to establish absolute warrants as to when or where barriers
should be installed to discourage the throwing of objects from structures. The general need for
economy in design and the desire to preserve the clear lines of a structure unencumbered by
screens should be carefully balanced against the need to provide safe operations for both
motorists and pedestrians.

Locations where screens definitely should be considered at the time the overpass is
constructed include:
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• On an overpass near a school, a playground, or elsewhere where it would be
expected that the overpass would be frequently used by children unaccompanied
by adults.

• On all overpasses in large urban areas used exclusively by pedestrians and not
easily kept under surveillance by police.

• On an overpass where the history of incidents on nearby structures indicates a need
for screens.

Screens should also be installed on existing structures where there have been incidents of
objects being dropped from the overpass and where it seems evident that increased surveillance,
warning signs, or apprehension of a few individuals involved will not effectively alleviate the
problem.

More complete information on the use of protective screens on pedestrian overpasses is
available in the AASHTO Roadside Design Guide (10).

Exhibit 4-21 illustrates two typical pedestrian overcrossings of major highways.

Sidewalk Curb Ramps

When designing a project that includes curbs and adjacent sidewalks, proper attention should
be given to the needs of persons with disabilities whose means of mobility are dependent upon
wheelchairs and other devices (26). The street intersection with steep-faced curbs need not be an
obstacle to persons with disabilities. In fact, adequate and reasonable access can be provided for
sidewalk curb ramps.

Design details of sidewalk and wheelchair curb ramps will vary in relation to the following
factors:

• Sidewalk width
• Sidewalk location with respect to the back face of curb
• Height and width of curb cross section
• Design turning radius and length of curve along the curb face
• Angle of street intersections
• Planned or existing location of sign and signal control devices
• Storm water inlets and public service utilities
• Potential sight obstructions
• Street width
• Border width
• Roadway grade in combination with the grades of the sidewalk, curb, ramps and

gutter
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Exhibit 4-21.  Typical Pedestrian Overpasses on Major Highways
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As a result, basic curb ramp types have been established and used in accordance with the
geometric characteristics of each intersection. Currently, ADAAG (24) requires a 0.9-m [3-ft]
minimum curb ramp width and an 8.33 percent maximum grade. Cross slopes on adjacent
sidewalks should be no greater than 2 percent. A level landing area is required at the top of each
curb ramp. In addition, 0.6-m [2-ft] detectable warning strips that comply with ADAAG are
recommended at the bottom of curb ramps to improve detectability by people with visual
impairments.

Exhibit 4-22 illustrates various sidewalk curb ramp designs. Exhibit 4-22A shows the
condition where the entire grade differential is totally achieved outside the sidewalk. This
condition is desirable since it does not require anyone to walk across the ramped area. In this
case, a steep face curb can be used along the curb ramp if the presence of landscaping or other
fixed obstructions constrain pedestrians from walking across the curb ramp.

In most areas where sidewalks are needed, the curb ramp should be incorporated in the
sidewalk, as shown in Exhibits 4-22B and 4-22C. Exhibit 4-22B reflects a normal design with
adequate room for curb ramp slope development. Exhibit 4-22C shows an example where a width
restriction results in the curb ramp being constructed totally within the sidewalk area.

When other options are not practical, a built-up curb ramp, such as the one illustrated in
Exhibit 4-22D, may be desirable . However, the curb ramp should not project into the traveled
way. Also, drainage may be adversely affected if not properly considered. The curb ramp area
should be protected and should only be used at locations that include a parking lane.

The location of the sidewalk curb ramp should be carefully coordinated with respect to the
pedestrian crosswalk lines. This planning should ensure that the bottom of the curb ramp is
situated within the parallel boundaries of the crosswalk markings. The bottom of the curb ramp
should be perpendicular to the face of the curb with the least amount of warping in the sidewalk,
curb ramp, and street transitions.

Exhibit 4-23 shows a typical sidewalk ramp at the middle of the curb radius. In areas where
pedestrian and/or vehicular traffic volumes are moderate to high, use of this configuration should
be discouraged. Such placement forces the curb ramp users to enter diagonally into the
intersection, perhaps misdirecting them and exposing them to conflicts with traffic from two
directions. This situation is of special concern to people who are visually impaired.

Exhibit 4-24 illustrates sidewalk curb ramps at the beginning and end points of the curb
radius.

Curb ramps for persons with disabilities are not limited to intersections and marked
crosswalks. Curb ramps should also be provided at other appropriate or designated points of
pedestrian concentration, such as loading islands and midblock pedestrian crossings. Because
non-intersection pedestrian crossings are generally unexpected by the motorist, warning signs
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Exhibit 4-22.  Midblock Sidewalk Curb Ramp Details
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Exhibit 4-23.  Sidewalk Curb Ramp at Middle of Radius—Discouraged Where Pedestrian
and/or Vehicular Volumes are Moderate to High

should be installed and parking should be prohibited to ensure adequate visibility. For additional
design guidance and recommendations with respect to pedestrian crosswalk markings, refer to the
MUTCD (8), ADAAG (24), and AASHTO Guide for the Planning, Design, and Operation of
Pedestrian Facilities (25).

Exhibit 4-25 shows a midblock sidewalk curb ramp. Curb ramps should have a non-skid
surface.

As shown in Exhibit 4-26, when a major highway or secondary intersecting road involves
pedestrian traffic and the roadway geometrics involve convex islands or median dividers, the plan
should include curb ramps for persons with disabilities. People in wheelchairs cannot safely take
refuge on islands that are less than 1.2 m [4 ft] wide because of their vulnerability to moving
traffic . A 1.8-m [6-ft] island width is desirable.

Each intersection will differ with respect to the intersection angles, turning roadway widths,
size of islands, drainage inlets, traffic-control devices, and other variables previously described.
An appropriate plan should be prepared that indicates all of the desired geometrics, including
vertical profiles at the curb flow line. The plan should then be evaluated to determine convenient
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Exhibit 4-24.  Sidewalk Curb Ramp at End of Curb Radius

Exhibit 4-25.  Sidewalk Curb Ramp at Midblock

and safe locations of the ramps to accommodate usage by persons with disabilities. Drainage
inlets should be located on the upstream side of all crosswalks and sidewalk ramps. This design
operation will govern the pedestrian crosswalk patterns, stop bar locations, regulatory signs, and,
in the case of new construction, establish the most desirable location of signal supports.

Curb ramps should be provided at all intersections where curb and sidewalk are provided
even though the highway grade may exceed the allowable sidewalk grade. This provision allows
for wheelchairs to be easily maneuvered. For further information on sidewalk curb ramps for
persons with disabilities, see the current ADAAG (24), the AASHTO Guide for the Planning,
Design, and Operation of Pedestrian Facilities (25), and Designing Sidewalks
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Exhibit 4-26.  Median and Island Openings

and Trails for Access, Part I: Review of Existing Guidelines and Practices (27) and Part II: Best
Practices Design Guide (28).

BICYCLE FACILITIES

Most of the facilities needed for bicycle travel can consist of the street and highway system
generally as it presently exists. However, at certain locations, or in certain corridors, it is
appropriate to supplement the existing highway system by providing specifically designated
bikeways.

Provisions for bicycle facilities should be in accordance with the AASHTO Guide for the
Development of Bicycle Facilities (7). Even if specific bicycle facilities are not provided,
consideration should be given to other practical measures for enhancing bicycle travel on the
highway.

Chapter 2 provides further discussion on the subject of bicycle facilities.
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BUS TURNOUTS

Bus travel is an increasingly important mode of mass transportation. Bus turnouts serve to
remove the bus from the traveled way. The location and design of turnouts should provide ready
access in the safest and most efficient manner practical.

Freeways

The basic design objective for a freeway bus turnout is that the deceleration, standing, and
acceleration of buses take place on pavement areas clear of and separated from the traveled way.
Other elements in the design of bus turnouts include passenger platforms, ramps, stairs, railings,
signs, and markings. Speed-change lanes should be long enough to enable the bus to leave and
enter the traveled way at approximately the average running speed of the highway without undue
discomfort to passengers. The length of acceleration lanes from bus turnouts should be well
above the normal minimum values, as the buses start from a standing position and the loaded bus
has a lower acceleration capability than passenger cars. Normal-length deceleration lanes are
suitable . The width of the bus standing area and speed-change lanes, including the shoulders,
should be 6.0 m [20 ft] to permit the passing of a stalled bus. The pavement areas of turnouts
should contrast in color and texture with the traveled way to discourage through-traffic from
encroaching on or entering the bus stop.

The dividing area between the outer edge of freeway shoulder and the edge of bus turnout
lane should be as wide as practical, preferably 6.0 m [20 ft] or more. However, in extreme cases,
this width could be reduced to a minimum of 1.2 m [4 ft]. A barrier is usually needed in the
dividing area, and fencing is desirable to keep pedestrians from entering the freeway. Pedestrian
loading platforms should not be less than 1.5 m [5 ft] wide and preferably 1.8 m to 3.0 m
[6 to 10 ft] wide. Some climates may warrant the covering of platforms. Exhibit 4-27 illustrates
typical cross sections of turnouts including a normal section, a section through an underpass, and
a section on an elevated structure.

Arterials

The interference between buses and other traffic can be considerably reduced by providing
turnouts on arterials. It is somewhat rare that sufficient right-of-way is available on the lower type
arterial streets to permit turnouts in the border area, but advantage should be taken of every
opportunity to do so.

To be fully effective, bus turnouts should incorporate (1) a deceleration lane or taper to
permit easy entrance to the loading area, (2) a standing space sufficiently long to accommodate
the maximum number of vehicles expected to occupy the space at one time, and (3) a merging
lane to enable easy reentry into the traveled way.

The deceleration lane should be tapered at an angle flat enough to encourage the bus
operator to pull completely clear of the through lane before stopping. Usually it is not practical to
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Exhibit 4-27.  Bus Turnouts

provide a length sufficient to permit deceleration from highway speeds clear of the traveled way.
A taper of about 5:1, longitudinal to transverse, is a desirable minimum. When the bus stop is on
the far side of an intersection, the intersection area may be used as the entry area to the stop.

The loading area should provide about 15 m [50 ft] of length for each bus. The width should
be at least 3.0 m [10 ft] and preferably 3.6 m [12 ft]. The merging or reentry taper may be
somewhat more abrupt than the deceleration taper but, preferably, should not be sharper than 3:1.
Where the turnout is on the near side of an intersection, the width of cross street is usually great
enough to provide the needed merging space.

The minimum total length of turnout for a two-bus loading area should be about 55 m
[180 ft] for a midblock location, 45 m [150 ft] for a near-side location, and 40 m [130 ft] for a far-
side location. These dimensions are based on a loading area width of 3.0 m [10 ft]. They should
be increased by 4 to 5 m [13 to 16 ft] for a width of 3.6 m [12 ft]. Greater lengths of bus turnouts
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expedite bus maneuvers, encourage full compliance on the part of bus drivers, and lessen
interference with through traffic.

Exhibit 4-28 shows a bus turnout at a midblock location. The width of the turnout is 3.0 m
[10 ft], and the length of the turnout, including tapers, is 63 m [210 ft]. The deceleration and
acceleration tapers are 4:1.

For more information on bus turnouts, see the AASHTO Guide for Design of
High-Occupancy Vehicle and Public Transportation Facilities (29) and Guidelines for the
Location and Design of Bus Stops (30).

Exhibit 4-28.  Midblock Bus Turnout

Park-and-Ride Facilities

Location

Park-and-ride facilities should be located adjacent to the street or highway and be visible to
the commuters whom they are intended to attract. Preferably, the parking areas should be located
at points that precede the bottlenecks or points where there is significant traffic congestion. They
should be located as close to residential areas as practical in order to minimize travel by vehicles
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with only one occupant and should be located far enough out that land costs are not prohibitive.
In addition, bicycle and pedestrian access to park-and-ride facilities should be considered.

Other considerations that affect parking lot location are impacts on surrounding land uses,
available capacity of the highway system between the roadway and proposed sites, terrain, and
the costs to acquire the land.

Design

The size of the park-and-ride parking lot is dependent upon the design volume, the available
land area, and the size and number of other parking lots in the area. Twenty to sixty spaces
represent a reasonable range.

Each parking area should provide a drop-off facility close to the station entrance, plus a
holding or short-term parking area for passenger pickup. This area should be clearly separated
from the park-and-ride areas.

Consideration should be given to the location for bus loading and unloading, taxi service,
bicycle parking, and special parking for persons with disabilities. Conflicts between pedestrians
and vehicles should be minimized. Parking aisles should be located perpendicular to the bus
roadway so that pedestrians do not need to cross the driveways between parking aisles. All bus
roadways should have a minimum width of 6.0 m [20 ft] to permit the passing of standing buses.
Facilities should be designed for self-parking. Parking spaces should be 2.7 m by 6.0 m [9 ft by
20 ft] for full-sized cars. Where a special section is provided for subcompact cars, 2.4 m by 4.5 m
[8 ft by 15 ft] spaces are sufficient. Parking requirements for persons with disabilities should be
in accordance with the ADAAG (24).

Sidewalks should be a minimum of 1.5 m [5 ft] wide and loading areas should be 3.6 m
[12 ft] wide. Principal loading areas should be provided with sidewalk curb ramps. Preferably,
pedestrians should not have to walk more than 120 m [400 ft], although slightly longer distances
may be permitted under some circumstances. Pedestrian paths from parking spaces to loading
areas should be as direct as practical. Facilities for locking bicycles should be provided where
needed.

Grades of parking areas should be set so that drainage can be effective. Recommended
grades along vehicle paths within the parking area are 1 percent minimum and 2 percent desirable
with a maximum of 5 percent. Grades of over 8 percent parallel to the length of the parked
vehicles should be avoided. Climatic conditions should be considered in establishing the
maximum acceptable grade. Curvature, radius of planned vehicular paths within the parking area,
and access roads should be sufficiently large to accommodate the vehicles that they are intended
to serve.

Access to the lots should be at points where they will disrupt through traffic as little as
practical. Access points should be at least 90 m [300 ft] from other intersections, and there should
be sufficient sight distance for vehicles to exit and enter the lot. This means that exits and
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entrances should not be located on crest vertical curves. There should be at least 90 m [300 ft]
corner sight distance.

There should be at least one exit and entrance for each 500 spaces in a lot. Exits and
entrances should be provided at separate locations and should access different streets, if practical.
It is also desirable to provide separate access for public transit vehicles.

Curb returns should be at least 9.0 m [30 ft] in radius, although 4.5 m [15 ft] radii are
suitable for access points used exclusively by passenger vehicles.

Principal passenger-loading areas should be provided with shelters to protect public transit
patrons. Such shelters should, as a minimum, be sufficiently large to accommodate off-peak
passenger volumes but should be larger wherever practical. To determine the size of the shelter,
the number of passengers that the shelter is to service is multiplied by a factor of 0.3 to 0.5 m2

[3 to 5 ft2]. Because the shelter can be expanded relatively easily at a later date, provided
sufficient platform space is installed initially, it is not critical to provide a shelter that
accommodates all passengers at the time of original construction. Accessories that should be
provided with the shelter include lighting, benches, route information, trash receptacles, and often
telephones.

The design of the bus-loading area can be of a parallel or a sawtooth design; the best
arrangement depends on the number of buses expected to use the facility. Where more than two
buses are expected to be using a facility at one time, the sawtooth arrangement is generally
preferable, as it is easier for buses to bypass a standing bus. A recommended design of a sawtooth
arrangement is shown in Exhibit 4-29. The length of space that should be provided for a parallel
design is 29 m [95 ft]. This length will permit loading of two buses. For each additional space,
14 m [45 ft] should be allowed. The loading area should be at least 7.2 m [24 ft] wide in order to
permit the passing of a standing bus. The area delineating the passenger refuge area should be
curbed in order to reduce the height between the ground and the first bus step and to reduce
encroachment by buses on the passenger areas. Parallel-type loading areas should not be located
on curves as it makes it very difficult for drivers to park with both the front and rear doors close
to the curb.

Exhibit 4-29.  Sawtooth Bus Loading Area

Special designs may be needed to accommodate articulated buses, particularly where a
sawtooth arrangement is used. A well-designed parking lot includes a buffer area around the lot
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with appropriate landscaping, often with a fence to separate land areas. The buffer should be at
least 3.0 m [10 ft] wide.

Lighting should be provided on all but the smaller lots. A level of 2.2 to 5.4 lux (lx) [0.2 to
0.5 foot candles (fc)] average maintained intensity will generally suffice.

Drainage systems should be designed so that parked cars will not be damaged by storm
water. Under some circumstances, minimal ponding of water may be permitted or may even be
desirable when the drainage is designed as part of a storm water management system. The storm
intensity that the drainage system should accommodate may depend on the practice of the
municipality. Permissible depths of ponding should generally not exceed 75 to 100 mm [3 to 4 in]
in areas where cars are parked, and there should be no ponding on pedestrian and bicycle routes
or where persons wait for transit vehicles.

Exhibit 4-30 shows a typical park-and-ride facility. For additional information, refer to the
AASHTO Guide for Design of High-Occupancy Vehicle and Public Transportation Facilities
(29), TCRP Report 19, Guidelines for the Location and Design of Bus Stops (30), and the
AASHTO Guide for the Design of Park-and-Ride Facilities (31).

ON-STREET PARKING

A roadway network should be designed and developed to provide for the safe and efficient
movement of vehicles operating on the system. Although the movement of vehicles is the primary
function of a roadway network, segments of the network may, as a result of land use, also provide
on-street parking.

In the design of freeways and other control of access-type facilities, as well as on most rural
arterials, collectors, and local streets, stopping or parking should be permitted only in
emergencies. On-street parking generally decreases through-traffic capacity, impedes traffic flow,
and increases crash potential. Since the primary service of an arterial is the movement of vehicles,
it is desirable to prohibit parking on urban arterial streets and rural arterial highway sections.
However, within urban areas and in rural communities located on arterial highway routes,
existing and developing land uses may necessitate the consideration of on-street parking. Usually,
adequate off-street parking facilities are not available . Therefore, the designer should consider on-
street parking so that the proposed street or highway improvement will be compatible with the
land use.

When a proposed roadway improvement is to include on-street parking, parallel parking
should be considered. Under certain circumstances, angle parking is an allowable form of street
parking. The type of on-street parking selected should depend on the specific function and width
of the street, the adjacent land use, traffic volume, as well as existing and anticipated traffic
operations. Angle parking presents special problems because of the varying length of vehicles and
the sight distance problems associated with vans and recreational vehicles. The extra length of
such vehicles may interfere with the traveled way.
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Exhibit 4-30.  Typical Park-and-Ride Facility

An important part of the urban parking problem is the uneven distribution of off-street
parking facilities within urban central business districts and the lack of off-street facilities in
urban neighborhood commercial areas. As a consequence, there is a demand for on-street parking
to provide for the delivery and pick-up of goods. Frequently, alleys and other off-street loading
areas are not provided in many communities. Short-duration parking for business or shopping
should therefore be accommodated.

Curb parking on urban arterial streets is acceptable when the available through-traffic lanes
can accommodate traffic demand. On rural arterials, provisions should be made for emergency
stopping only. On urban arterial street reconstruction projects or on projects where additional
right-of-way is being acquired to upgrade an existing route to arterial status, parking should be
eliminated whenever practical to increase capacity and safety. The impacts on abutting land uses
should, however, be carefully considered, as the loss of existing on-street parking can cause
significant loss in the economic well-being of the abutting property.

It has been found that most vehicles will parallel park within 150 to 300 mm [6 to 12 in] of
the curb face and on the average will occupy approximately 2.1 m [7 ft] of actual street space.
Therefore, the desirable minimum width of a parking lane is 2.4 m [8 ft]. However, to provide
better clearance from the traveled way and to accommodate use of the parking lane during peak
periods as a through-travel lane, a parking lane width of 3.0 to 3.6 m [10 to 12 ft] is desirable .
This width is also sufficient to accommodate delivery vehicles and serve as a bicycle route,
allowing a bicyclist to maneuver around an open door on a motor vehicle.

On urban collector streets, the demand for land access and mobility is equal. The desirable
parking lane width on urban collectors is 2.4 m [8 ft] to accommodate a wide variety of traffic
operations and land uses. To provide better clearance and the potential to use the parking lane
during peak periods as a through-travel lane, a parking lane width of 3.0- to 3.6-m [10- to 12-ft] is
desirable . A 3.0 to 3.6 m [10 to 12 ft] parking lane will also accommodate urban transit
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operations. On urban collector streets within residential neighborhoods where only passenger
vehicles need to be accommodated in the parking lane, 2.l-m [7-ft] parking lanes have been
successfully used. In fact, a total width of 10.8 m [36 ft], consisting of two travel lanes of 3.3 m
[11 ft] and parking lanes of 2.l m [7 ft] on each side, are frequently used.

On-street parking is generally permitted on local streets. A 7.8 m [26 ft] wide roadway is the
typical cross section used in many urban residential areas. This width assures one through lane
even where parking occurs on both sides. Specific parking lanes are not usually designated on
such local streets. The lack of two moving lanes may be inconvenient to the user in some cases;
however, the frequency of such concerns has been found to be remarkably low. Random
intermittent parking on both sides of the street usually results in areas where two-way movement
can be accommodated.

Construction procedures on new roadways should be carefully considered so as to provide a
longitudinal joint at the boundary of the proposed parking lane. It has been found that such joints
aid in ensuring that the parked vehicle clears the parallel travel lane. On asphalt-surfaced streets,
traffic markings are recommended to identify the parking lane. The marking of parking spaces
encourages more orderly and efficient use of parking spaces where parking turnover occurs and
tends to prevent encroachment on fire hydrant zones, bus stops, loading zones, and approaches to
corners.

In urban areas, central business districts, and commercial areas where significant pedestrian
crossings are likely to occur, the design of the parking lane/intersection relationship should be
given consideration. When the parking lane is carried up to the intersection, motorists may utilize
the parking lane as an additional lane for right-turn movements. Such movements may cause
operational problems and often result in turning vehicles mounting the curb and possibly striking
such intersection elements as traffic signals, utility poles, or luminaire supports. The transitioning
out of the parking lane of a minimum of 6.0 m [20 ft] in advance of the intersection is one method
of eliminating this problem. An example of such treatment is shown in Exhibit 4-31. A second
method is to prohibit parking for such a distance as to create a short turn lane.

Exhibit 4-31.  Parking Lane Transition at Intersection
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CHAPTER 5  
LOCAL ROADS AND STREETS

INTRODUCTION

This chapter presents guidance on the application of geometric design criteria to facilities
functionally classified as local roads and streets. The chapter is subdivided into sections on rural,
urban, and special-purpose local roads.

A local road or street serves primarily to provide access to farms, residences, businesses, or
other abutting properties. Although local roads and streets may be planned, constructed, and
operated with the predominant function of providing access to adjacent property, some local roads
and streets serve a limited amount of through traffic . Such roads properly include geometric
design and traffic control features more typical of collectors and arterials to encourage the safe
movement of through traffic . On these roads the through traffic is local in nature and extent rather
than regional, intrastate, or interstate.

Local roads and streets constitute a high proportion of the roadway mileage in the United
States. The traffic volume generated by the abutting land uses are largely short trips or a relatively
small part of longer trips where the local road connects with major streets or highways of higher
classifications. Because of the relatively low traffic volumes and the extensive mileage, design
criteria for local roads and streets are of a comparatively low order as a matter of practicality.
However, to provide the requisite traffic mobility and safety—together with the essential economy
in construction, maintenance, and operation—they must be planned, located, and designed to be
suitable for predictable traffic operations and must be consistent with the development and culture
abutting the right-of-way.

In restricted or unusual conditions, it may not be practical to meet the design criteria
presented in this chapter. In such cases, every effort should be made to obtain the best possible
alignment, grade, sight distance, and drainage that are consistent with terrain, development
(present and anticipated), safety, and available funds.

Drainage, both on the pavement itself and from the sides and subsurface, is an important
design consideration. Inadequate drainage can lead to high maintenance costs and adverse
operational conditions. In snow regions, roadways should be designed so that there is sufficient
storage space for plowed snow and proper drainage for melting conditions.

Safety is an important factor in all roadway improvements. However, it may not be practical
to provide an obstacle-free roadside on local roads and streets. Every effort should be made to
provide as much clear roadside as is practical. This becomes more important as speeds increase.
Flatter slopes, guardrail, and warning signs all help to achieve roadside safety.

It may not be cost-effective to design local roads and streets that carry less than 400 vehicles
per day using the same criteria applicable to higher volume roads or to make extensive traffic
operational or safety improvements to such very low-volume roads. AASHTO is currently
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evaluating alternative design criteria for local roads that carry less than 400 vehicles per day based
on a safety risk assessment.

LOCAL RURAL ROADS

General Design Considerations

A major part of the rural highway system consists of two-lane local roads. These roadways
should be designed to accommodate the highest practical criteria compatible with traffic and
topography.

Design Traffic Volume

Roads should be designed for a specific traffic volume and a specified acceptable level of
service. The average daily traffic (ADT) volume, either current or projected to some future design
year, should be the basis for design. Usually, the design year is about 20 years from the date of
completion of construction but may range from the current year to 20 years depending on the
nature of the improvement.

Design Speed

Design speed is a selected speed used to determine the various design features of the
roadway. Geometric design features should be consistent with a specific design speed selected as
appropriate for environmental and terrain conditions. Designers are encouraged to select design
speeds equal to or greater than the minimum values shown in Exhibit 5-1. Low design speeds are
generally applicable to roads with winding alignment in rolling or mountainous terrain or where
environmental conditions dictate. High design speeds are generally applicable to roads in level
terrain or where other environmental conditions are favorable . Intermediate design speeds would
be appropriate where terrain and other environmental conditions are a combination of those
described for low and high speed. Exhibit 5-1 lists values for minimum design speeds as
appropriate for traffic needs and types of terrain; terrain types are discussed further in Chapters 2
and 3.

Sight Distance

Minimum stopping sight distance and passing sight distance should be as shown in
Exhibits 5-2 and 5-3. Criteria for measuring sight distance, both vertical and horizontal, are as
follows: For stopping sight distance, the height of eye is 1,080 mm [3.5 ft] and the height of object
is 600 mm [2 ft]; for passing sight distance, the height of object is 1,080 mm [3.5 ft]. Chapter 3
provides a general discussion of sight distance.
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Metric US Customary
Design speed (km/h) for

specified design volume (veh/day)
Design speed (mph) for

specified design volume (veh/day)

Type of
terrain

under
50

50
to

250

250
to

400

400
to

1500

1500
to

2000

2000
and
over

under
50

50
to

250

250
to

400

400
to

1500

1500
to

2000

2000
and
over

Level 50 50 60 80 80 80 30 30 40 50 50 50
Rolling 30 50 50 60 60 60 20 30 30 40 40 40
Mountainous 30 30 30 50 50 50 20 20 20 30 30 30

Exhibit 5-1.  Minimum Design Speeds for Local Rural Roads

Metric US Customary

Rate of vertical
curvature, Ka  (m/%)

Rate of vertical
curvature, Ka (ft/%)

Initial
speed
(km/h)

Design
stopping

sight
distance

(m) Crest Sag

Initial
speed
(mph)

Design
stopping

sight
distance

(ft) Crest Sag
20 20 1 3 15 80 3 10
30 35 2 6 20 115 7 17
40 50 4 9 25 155 12 26
50 65 7 13 30 200 19 37
60 85 11 18 35 250 29 49
70 105 17 23 40 305 44 64
80 130 26 30 45 360 61 79
90 160 39 38 50 425 84 96

100 185 52 45 55 495 114 115
60 570 151 136

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the
intersecting grades (i.e., K = L/A).  (See Chapter 3 for details.)

Exhibit 5-2.  Design Controls for Stopping Sight Distance and for Crest and
Sag Vertical Curves
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Metric US Customary

Design
speed
(km/h)

Design
passing sight
distance (m)

Rate of
vertical

curvature, Ka

(m/%)

Design
speed
(mph)

Design
passing sight
distance (ft)

Rate of
vertical

curvature, Ka

(ft/%)
30 200 46 20 710 180
40 270 84 25 900 289
50 345 138 30 1090 424
60 410 195 35 1280 585
70 485 272 40 1470 772
80 540 338 45 1625 943
90 615 438 50 1835 1203

100 670 520 55 1985 1407
60 2135 1628

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the
intersecting grades (i.e., K = L/A).  (See Chapter 3 for details.)

Exhibit 5-3.  Design Controls for Crest Vertical Curves Based on Passing Sight Distance

Grades

Suggested maximum grades for local rural roads are shown in Exhibit 5-4.

Metric US Customary
Maximum grade (%) for

specified design speed (km/h)
Maximum grade (%) for

specified design speed (mph)
Type of terrain 20 30 40 50 60 70 80 90 100 15 20 25 30 40 45 50 55 60

Level 9 8 7 7 7 7 6 6 5 9 8 7 7 7 7 6 6 5
Rolling 12 11 11 10 10 9 8 7 6 12 11 11 10 10 9 8 7 6
Mountainous 17 16 15 14 13 12 10 10 – 17 16 15 14 13 12 10 10 –

Exhibit 5-4.  Maximum Grades for Local Rural Roads

Alignment

Alignment between control points should be designed to be as favorable as possible
consistent with the environmental impact, topography, terrain, design traffic volume, and the
amount of reasonably obtainable right-of-way. Sudden changes between curves of widely
different radii or between long tangents and sharp curves should be avoided. Where practical, the
design should include passing opportunities. Where crest vertical curves and horizontal curves
occur together, there should be greater than minimum sight distance to ensure that the horizontal
curves are visible to approaching drivers.
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Cross Slope

Pavement cross slope should be adequate to provide proper drainage. Normally, cross slopes
range from 1.5 to 2 percent for high-type pavements and 2 to 6 percent for low-type pavements.

High-type pavements are those that retain smooth riding qualities and good non-skid
properties in all weather with little maintenance.

Low-type pavements are those with treated earth surfaces and those with loose aggregate
surfaces. A 3 percent cross slope is desirable for low-type pavements. For further information on
pavement cross slope, see Chapter 4.

Superelevation

For rural roads with paved surfaces, superelevation should be not more than 12 percent
except where snow and ice conditions prevail, in which case the superelevation should be not
more than 8 percent. For aggregate roads, superelevation should be not more than 12 percent.

Superelevation runoff is the length of highway needed to accomplish the change in cross
slope from a section with the adverse crown removed to a fully superelevated section. Minimum
lengths of runoff are given in Chapter 3. Adjustments in design runoff lengths may be desirable for
smooth riding, surface drainage, and good appearance. For a general discussion on this topic, see
Chapter 3.

Number of Lanes

Two travel lanes usually can accommodate the normal traffic volume on rural local roads. If
exceptional traffic volumes occur in specific areas, additional lanes may be provided in
accordance with design criteria in Chapter 2. Provisions for climbing and passing lanes are
covered in Chapter 3.

Width of Traveled Way, Shoulder, and Roadway

Graded shoulder width is measured from the edge of the traveled way to the point of
intersection of shoulder slope and foreslope. The minimum roadway width is the sum of the
traveled way and graded shoulder widths given in Exhibit 5-5. Where roadside barriers are
proposed, it is desirable to provide a minimum offset of 1.2 m [4.0 ft] from the traveled way to the
barrier whenever practical. For further information, see the sections on “Shoulders” and
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Metric US Customary
Minimum width of traveled way (m)

for specified design volume
(veh/day)

Minimum width of traveled way (ft)
for specified design volume

(veh/day)
Design
speed
(km/h)

under
400

400 to
1500

1500
to

2000
over
2000

Design
speed
(mph)

under
400

400 to
1500

1500
to

2000
over
2000

20 5.4 6.0a 6.0 6.6 15 18 20a 20 22
30 5.4 6.0a 6.6 7.2c 20 18 20a 22 24c

40 5.4 6.0a 6.6 7.2c 25 18 20a 22 24c

50 5.4 6.0a 6.6 7.2c 30 18 20a 22 24c

60 5.4 6.0a 6.6 7.2c 40 18 20a 22 24c

70 6.0 6.6 6.6 7.2c 45 20 22 22 24c

80 6.0 6.6 6.6 7.2c 50 20 22 22 24c

90 6.6 6.6 7.2c 7.2c 55 22 22 24c 24c

100 6.6 6.6 7.2c 7.2c 60 22 22 24c 24c

Width of graded shoulder on
each side of the road (m)

Width of graded shoulder on
each side of the road (ft)

All
speeds 0.6 1.5a,b 1.8 2.4

All
speeds 2 5a,b 6 8

a For roads in mountainous terrain with design volume of 400 to 600 veh/day, use 5.4-m [18-ft]
traveled way width and 0.6-m [2-ft] shoulder width.

b May be adjusted to achieve a minimum roadway width of 9 m [30 ft] for design speeds
greater than 60 km/h [40 mph].

c Where the width of the traveled way is shown as 7.2 m [24 ft], the width may remain at 6.6 m
[22 ft] on reconstructed highways where alignment and safety records are satisfactory.

See text for roadside barrier and offtracking considerations.

Exhibit 5-5.  Minimum Width of Traveled Way and Shoulders
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“Longitudinal Barriers” in Chapter 4 and for information on vehicle offtracking, see the section on
“Derivation of Design Values for Widening on Horizontal Curves” in Chapter 3.

When bicycle facilities are included as part of the design, refer to AASHTO’s Guide for the
Development of Bicycle Facilities (1).

Structures

The design of bridges, culverts, walls, tunnels, and other structures should be in accordance
with the current Standard Specifications for Highway Bridges (2). Except as otherwise
indicated in this chapter and in Chapter 4, the dimensional design of structures should also be in
accordance with Reference (2).

The minimum design loading for new bridges on local rural roads should be MS-18 [HS-20].

The minimum clear roadway widths for new and reconstructed bridges should be as given in
Exhibit 5-6. For general discussion of structure widths, see Chapter 9.

Bridges to Remain in Place

Existing substandard structures should be improved, but because of their high replacement
cost, reasonably adequate bridges and culverts that meet tolerable criteria may be retained. Some
of the non-technical factors that should be considered are the aesthetic value and the historical
significance attached to famous structures, covered bridges, and stone arches.

Where an existing road is to be reconstructed, an existing bridge that fits the proposed
alignment and profile may remain in place when its structural capacity in terms of design loading
and clear roadway width are at least equal to the values given in Exhibit 5-7 for the applicable
traffic volume.

The values in Exhibit 5-7 do not apply to structures with total lengths greater than 30 m [100
ft]. These structures should be analyzed individually, taking into consideration the clear width
provided, traffic volume, remaining life of the structure, pedestrian volume, snow storage, design
speed, crash history, and other pertinent factors.

Vertical Clearance

Vertical clearance at underpasses should be at least 4.3 m [14 ft] over the entire roadway
width, with an allowance for future resurfacing.
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Metric US Customary

Design
volume

(veh/day)

Minimum clear
roadway width

for bridgesa

Design
loading

structural
capacity

Design
volume

(veh/day)

Minimum clear
roadway width

for bridgesa

Design
loading

structural
capacity

400 and
under

Traveled way +
0.6 m (each side)

MS-18 400 and
under

Traveled way +
2 ft (each side)

HS-20

400 to 2000 Traveled way +
1.0 m (each side)

MS-18 400 to
2000

Traveled way +
3 ft (each side)

HS-20

over 2000 Approach
roadway widthb

MS-18 over 2000 Approach
roadway widthb

HS-20

a  Where the approach roadway width (traveled way plus shoulders) is surfaced, that surface
width should be carried across the structures.

b  For bridges in excess of 30 m [100 ft] in length, the minimum width of traveled way plus 1 m
[3 ft] on each side is acceptable.

Exhibit 5-6.  Minimum Clear Roadway Widths and Design Loadings for New and
Reconstructed Bridges

Metric US Customary

Design
volume

(veh/day)

Design
loading

structural
capacity

Minimum
clear

roadway
width
(m)a,b,c

Design
volume

(veh/day)

Design
loading

structural
capacity

Minimum
clear

roadway
width
(ft)a,b,c

0 to 50 M 9 6.0d 0 to 50 H 10 20d

50 to 250 M 13.5 6.0 50 to 250 H 15 20
250 to 1500 M 13.5 6.6 250 to 1500 H 15 22
1500 to 2000 M 13.5 7.2 1500 to 2000 H 15 24

over 2000 M 13.5 8.4 over 2000 H 15 28
a  Clear width between curbs or rails, whichever is the lesser.
b  Minimum clear widths that are 0.6 m [2 ft] narrower may be used on roads with few trucks.

In no case shall the minimum clear width be less than the approach traveled way width.
c  Does not apply to structures with total length greater than 30 m [100 ft].
d  For single-lane bridges, use 5.4 m [18 ft].

Exhibit 5-7.  Minimum Structural Capacities and Minimum Roadway Widths for
Bridges to Remain in Place
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Right-of-Way Width

The provision of right-of-way widths that accommodate construction, adequate drainage, and
proper maintenance of a highway is a very important part of the overall design. Wide rights-of-
way permit the construction of gentle slopes, resulting in greater safety for the motorist and
providing for easier and more economical maintenance. The procurement of sufficient right-of-
way at the time of the initial improvement permits the widening of the roadway and the widening
and strengthening of the pavement at a reasonable cost as traffic volumes increase.

In developed areas, it may be desirable to limit the right-of-way width. However, the right-of-
way width should not be less than that required for all the elements of the design cross sections,
utility accommodation, and appropriate border areas.

Foreslopes

The maximum rate of foreslope depends on the stability of local soils as determined by soil
investigation and local experience. Slopes should be as flat as practical, and other factors should
be considered to determine the design slope. Flat foreslopes increase safety by providing a
maneuver area in emergencies, are more stable than steep slopes, aid in the establishment of plant
growth, and simplify maintenance work. Vehicles that leave the traveled way can often be kept
under control if slopes are gentle and drainage ditches are well-rounded. Such recovery areas
should be provided where terrain and right-of-way controls permit.

Combinations of rate and height of slope should provide for vehicle recovery. Where
controlling conditions (such as high fills, right-of-way restrictions, or the presence of rocks,
watercourses, or other roadside features) make this impractical, consideration should be given to
the provision of guardrail, in which case the maximum rate of foreslope could be used.

Cut sections should be designed with adequate ditches. Preferably, the foreslope should not
be steeper than 1V:2H, and the ditch bottom and slopes should be well-rounded. The backslope
should not exceed the maximum required for stability.

Horizontal Clearance to Obstructions

A clear zone of 2 to 3 m [7 to 10 ft] or more from the edge of the traveled way, appropriately
graded with relatively flat slopes and rounded cross-sectional design, is desirable . An exception
may be made where guardrail protection is provided. The recovery area should be clear of all
unyielding objects such as trees, sign supports, utility poles, light poles, and any other fixed objects
that might severely damage an out-of-control vehicle.

To the extent practical, where another highway or railroad passes over, the structure should
be designed so that the pier or abutment supports have lateral clearance as great as the clear
roadside area on the approach roadway. For further information on providing roadside lateral
clearance, see the AASHTO Roadside Design Guide (3).
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Where it is not practical to carry the full-width approach roadway across an overpass or
other bridge, an appropriately transitioned roadside barrier should be provided. At selected
locations, such as the outside of a sharp curve, a broader recovery area with greater horizontal
clearances should be provided to any roadside obstruction.

Curbs

The use of curbs in conjunction with intermediate or high design speeds should be limited, as
discussed in Chapter 4. Where curbs are to be used, refer to the discussion on curbs in the section
“Local Urban Streets” in this chapter.

Intersection Design

Intersections should be carefully located to avoid steep profile grades and to ensure adequate
approach sight distance. An intersection should not be situated just beyond a short-crest vertical
curve or on a sharp horizontal curve. When there is no practical alternate to such a location, the
approach sight distance on each leg should be carefully checked, and where practical, backslopes
should be flattened and horizontal or vertical curves lengthened to provide additional sight distance.
The driver of a vehicle approaching an intersection should have an unobstructed view of the entire
intersection and sufficient lengths of the intersecting roadways to permit the driver to anticipate
and avoid potential collisions. Sight distances at intersections with six different types of traffic
control are presented in Chapter 9.

Intersections should be designed with a corner radius of the pavement or surfacing that is
adequate for a selected design vehicle, representing a larger vehicle that is anticipated to use the
intersection with some frequency. For minimum edge radius, see Chapter 9. Where turning
volumes are significant, consideration should be given to speed change lanes and channelization.

Intersection legs that operate under stop control should intersect at right angles wherever
practical, and should not intersect at an angle less than 60 degrees. For further details, see
Chapter 9.

Railroad-Highway Grade Crossings

Appropriate grade-crossing warning devices shall be installed at all railroad-highway grade
crossings on local roads and streets. Details of the devices to be used are given in the Manual on
Uniform Traffic Control Devices (MUTCD) (4). In some States, the final approval of the
devices to be used may be vested in an agency having oversight over railroads.

Sight distance is an important consideration at railroad-highway grade crossings. There
should be sufficient sight distance along the road and along the railroad tracks for an approaching
driver to recognize the crossing, perceive the warning device, determine whether a train is
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approaching, and stop if necessary. For further information on railroad-highway grade crossings,
see Chapter 9.

The roadway width at all railroad crossings should be the same as the width of the approach
roadway. Crossings that are located on bicycle routes that are not perpendicular to the railroad
may need additional paved shoulder for bicycles to maneuver over the crossing. For further
information, see the AASHTO Guide for the Development of Bicycle Facilities (1).

Traffic Control Devices

Signs, pavement and other markings, and, where appropriate, traffic signal controls are
essential elements for all local roads and streets. Refer to the MUTCD (4) for details of the
devices to be used and, for some conditions, warrants for their use.

Bicycle Facilities

The local roadway may be sufficient to accommodate bicycle traffic . Where special facilities
for bicycles are desired, they should be in accordance with the AASHTO Guide for the
Development of Bicycle Facilities (1).

Erosion Control

All slopes and drainage areas should be designed with proper regard for the desired natural
ground cover and growth regeneration on areas opened during construction. Various acceptable
methods of erosion control, including seeding and mulching of slopes, sodding, or other protection
of swales and other erodible areas, should be included in the local road design. Consideration
should also be given to maintenance requirements and overall economics.

In roadside design, the preservation of natural ground covers and desirable growth of shrubs
and trees should be considered, provided that such growth does not constitute an obstruction in the
recovery area.

LOCAL URBAN STREETS

General Design Considerations

A local urban street is a public roadway for vehicular travel including public transit and refers
to and includes the entire area within the right-of-way. The street also serves pedestrian and
bicycle traffic and usually accommodates public utility facilities within the right-of-way. The
development or improvement of streets should be based on a functional street classification that
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is part of a comprehensive community development plan. The design criteria should be appropriate
for the ultimately planned development.

Most urban functional classifications include three classes of streets: arterials, collectors, and
local access routes, which are discussed in Chapter 1. Geometric design guidance for collector
streets is provided in Chapter 6 and is provided for arterial streets in Chapter 7. It is not practical
to present separate design criteria for local streets for each design feature discussed below.
However, where there are substantial differences from the criteria used in design of other
functional classes, specific design guidance is given below.

The design features of local urban streets are governed by practical limitations to a greater
extent than those of similar roads in rural areas. The two major design controls are (1) the type
and extent of urban development with its limitations on rights-of-way, and (2) zoning or regulatory
restrictions. Some streets serve primarily to provide access to adjacent residential development
areas. In such cases, the overriding consideration is to foster a safe and pleasant environment
whereas the convenience of the motorist is secondary. Other local streets not only provide access
to adjacent development but also serve limited through traffic . Traffic service features may be an
important concern on such streets.

On streets serving industrial or commercial areas, the vehicle dimensions, traffic volumes,
and vehicle loads differ greatly from those on residential streets, and different dimensional and
structural design values are appropriate. Here, safety and traffic service are usually the major
design controls. Where a particular design feature varies depending on the area served, such as
residential, commercial, or industrial, different design guidelines are presented for each condition.
The designer should be apprised of local ordinances and resolutions that affect certain design
features.

Design Traffic Volume

Traffic volume is not usually a major factor in determining the geometric criteria to be used in
designing residential streets. Traditionally, such streets are designed with a standard two-lane
cross section, but a four-lane cross section may be appropriate in certain urban areas, as governed
by traffic volume, administrative policy, or other community considerations.

For streets serving industrial or commercial areas, however, traffic volume is a major factor.
The ADT projected to some future design year should be the design basis. It usually is difficult
and costly to modify the geometric design of an existing street unless provision is made at the time
of initial construction. Design traffic volumes in such areas should be that estimated for at least 10
years, and preferably 20 years, from the date of construction completion.

Design Speed

Design speed is not a major factor for local streets. For consistency in design elements,
design speeds ranging from 30 to 50 km/h [20 to 30 mph] may be used, depending on available
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right-of-way, terrain, likely pedestrian presence, adjacent development, and other area controls. In
the typical street grid, the closely spaced intersections usually limit vehicular speeds, making the
effect of design speed less important. Since the function of local streets is to provide access to
adjacent property, all design elements should be consistent with the character of activity on and
adjacent to the street, and should encourage speeds generally not exceeding 50 km/h [30 mph].

Sight Distance

Minimum stopping sight distance for local streets should range from 30 to 60 m [100 to
200 ft] depending on the design speed (see Exhibit 3-1). Design for passing sight distance seldom
is applicable on local streets.

Grades

Grades for local residential streets should be as level as practical, consistent with the
surrounding terrain. The gradient for local streets should be less than 15 percent. Where grades of
4 percent or steeper are necessary, the drainage design may become critical. On such grades
special care should be taken to prevent erosion on slopes and open drainage facilities.

For streets in commercial and industrial areas, gradient design desirably should be less than
8 percent, grades should desirably be less than 5 percent, and flatter grades should be encouraged.

To provide for proper drainage, the desirable minimum grade for streets with outer curbs
should be 0.30 percent, but a minimum grade of 0.20 percent may be used.

Alignment

Alignment in residential areas should closely fit with the existing topography to minimize the
need for cuts or fills without sacrificing safety. The alignment of local streets in residential areas
should be arranged to discourage through traffic . Street alignment in commercial and industrial
areas should be commensurate with the topography but should be as direct as possible.

Street curves should be designed with as large a radius curve as practical, with a minimum
radius of 30 m [100 ft]. Where curves are superelevated, lower values may apply, but the radius
should not be less than approximately 25 m [75 ft] for a 30-km/h [20-mph] design speed.
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Cross Slope

Pavement cross slope should be adequate to provide proper drainage. Normally, cross slopes
where there are flush shoulders range from 1.5 to 2 percent for high-type pavements and 2 to
6 percent for low-type pavements.

High-type pavements are those that retain smooth riding qualities and good non-skid
properties in all weather with little maintenance. Low type pavements or with treated earth
surfaces and those with either loose or stabilized aggregate surfaces. A 3 percent cross slope is
desirable for low-type pavements. For further information on pavement cross slope, see
Chapter 4.

Where there are outer curbs, cross slopes steeper by about 0.5 to 1 percent are desirable for
the lane adjacent to the curb.

Superelevation

Superelevation may be advantageous for local street traffic operations in specific locations,
but in built-up areas the combination of wide pavement areas, proximity of adjacent development,
control of cross slope, profile for drainage, frequency of cross streets, and other urban features
often combine to make the use of superelevation impractical or undesirable . Usually,
superelevation is not provided on local streets in residential and commercial areas; it may be
considered on local streets in industrial areas to facilitate operation.

If superelevation is used, street curves should be designed for a maximum superelevation rate
of 4 percent. If terrain dictates sharp curvature, a maximum superelevation of 6 percent is justified
if the curve is long enough to provide an adequate superelevation transition. Minimum lengths of
superelevation runoff and a detailed discussion of superelevation are found in Chapter 3.

Number of Lanes

On residential streets where the primary function of the street is to provide access to
adjacent development and foster a safe and pleasant environment, at least one unobstructed
moving lane must be ensured even where parking occurs on both sides. The level of user
inconvenience occasioned by the lack of two moving lanes is remarkably low in areas where
single-family units prevail. Local residential street patterns are such that travel distances are less
than 1 km [0.5 mi] from the trip origin to a collector street. In multifamily-unit residential areas, a
minimum of two moving traffic lanes to accommodate opposing traffic may be desirable . In many
residential areas an 8 m [26 ft] wide roadway is typical. This curb-face-to-curb-face width
provides for a 3.6-m [12-ft] center travel lane and two 2.2-m [7-ft] parking lanes. Opposing
conflicting traffic will yield and pause on the parking lane area until there is sufficient width to
pass.



Local Roads and Streets (Urban Streets)

397

In commercial areas where there are midblock left turns, it may be advantageous to provide
an additional continuous two-way, left-turn lane in the center of the roadway.

Width of Roadway

Street lanes for moving traffic preferably should be at least 3.0 m [10 ft] wide. Where
practical, they should be 3.3 m [11 ft] wide, and in industrial areas they should be 3.6 m [12 ft]
wide. Where the available or attainable width of right-of-way imposes severe limitations, 2.7-m [9-
ft] lanes can be used in residential areas, as can 3.3-m [11-ft] lanes in industrial areas. Added
turning lanes where used at intersections should be at least 2.7 m [9 ft] wide, and desirably 3.0 to
3.6 m [10 to 12 ft] wide, depending on the percentage of trucks.

Where bicycle facilities are included as part of the design, refer to the AASHTO Guide for
the Development of Bicycle Facilities (1).

Parking Lanes

Where used in residential areas, a parallel parking lane a minimum of 2.1 m [7 ft] wide should
be provided on one or both sides, as appropriate to the conditions of lot size and intensity of
development. In commercial and industrial areas, parking lanes should be a minimum of 2.4 m [8
ft] wide and are usually provided on both sides.

Parking lane width determination in commercial and industrial areas should include
consideration for use of the parking lane for moving traffic during peak periods that may occur
where industries have high employment concentrations. Where curb and gutter sections are used,
the gutter pan width should be considered as part of the parking lane width.

Median

Medians provided on local urban streets primarily to enhance the environment and to act as
buffer strips should be designed to minimize interference with access to the land abutting the
roadway. A discussion of the various median types appears in Chapter 4.

Median openings should be situated only where there is adequate sight distance. The shape
and length of the median openings depend on the width of median and the vehicle types to be
accommodated. The desirable length of median openings, measured between the inner edge of the
lane adjacent to the median and the centerline of the intersection roadway, should be great enough
to provide for a 12-m [40-ft] turning control radius for left-turning P vehicles. The minimum length
of median openings should be that of the width of the projected roadway of the intersecting cross
street or driveway.
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Curbs

Streets normally are designed with curbs to allow greater use of available width and for
control of drainage, protection of pedestrians, and delineation. The curb should be 100 to 150 mm
[4 to 6 in] high, depending on drainage considerations, traffic control, and safety.

On divided streets the type of median curbs should be compatible with the width of the
median and the type of turning movement control to be effected.

Vertical curbs with heights of 150 mm [6 in] or more adjacent to the traveled way should be
offset at least 0.3 m [1 ft]. Where a curb-and-gutter section is provided, the gutter pan width,
normally 0.6 m [2 ft], should be used as the offset distance. For additional information regarding
curbs, see Chapter 4.

Drainage

Drainage is an important consideration in urban areas because of high runoff and flood
potential. Surface flow from adjacent tributary areas may be intercepted by the street system,
where it is collected within the roadway by curbs, gutters, and ditches, and conveyed to an
appropriate drainage system. Where drains are available under or near the roadway, the flow is
transferred at frequent intervals from the street cross section by gratings or curb-opening inlets to
basins and from there by connectors to drainage channels or underground drains.

Economic considerations usually dictate that maximum practical use be made of the street
sections for surface drainage. To avoid undesirable flowline conditions, the minimum gutter grade
should be 0.30 percent. However, in very flat terrain and where no drainage outlet is available,
gutter grades as low as 0.20 percent may be used. Where a drainage system is available, the inlets
should be spaced to provide a high level of drainage protection in areas of high pedestrian use or
where adjacent property has an unusually important public or community purpose (e.g., schools
and churches). For further details, see the drainage section in Chapter 3.

Cul-De-Sacs and Turnarounds

A local street open at one end only should have a special turning area at the closed end. This
turning area desirably should be circular and have a radius appropriate to the vehicle types
expected. Minimum outside radii of 10 m [30 ft] in residential areas and 15 m [50 ft] in
commercial and industrial areas are commonly used.

A dead-end street narrower than 12 m [40 ft] usually should be widened to enable passenger
vehicles, and preferably delivery trucks, to make U-turns or at least turn around by backing only
once. The design commonly used is a circular pavement symmetrical about the centerline of the
street sometimes with a central island, as shown in Exhibit 5-8C, which also shows minimum
dimensions for the design vehicles. Although this type of cul-de-sac operates satisfactorily and
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Exhibit 5-8.  Types of Cul-de-Sacs and Dead-End Streets
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looks well, better operation is obtained if the design is offset so that the entrance-half of the
pavement is in line with the approach-half of the street, as shown in Exhibit 5-8D. One steering
reversal is avoided on this design. Where a radius of less than 15 m [50 ft] is used, the island
should be bordered by sloping curbs to permit the maneuvering of an occasional oversized vehicle.

An all-paved plan, as opposed to an island configuration, with a 10-m [30-ft] outer radius,
shown in Exhibit 5-8E, requires little additional paving. If the approach pavement is at least 10 m
[30 ft] wide, the result is a cul-de-sac on which passenger vehicles can make the customary U-
turn and SU design trucks can turn by backing only once. A radius of about 12 m [40 ft] will
enable a WB-15 [WB-50] vehicle to turn around by maneuvering back and forth.

Other variations or shapes of cul-de-sacs that include right-of-way and site controls may be
provided to permit vehicles to turn around by backing only once. Several types (Exhibit 5-8F, 5-8G,
5-8H, and 5-8I) may also be suitable for alleys. The geometry of a cul-de-sac should be altered if
adjoining residences also use the area for parking.

Alleys

Alleys provide access to the side or rear of individual land parcels. They are characterized by
a narrow right-of-way and range in width from 5 to 6 m [16 to 20 ft] in residential areas and up to
10 m [30 ft] in industrial areas.

Alleys should be aligned parallel to, or concentric with, the street property lines. It is desirable
to situate alleys in such a manner that both ends of the alley are connected either to streets or to
other alleys. Where two alleys intersect, a triangular corner cutoff of not less than 3 m [10 ft]
along each alley property line should be provided. Dead-end alleys should include a turning area in
accordance with Exhibit 5-9. This dead-end turning area design may be suitable for application on
some very low-volume roads.

Curb return radii at street intersections may range from 1.5 m [5 ft] in residentially zoned
areas to 3 m [10 ft] in industrial and commercial areas where large numbers of trucks are
expected. Alleys should have grades established to meet as closely as possible the existing grades
of the abutting land parcels. The longitudinal grade should not be less than 2 percent.

Alley cross sections may be V-shaped with transverse slopes of 2.5 percent toward a
center V gutter. Runoff is thereby directed to a catch basin in the alley or to connecting street
gutters.

Sidewalks

Sidewalks used for pedestrian access to schools, parks, shopping areas, and transit stops and
placed along all streets in commercial areas should be provided along both sides of the street.
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Exhibit 5-9.  Alley Turnarounds
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In residential areas, sidewalks should be provided on at least one side of all local streets and
are desirable on both sides of the street. The sidewalks should be located as far as practical from
the traveled way and usually close to the right-of-way lines.

The minimum sidewalk width should be 1.2 m [4 ft]; sidewalk widths of 2.4 m [8 ft] or
greater may be needed in commercial areas. If roadside appurtenances are situated on the
sidewalk adjacent to the curb, additional width may be needed to secure the clear width. Greater
sidewalk widths should be considered for higher volume sidewalks and where the sidewalk is
against the curb or wall. Further guidance on designing sidewalks can be found in the AASHTO
Guide for the Planning, Design, and Operation of Pedestrian Facilities (5).

Sidewalk Curb Ramps

Sidewalk curb ramps should be provided at crosswalks to accommodate persons with
disabilities. Such ramps may be the same width as the approach sidewalks; the suggested
minimum width should be 1.0 m [3 ft] exclusive of sideslopes. Further discussion of this topic
appears in Chapter 4. Further guidance on designing sidewalk-driveway interfaces can be found in
the AASHTO Guide for the Planning, Design, and Operation of Pedestrian Facilities (5).

Driveways

A driveway is an access constructed within a public right-of-way, connecting a public
roadway with adjacent property and intended to provide vehicular access into that property in a
manner that will not cause the blocking of any sidewalk, border area, or street roadway.

Some of the principles of intersection design apply directly to driveways. In particular,
driveways should have well-defined locations. Large graded or paved areas adjacent to the
traveled way, which allow drivers to enter or leave the street randomly, should be discouraged.

Sight distance is an important design control for driveways. Driveway locations where sight
distance is not sufficient should be avoided. Vertical obstructions to essential sight distances
should be controlled by regulations. Driveways should be regulated as to width of entrance,
spacing, and placement with respect to property lines and intersecting streets, angle of entry,
vertical alignment, and number of entrances to a single property to provide for traffic safety and
maximum use of curb space for parking where permitted. Driveways should be situated as far
away from intersections as practical, particularly if the driveway is located near an arterial street.

Driveway returns should not be less than 1 m [3 ft] in radius. Flared driveways are preferred
because they are distinct from intersection delineations, can properly handle turning movements,
and can minimize problems for persons with disabilities. Further guidance on the design of
sidewalk-driveway interfaces can be found in the AASHTO Guide for the Planning, Design,
and Operation of Pedestrian Facilities (5).
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Roadway Widths for Bridges

The clear width for all new bridges on streets with curbed approaches should be the same as
the curb-to-curb width of the approaches. For streets with shoulders and no curbs, the clear
roadway width preferably should be the same as the approach roadway width and in no case less
than the width shown in Exhibit 5-6. Sidewalks on the approaches should be carried across all new
structures. There should be at least one sidewalk on all street bridges.

Horizontal Clearance to Obstructions

On all streets a minimum clearance of 0.5 m [1.5 ft] should be provided between the curb
face and obstructions such as utility poles, lighting poles, and fire hydrants. In areas of dense
pedestrian traffic, the construction of vertical curbing (typically 150 to 225 mm [6 to 9 in] high)
aids in protecting the high-volume pedestrian traffic . For facilities without curbs, a clear zone
commensurate with a rural cross section and design speed should be provided, as described in the
AASHTO Roadside Design Guide (3).

Trees are acceptable along local streets where speeds are low (60 km/h [40 mph] or below),
where curbs are present, and where adequate sight distance is available from intersecting streets
and driveways.

Guardrail is not used extensively on local streets except where there is a significant risk to
motorists and pedestrians, such as along sections with steep foreslopes and at approaches to
overcrossing structures.

Vertical Clearance

Vertical clearance at underpasses should be at least 4.3 m [14 ft] over the entire roadway
width, with an allowance for future resurfacing.

Border Area

A border area should be provided along streets for the safety of motorists and pedestrians as
well as for aesthetic reasons. The street alignment should be selected to minimize roadside slopes.
However, the preservation and enhancement of the environment is of major importance in the
design and construction of local streets.

The border area between the roadway and the right-of-way line should be wide enough to
serve several purposes, including provision of a buffer space between pedestrians and vehicular
traffic, sidewalk space, snow storage, an area for placement of underground and aboveground
utilities, and an area for maintainable aesthetic features such as grass or other landscaping. The
border width  may be a minimum  of 1.5 m [5 ft], but  desirably  should be 3.0 m [10 ft] or wider.
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Where the available right-of-way is limited and in areas of high right-of-way costs, as in
some industrial and commercial areas, a buffer width of 0.6 m [2 ft] may be tolerated.

Wherever practical, an additional obstacle-free buffer width of 3.6 m [12 ft] or more should
be provided between the curb and the sidewalk for safety and environmental enhancement. In
residential areas, wider building setback controls can be used to attain these features.

Right-of-Way Width

The right-of-way width should be sufficient to accommodate the ultimate planned roadway
including median (if used), shoulder (if used), landscaping strip, sidewalks, utility strips in the
border areas, and necessary outer slopes.

Provision for Utilities

In addition to the primary purpose of serving vehicular traffic and in accordance with State
law or municipal ordinance, streets also often accommodate public utility facilities within the street
right-of-way. Use of the rights-of-way by utilities should be planned to minimize interference with
traffic using the street. References (6) and (7) provide general principles for location and
construction of utilities to minimize conflict between the use of the street right-of-way for
vehicular movement and for its secondary purpose of providing space for location of utilities.

Intersection Design

Intersections, including median openings, should be designed with adequate corner sight
distance, as described in Chapter 9, and the intersection area should be kept free of obstacles. To
maintain the minimum sight distance, restrictions on height of embankment, locations of buildings,
on street parking, and screening fences may be appropriate. Any landscaping in the clear sight
triangle should be low growing and should not be higher than 1.0 m [3 ft] above the level of the
intersecting street pavements.

Intersecting streets should meet at approximately a 90° angle . The alignment design should
be adjusted to avoid an angle of intersection of less than 60°. Closely spaced offset intersections
are undesirable.

The intersection and approach areas where vehicles are stored while waiting to enter the
intersection should be designed with a relatively flat grade; the maximum grade on the approach
leg should not exceed 5 percent where practical. Where ice and snow may create poor driving
conditions, the desirable grade on the approach leg should be 0.5 percent with no more than
2 percent wherever practical.
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At street intersections, there are two distinct radii that need to be considered—the effective
turning radius of the turning vehicle and the radius of the curb return (see Exhibit 5-10.)  The
effective turning radius is the minimum radius appropriate for turning from the right-hand travel
lane on the approach street to the appropriate lane of the receiving street. This radius is
determined by the selection of a design vehicle appropriate for the streets being designed and the
lane on the receiving street into which that design vehicle will turn. Desirably this should be at
least 7.5 m [25 ft].

Exhibit 5-10.  Actual Curb Radius and Effective Radius for Right-Turn Movements
at Intersections

The radius of the curb return should be no greater than that needed to accommodate the
design turning radius. However, the curb return radius should be at least 1.5 m [5 ft] to enable
effective use of street-sweeping equipment.

In industrial areas the radius of the curb return should not be less than 10 m [30 ft], and
desirably, use should be made of a three-centered curve of sufficiently large radius to
accommodate the largest vehicles expected.

Further information pertaining to intersection design appears in Chapter 9.

Railroad-Highway Grade Crossings

Appropriate grade-crossing warning devices shall be installed at all railroad-highway grade
crossings on local roads and streets. Details of the devices to be used are given in the
MUTCD (4). In some States, the final approval of the devices to be used may be vested in an
agency having oversight over railroads.

Sight distance is an important consideration at railroad-highway grade crossings. There must
be sufficient sight distance along the road and railroad tracks for an approaching driver to
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recognize the crossing, perceive the warning device, determine whether a train is approaching, and
stop if necessary. (For further information on railroad-highway grade crossings, see Chapter 9.)
Signalized intersections adjacent to signalized railroad grade crossings should be designed with
railroad preemption.

The roadway width at all railroad crossings should be the same as the width of the approach
roadway. Sidewalks should be provided at railroad grade crossings to connect existing or future
walkways that approach these crossings. Crossings that are located on bicycle routes that are not
perpendicular to the railroad may need additional paved shoulder for bicycles to maneuver over
the crossing. For further information, see the AASHTO Guide for the Development of Bicycle
Facilities (1).

Street and Roadway Lighting

Good visibility under day or night conditions is one of the fundamental needs for motorists to
travel on roadways in a safe and coordinated manner. Properly designed and maintained street
lighting will produce comfortable and accurate visibility at night, which will facilitate and
encourage both vehicular and pedestrian traffic . Thus, where adequate illumination is provided,
efficient night use can be made of existing streets. Determinations of need for lighting should be
coordinated with crime prevention programs and other community needs.

Warrants for the justification of street lighting involve more than just identifying the functional
classification of the roadway. Pedestrian and vehicular volume, night-to-day crash ratios, roadway
geometry, merging lanes, curves, and intersections all need careful consideration in establishing
illumination levels.

At locations where illumination levels provided for the various roadway, walkway, and area
classifications are not influenced by these considerations, the suggested minimum levels of
illumination (expressed in average maintained horizontal lux) are presented in Exhibit 5-11.
Illumination levels at intersections should be the sum of illumination levels on intersecting streets at
the intersection.

Metric US Customary

Classification
Industrial/

commercial (lux) Residential (lux)
Industrial/

commercial (ft-c) Residential (ft-c)

Local 9.7 4.3 0.9 0.4
Alleys 6.5 2.2 0.6 0.2
Sidewalks 9.7 5.5 0.9 0.2

Exhibit 5-11.  Minimum Illumination Levels
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Uniformity of lighting is an indication of the quality of illumination and should be considered
along with illumination levels. Uniformity of illumination can be represented by a uniformity ratio of
the average-to-minimum lux values on the roadway or walkway surface. Recommended
uniformity ratios are as follows: residential roadways, 6:1; commercial roadways, 3:1; residential
walkways, 10:1; and commercial walkways, 4:1.

Because glare is also an indication of the quality of lighting, the type of fixtures and the height
at which the light sources are mounted are also factors in designing street lighting systems. The
objectives of the designer should be to minimize visual discomfort and impairment of driver and
pedestrian vision due to glare. Where only intersections are lighted, a gradual lighting transition
from dark to light to dark should be provided so that drivers may have time to adapt their vision.
More detailed discussion of this topic is contained in AASHTO’s An Informational Guide for
Roadway Lighting (8).

Traffic Control Devices

Consistent and uniform application of traffic control devices is important. Details of the
standard devices and warrants for many conditions are found in the MUTCD (4).

Geometric design of streets should include full consideration of the types of traffic control to
be used, especially at intersections where multiphase or actuated traffic signals are likely to be
needed.

Erosion Control

Design of streets should include considerations for preservation of natural ground cover and
desirable growth of shrubs and trees within the right-of-way. Seeding, mulching, sodding, or other
acceptable measures of covering slopes, swales, and other erodible areas should be incorporated
in urban local street design. For further information, see the section on “Erosion Control and
Landscape Development” in Chapter 3.

Landscaping

Landscaping in keeping with the character of the street and its environment should be
provided for aesthetic and erosion-control purposes. Landscape designs should be arranged to
permit a sufficiently wide, clear, and safe pedestrian walkway. Individuals with disabilities,
bicyclists, and pedestrians should all be considered. Combinations of turf, shrubs, and trees should
be considered in continuous border areas along the roadway. However, care should be exercised
to ensure that sight distances and clearance to obstruction guidelines are observed, especially at
intersections. The roadside should be developed to serve both the community and the traveling
motorist. Landscaping should also consider maintenance problems and costs, future
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sidewalks, utilities, additional lanes, and possible bicycle facilities. For further information on
landscaping, see the AASHTO Guide for Transportation Landscape and Environmental
Design (9).

Bicycle Facilities

Local roadways and streets are generally sufficient to accommodate bicycle traffic .
However, where special facilities are desired, they should be planned and designed in accordance
with the AASHTO Guide for the Development of Bicycle Facilities (1).

SPECIAL-PURPOSE ROADS

Introduction

For the purpose of design, highways have been classified in this book by function with
specific design criteria for each functional class. Subsequent chapters discuss the design of
collectors, arterials, and freeways. The first two sections of this chapter discuss the design of local
roads and streets. Another type of local road, however, is different because of its purpose and
does not fit into any of the classifications identified above. This type of local road is referred to as
a special-purpose road and because of its unique character, separate design criteria are provided.
Special-purpose roads include recreational roads, resource recovery roads, and local service
roads. Roads in the special-purpose category are generally lightly traveled and operate with low
traffic speeds; for these reasons, the design criteria for special-purpose roads differ from those for
other roadway types.

Recreational Roads

General Considerations

Roads serving recreational sites and areas are unique in that they are also part of the
recreational experience. Design criteria described below meet the unusual demands on roads for
access to, through, and within recreational sites, areas, and facilities for the complete enjoyment of
the recreationist. The criteria are intended to protect and enhance the existing aesthetic,
ecological, environmental, and cultural amenities that form the basis for distinguishing each
particular recreational site or area.

Visitors to a recreational site need access to the general area, usually by a statewide or
principal arterial highway. Secondly, they need access to the specific recreational site. This is the
most important link from the statewide road system. For continuity beyond this point, design
criteria assume that the visitor is aware of the recreational nature of the area. The design should
be accomplished by a multidisciplinary team of varied backgrounds and experience, to ultimately
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provide a road system that is an integral part of the recreational site. Depending on the conditions,
internal tributaries will have a variety of lower design features.

The criteria discussed in this chapter are applicable for public roads within all types of
recreational sites and areas. Design criteria for recreational roads are discussed for primary
access roads, circulation roads, and area roads. Primary access roads are defined as roads that
allow through movement into and between access areas. Circulation roads allow movement
between activity sites within an access area, whereas area roads allow direct access to individual
activity areas, such as campgrounds, park areas, boat launching ramps, picnic groves, and scenic
and historic sites.

Exhibit 5-12 depicts a potential road system serving a recreational area. Road links are
labeled in accordance with the classification system noted.

Exhibit 5-12.  Potential Road Network

Design Speed

The effect of design speed on various roadway features is considered in its selection;
however, the speed is selected primarily on the basis of the character of the terrain and the
functional classification of the road. The design speeds should be approximately 60 km/h [40 mph]
for primary access roads, 50 km/h [30 mph] for circulation roads, and 30 km/h [20 mph] for area
roads. There may be instances where design speeds less than these may be appropriate because
of severe terrain conditions or major environmental concerns. Design speeds on one-lane roads
would usually be less than 50 km/h [30 mph]. If a design speed of greater than 60 km/h [40 mph]
is used, the first section of this chapter should be consulted.
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Design speed is the principal factor that should be correlated with the physical features of
design to achieve a roadway that will accommodate the traffic safely for the planned use. Once a
design speed is selected, all geometric features should be related to this speed to obtain a balanced
design. Changes in terrain and other physical controls may dictate a change in design speed in
certain sections. A decrease in design speed along the road should not be introduced abruptly, but
be extended over a sufficient distance to allow the driver to adjust and make the transition to the
slower speed.

Design Vehicle

The physical dimensions and operating characteristics of vehicles and the percentage of
vehicles of various sizes using recreational roads are primary geometric design controls. Existing
and anticipated vehicle types should be reviewed to establish representative vehicles for each
functional roadway class. Each design vehicle considered should represent a substantial
percentage of the vehicles expected to use the facility during its design life.

Three categories of vehicles are common to recreational areas:  motor homes, vehicles with
trailers, and standard passenger vehicles. Critical physical dimensions for geometric design are the
overall length, width, and height of these units. Minimum turning paths of the design vehicles are
influenced by the vehicle steering mechanism, track width, and wheelbase arrangement. Figures in
Chapter 2 show minimum turn paths for motor homes (MH), passenger cars with 9-m [30-ft]
travel trailers (P/T), passenger cars with 6.1-m [20-ft] boats (P/B), and motor homes with 6.1-m
[20-ft] boats (MH/B). Turning path dimensions for other vehicle types such as buses and
passenger cars are also presented in Chapter 2.

Sight Distance

Minimum stopping sight distance and passing sight distance are a direct function of the design
speed. The subject of sight distance for two-lane roads is addressed in Chapter 3; however, sight
distance design criteria are not included in Chapter 3 for roads with very low design speeds and
for two-way single-lane roads. On two-way single-lane roads, sufficient sight distance should be
available whenever two vehicles might approach one another for one vehicle to reach a turnout or
for both vehicles to stop before colliding. Stopping sight distance should be measured using an eye
height of 1,080 mm [3.5 ft] and a height of opposing vehicle of 1,300 mm [4.25 ft]. The stopping
sight distance for a two-way, single-lane road should be approximately twice the stopping sight
distance that would be used in design of a comparable two-lane road. Suggested stopping sight
distances for two-way, single-lane roads are given in Exhibit 5-13.

Passing Sight Distance

Because of low operating speeds and the nature of travel on recreational roads, frequent
passing maneuvers are not anticipated. Nevertheless, minimum passing sight distance should be
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Metric US Customary

Rate of vertical
curvature, Ka (m/%)

Rate of vertical
curvature, Ka (ft/%)

Initial
speed
(km/h)

Design
stopping

sight
distance

(m) Crest Sag

Initial
speed
(mph)

Design
stopping

sight
distance

(ft) Crest Sag
Two-lane roads and one-way, single-lane
roads

Two-lane roads and one-way, single-lane
roads

20 20 1 3 15 80 3 10
30 35 2 6 20 115 7 17
40 50 4 9 25 155 12 26
50 65 7 13 30 200 19 37
60 85 11 18 35 250 29 49
70 105 17 23 40 305 44 64

Two-way, single-lane roads Two-way, single-lane roads
20 40 2 6 15 160 12 27
30 70 7 13 20 230 25 44
40 100 15 21 25 310 45 65
50 130 26 29 30 400 74 89
60 170 44 40 35 500 116 117
70 210 67 52 40 610 172 147

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the
intersecting grades (i.e., K = L/A).  (See Chapter 3 for details.)

Exhibit 5-13.  Design Controls for Stopping Sight Distance and for Crest and
Sag Vertical Curves—Recreational Roads

provided as frequently as possible, particularly on primary access roads where users travel
considerable distances to reach activity sites. Suggested minimum passing sight distances for
two-lane recreational roads are given in Exhibit 5-14. Passing sight distance is not a factor on
single-lane roads. Where a faster vehicle approaches a slower vehicle from behind, it is assumed
that, where appropriate, the slower vehicle will pull into a turnout and allow the faster vehicle to
pass.

Grades

Grade design for recreational roads differs substantially from that for rural highways in that
the weight/power ratio of recreational vehicles (RVs) seldom exceeds 30 kg/kW [50 lb/hp], and
this fact indicates that gradeability of RVs approaches that for passenger cars. Furthermore,
because vehicle operating speeds on recreational roads are relatively low, large speed reductions
on grades are not anticipated.
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Metric US Customary

Design
speed (km/h)

Design
passing sight
distance (m)

Rate of
vertical

curvature, Ka

(m/%)
Design

speed (mph)

Design
passing sight
distance (ft)

Rate of
vertical

curvature, Ka

(ft/%)
30 200 46 20 710 180
40 270 84 25 900 289
50 345 138 30 1090 424
60 410 195 35 1280 585
70 485 272 40 1470 772
80 540 338 45 1625 943
90 615 438 50 1835 1203

100 670 520 55 1985 1407
110 730 617 60 2135 1628
120 775 695 65 2285 1865
130 815 769 70 2480 2197

75 2580 2377
80 2680 2565

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the
intersecting grades; i.e., K = L/A.  (See Chapter 3 for details.)

Exhibit 5-14.  Design Controls for Passing Sight Distance for Crest Vertical Curves—
Recreational Roads

When grades are kept within the suggested limits, critical length of grade is not a major
concern for most recreational roads. Critical length of grade may be a factor on primary access
roads to recreational areas, and appropriate consideration should be given to this element in the
design for these roads.

Exhibit 5-15 identifies suggested maximum grades for given terrain and design speed based
primarily on the operational performance of vehicles that use recreational roads. Chapter 3
contains a more detailed discussion on the selection of an appropriate maximum grade. A major
item to be considered in selection of a maximum grade is the capability of the soil for erosion
resistance. In many instances, grades considerably less than those shown in Exhibit 5-15 should
be chosen to satisfy this concern. In addition, the surface type should also be a factor in grade
selection. Steep grades with dirt or gravel surfaces may cause driving problems in the absence of
continued maintenance, whereas a bituminous surface generally will offer better vehicle
performance.



Local Roads and Streets (Special-Purpose Roads)

413

Metric US Customary

Maximum grade (%) for a
specified design speed

(km/h)

Maximum grade (%) for a
specified design speed

(mph)

Type of terrain 20 30 40 50 60 10 20 25 30 40

Level 8 8 7 7 7 8 8 7 7 7
Rolling 12 11 10 10 9 12 11 10 10 9
Mountainous 18 16 15 14 12 18 16 15 14 12

Exhibit 5-15.  Maximum Grades for Recreational Roads

Vertical Alignment

Vertical curves should be safe, comfortable in operation, pleasing in appearance, and
adequate for drainage. Minimum or greater-than-minimum stopping sight distance should be
provided in all cases. The designer should exercise considerable judgment in designing vertical
curves because lengths in excess of the minimum may be needed at driver decision points, where
drainage or aesthetic problems exist, or simply to provide an additional margin of safety.

Vertical curve design for two-lane roads is discussed in Chapter 3, which also presents
specific design values. Exhibit 5-13 also includes additional information for very low design speeds
not tabulated elsewhere. For two-way, single-lane roads, crest vertical curves should be
significantly longer than those for two-lane roads. As discussed above, the stopping sight distance
for a two-way, single-lane road should be approximately twice the stopping sight distance for a
comparable two-lane road. Exhibit 5-13 includes K values for single-lane roads, from which
vertical curve lengths can be determined.

Horizontal Alignment

Because the use of straight sections of roadway would be physically impractical and
aesthetically undesirable, horizontal curves are essential elements in the design of recreational
roads. The proper relationship between design speed and horizontal curvature and the relationship
of both to superelevation are discussed in detail in Chapter 3. The guidance provided in Chapter 3
is generally applicable to paved recreational-roads; however, in certain instances variations are
appropriate. At locations where there is a tendency to drive slowly, as with local and some
circulation roads, a maximum superelevation rate of 6 percent is suggested. On roads with design
speeds of 30 km/h [20 mph] or less, superelevation may not be warranted.

The design values for maximum curvature and superelevation discussed in Chapter 3 are
based on friction data for paved surfaces. Some lower volume recreational facilities may not be
paved, and because friction values for gravel surfaces are less than those for paved surfaces,
friction values should be considered in curvature selection. Exhibit 5-16 shows the relationship
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Exhibit 5-16.  Minimum-Radius Horizontal Curve for Gravel Surface
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between minimum radius and superelevation for gravel-surfaced roads. This figure was developed
by using f values from 0.12 at 15 km/h [10 mph] to 0.10 at 50 km/h [30 mph].

Number of Lanes

The number of lanes should be sufficient to accommodate the design traffic volume. For low-
volume recreational roads, capacity conditions do not normally govern design and provision of two
travel lanes is appropriate. In some cases where traffic volume is less than 100 vehicles per day, it
may be practical to use a two-way, single-lane roadway. This type of road is often desirable from
an economic and environmental standpoint. When single-lane roadways with two-way traffic are
used, turnouts for passing should be provided at intervals. Such turnouts should be intervisible,
provided on all sight-restricted curves, and located so that the maximum distance between turnouts
is no more than 300 m [1,000 ft]. The turnouts should be a minimum of 3 m [10 ft] wide for a
length of 15 m [50 ft] and should have an 8-m [25-ft] taper on each end. For roads that serve
substantial proportions of over-wide and extra-long vehicles, the turnout design criteria should be
adjusted to accommodate these larger vehicles. Exhibit 5-17 shows a typical design that may be
used for turnouts on tangent and curve sections for two-way, single-lane roads.

Widths of Traveled Way, Shoulder, and Roadway

A roadway is defined as that portion of the highway including shoulders for vehicular use.
Proper roadway width is selected on the basis of numerous factors including existing and
anticipated vehicular and bicycle traffic, safety, terrain, and design speed. Exhibit 5-18 gives
recommended traveled way widths and shoulder widths for the various types of roadways. The
sum of the traveled way and shoulder widths given in Exhibit 5-18 constitutes the roadway width.

The low operating speeds and relatively low traffic volume on recreational roads do not
warrant wide shoulders. In addition, wide shoulders may be aesthetically objectionable . These
considerations are reflected in the shoulder width values given in Exhibit 5-18. Under adverse
terrain conditions, intermittent shoulder sections or turnouts may be suitable alternatives to
continuous shoulders, particularly on lower functional roadway classes. Where guardrail is used,
the graded width of the shoulder should be increased by about 0.6 m [2 ft].

Cross Slope

Cross slope is provided on roadways to ensure adequate drainage. However, excessive
surface sloping can cause steering difficulties. Cross slope rates given in the section of this
chapter on local rural roads are generally applicable to recreational roads.
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Exhibit 5-17.  Turnout Design

Metric US Customary

Type of road

Traveled
way
width
(m)a

Shoulder
width (m)

Traveled
way

width (ft)a
Shoulder
width (ft)

Primary access roads (two lanes) 6.6–7.2 0.6–1.2 22–24 2–4
Circulation roads (two lanes) 6.0–6.6 0.6–1.2 20–22 2–4
Area roads (two lanes) 5.4–6.0 0.0–0.6 18–20 0–2
Area roads (one lane)b 3.6 0.0–0.3 12 0–1
a  Widening on the inside of sharp curves should be provided; additional width equal

to 35 [400] divided by the curve radius in meters [feet] is recommended.
b  Roadway widths greater than 4.2 m [14 ft] should not be used because drivers will

tend to use the facility as a two-lane road.

Exhibit 5-18.  Widths of Traveled Way and Shoulders—Recreational
Roads
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On single-lane roads with low-type surfaces, a crown would not usually be provided. Roads
of this type would be inslope graded (toward the cut ditch) or outslope graded (toward the
embankment fill), depending on the resistance of the soil to erosion.

Clear Recovery Area

Providing a clear zone adjacent to a road involves a trade-off between safety and aesthetics.
A driver who leaves the road should be provided a reasonable chance to regain control and avoid
serious injury. On the other hand, the philosophy of recreational roads dictates that natural
roadside features should be preserved where practical. Because of the character of the traffic
and the relatively low operating speeds on recreational roads, wide clear zones are not as
important as on high-speed, high-volume facilities. For these reasons, dimensions smaller than
those used on these higher order roads are appropriate. Desirably, 3 m [10 ft] or more of recovery
area, measured from the edge of the traveled way, should be provided on the higher order
recreational roads, (i.e., the primary access roads). These values are recommended for the
general case; however, where economic and environmental concerns are great, even smaller
values are appropriate. Clear zone widths on the lower order recreational roads, i.e., circulation
roads and areas, are even less critical than on primary access roads. In areas where the crash
potential is greater than normal, such as on the outside of sharp horizontal curves at the end of
long, steep downgrades, liberal clear zone widths should be provided.

Roadside Slopes

Where terrain conditions permit, backslopes, foreslopes, and roadside drainage channels
should have gentle well-rounded transitions. Foreslopes of 1V:4H or flatter are safer and more
stable than steeper slopes and permit establishment and maintenance of turf. The maximum rate
of foreslope depends on terrain conditions and the stability of local soils as determined by local
experience. Cut sections should be designed with adequate ditches.

The ditch should be deep enough to accommodate the design flow and provide for
satisfactory drainage of the pavement base and subbase. While foreslopes of 1V:4H or flatter are
preferable, there are other important considerations in ditch design for recreational roads.
Surrounding terrain and physical feature preservation may dictate narrow-width ditches. The
lower speeds prevailing on recreational roads reduce the chance of personal injury for passengers
in vehicles that drive into shallow-sided ditches.

Roadside Barrier

Roadside barriers should be installed at points of unusual risk, particularly those points that
are unusual compared with the overall characteristics of the road. The criteria used in freeway
design do not fit the low-volume recreational road situation. The AASHTO Roadside Design
Guide (3) provides some insight into the application of roadside barriers on low-speed, low-
volume facilities.
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Signing and Marking

Although safety and efficiency of operation depend to a major extent on the geometric design
of a road, they should be supplemented by standard signing and marking to provide information
and warning to drivers. The extent to which signs and markings are used depends on the traffic
volume, the type of highway, and the frequency and use by drivers unfamiliar with the area. The
MUTCD (4) contains details regarding design, location, and application of highway signs and
markings.

Structures

The design of bridges, culverts, walls, tunnels, and other structures should be in accordance
with the AASHTO Standard Specifications for Highway Bridges (2). The minimum design
loading for new bridges should be M 13.5 [H15]. Higher design loadings are appropriate for
highways carrying other than just recreational traffic . The vertical clearance at underpasses
should be at least 4.3 m [14 ft] over the entire roadway width. The clear roadway widths for new
and reconstructed bridges should be a minimum of the surface width plus 1 m [3 ft]. Where the
approach roadway is surfaced for the full crown width, that surfaced width should be carried
across structures.

Recreational roads should be reviewed to determine if they are sufficient to accommodate
bicycle traffic . When special facilities are desired, they should be in accordance with the
AASHTO Guide for the Development of Bicycle Facilities (1).

Resource Recovery Roads

Resource recovery roads include mining and logging roads. Design criteria appropriate for
this type of road in many areas are not significantly different from those for recreational roads.
For this reason the criteria developed for recreational roads should be followed to the extent they
are applicable . Several items are unique to this category of road and deserve special attention.

Traffic on resource recovery roads is primarily composed of large, slow-moving, heavily
loaded vehicles. For this reason, particular attention should be paid to superelevation of horizontal
curves. The center of gravity of trucks is much higher than that of passenger cars, and this fact
increases the tendency of trucks to overturn. When semitrailers are used, only part of the payload
is on the drive axles. This situation increases the tendency of the drive wheels to spin and sideslip
on slippery surfaces. For these reasons the maximum superelevation should be limited to 6
percent. On long sustained grades adverse to the direction of haul, the superelevation should be
reduced to accommodate slow-moving trucks.

Gradients on this type of facility have an effect on the road maintenance costs and costs to
users. An economic analysis is usually appropriate to determine the most economical grade for the
specific conditions encountered. Such an analysis should consider the increase in culvert
installations to prevent ditch erosion on steeper grades and the more frequent surface



Local Roads and Streets (Special-Purpose Roads)

419

replacement needs. Adverse grades are a special problem on roads planned for heavy hauling.
Sections of adverse grades should not be so long that they slow a loaded truck to crawl speed.
Except for short sections that can be overcome largely by momentum, adverse grades merit
special analysis. In many instances, failure to use flatter grades may result in additional expenses
for transportation during the life of the road far in excess of any savings in construction costs.

Geometric design features for resource recovery roads are similar to those for recreational
roads in that they should be consistent with the design speed selected. Low design speeds 60 km/h
[40 mph] or below are generally applicable to roads with winding alignment in rolling mountainous
terrain. Exhibit 5-19 lists those minimum design speeds for both single-lane and two-lane roads for
varying terrain conditions.

Metric US Customary

Design speed (km/h) for roads with
specified number of lanes

Design speed (mph) for roads with
specified number of lanes

Type of terrain Single lane Two lanes Single lane Two lanes

Level 50 60 30 40
Rolling 30 50 20 30
Mountainous 15 30 10 20

Exhibit 5-19.  Design Speeds for Resource Recovery and Local Service Roads

Because of the mechanical limitations of many of the vehicles using these roads, special
attention should be given to the need for warning signs and markings. On long descending grades,
consideration should be given to providing escape lanes for use by heavy vehicles that lose their
brakes and run out of control. Deceleration may be artificially induced by the use of loose material
or by providing a combination of sufficient length and upgrade for freewheeling deceleration.
Further information is provided in the section on “Emergency Escape Ramps” in Chapter 3.

Many design considerations for resource development roads are based on the economics of
the equipment operating on the facility. The effects of grades and curvature on operational cost
are discussed in considerable detail in the Logging Road Handbook (10).

In many instances, resource development roads are ultimately used for other (e.g.,
recreational) purposes. In instances such as these, the original design should take into account all
the possible ultimate usages.
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Local Service Roads

Local service roads are those serving isolated areas that have little or no potential for further
development (or that would need a higher type facility if further developed) and those serving a
minimal number of parcels of land. Most of these roads will not be through roads (connected to
public roads on both ends) but will dead end at the service to the last parcel on the road.

Traffic on this type of road is very low (less than 100 vehicles per day) and generally consists
of drivers who are familiar with the road. The design criteria for local service roads, therefore,
should be basically the same as those developed for recreational roads.
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CHAPTER 6
COLLECTOR ROADS AND STREETS

INTRODUCTION

This chapter presents guidance on the application of geometric design criteria to facilities
functionally classified as collector roads and streets. The chapter is subdivided into sections on
rural and urban collectors.

The function of a collector may be understood by referring to those functional classes above
and below it—the arterial and the local road or street. The collector has aspects of both arterials
and local roads and often serves as a connection between them. Since the function of a collector
combines aspects of both arterials and local streets, collectors serve a dual function: collecting
traffic for movement between arterial streets and local roads and providing access to abutting
properties.

Collector streets link neighborhoods or areas of homogeneous land use with the arterial
street system. These streets not only serve traffic movements between arterials and local streets,
but also serve through traffic within local areas. Collector streets should be planned so as not to
disrupt the activities within the areas they serve.

The collector street is a public highway, usually serving moderate traffic volumes. There
may be few discernible differences between collectors and local streets within a neighborhood,
since collectors provide access function to adjacent residential development and to some
neighborhood facilities. However, the design of a collector street should reflect its function as a
collector and should not be conceived or developed simply as a continuous access street. The
collector should allow access to abutting properties consistent with the level of service desired.

The use of design criteria exceeding those described in this chapter is encouraged, where
practical. Every effort should be made to obtain the best possible alignment, grade, sight distance,
and drainage that are consistent with terrain, present and anticipated development, safety, and
available funds.

Drainage, both on the pavement itself and from the sides and subsurface, is an important
design consideration. Inadequate drainage can lead to high maintenance costs and adverse
operational conditions. In areas of significant snowfall, roadways should be designed so that there
is sufficient storage space, outside the traveled way, for plowed snow and proper drainage for
melting conditions.

Safety is an important factor in all roadway improvements. On low-volume roads or streets
or in urban areas, it may not be practical to provide an obstacle-free roadside. However, every
effort should be made to provide as much clear roadside as is practical. The judicious use of
flatter slopes, roadside barriers, and warning signs helps to improve roadside safety. Proper
placement of utility features also assists in achieving safer roadsides.
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It may not be cost-effective to design collector roads and streets that carry less than 400
vehicles per day using the same criteria applicable to higher volume roads or to make extensive
traffic operational or safety improvements to such very low-volume roads. AASHTO is currently
evaluating alternative design criteria for collector roads that carry less than 400 vehicles per day
based on a safety risk assessment.

Noise abatement may need to be considered on collector roads and streets; for further
information, see the section on “Noise Control” in Chapter 4.

The Highway Capacity Manual (HCM) (1) provides the designer with a tool to evaluate
level of service for the highway facility under consideration. Collector streets should generally be
designed for level-of-service C to D. In rural areas, level-of-service C is desirable for collector
roads. In heavily developed portions of metropolitan areas, conditions may necessitate the use of
level-of-service D. Level-of-service D is also a practical choice where unusually high traffic
volumes exist or where terrain is rolling or mountainous. For further information, see the section
on “Levels of Service” in Chapter 2. Collector roads and streets cannot be designed entirely on
the basis of functional classification. Many other facets of design must also be considered, as
described below.

RURAL COLLECTORS

General Design Considerations

Two-lane collector highways constitute an important part of the rural highway system. Rural
collectors should be designed with the most favorable alignment and cross section practical,
consistent with traffic and topography. Basic information needed for design of rural collectors
includes crash history, traffic volumes, terrain, and alignment.

Design Traffic Volumes

Rural collector highways should be designed for specific traffic volumes and specified
acceptable levels of service. Usually, the design year is 20 years from the date of construction
completion but may be any number of years within a range from the present (for restoration
projects on existing roads) to 20 years in the future (for new construction projects).

The average daily traffic (ADT) volume for the design year should serve as the basis for the
project design.

Design Speed

Geometric design features should be consistent with a design speed appropriate for the
conditions. Low design speeds of 70 km/h [45 mph] and below are generally applicable to
highways with curvilinear alignment in rolling or mountainous terrain, or where environmental
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conditions dictate. High design speeds of 80 km/h [50 mph] and above are generally applicable to
highways in level terrain or where other environmental conditions are favorable. Exhibit 6-1
identifies minimum design speeds for rural collector roads as a function of the type of terrain and
design traffic volumes. The designer should strive for higher values than those shown where
specific safety concerns are present and costs are not prohibitive.

Sight Distance

Stopping sight distance and passing sight distance are a direct function of the design speed.
An eye height of 1,080 mm [3.5 ft] and an object height of 600 mm [2.0 ft] are used to determine
stopping sight distance. An eye height of 1,080 mm [3.5 ft] and an object height of 1,080 mm
[3.5 ft] are used to determine passing sight distance. For further information on sight distance, see
Exhibits 6-2 and 6-3 and the section on “Sight Distance” in Chapter 3.

Grades

Exhibit 6-4 identifies suggested maximum grades for rural collectors in specific terrain and
design conditions.

Alignment

The designer should provide the most favorable alignment as practical for rural collectors.
Horizontal and vertical alignment should complement each other and should be considered in
combination to achieve appropriate safety, capacity, and appearance for the type of improvement
proposed. Topography, traffic volume and composition, and right-of-way conditions are
controlling features. Abrupt changes in horizontal alignment should be avoided. Vertical curves
should meet the sight distance criteria for the design speed. In addition, frequent opportunities for
passing should be provided, where practical. For further information, see the sections on
“Horizontal Alignment” and “Vertical Alignment” in Chapter 3.

Cross Slope

Pavement cross slope should be adequate to provide proper drainage. Normally, cross slopes
range from 1.5 to 2 percent for high-type pavements. High-type pavements are those that retain
smooth riding qualities and good non-skid properties in all weather under heavy traffic volumes
and loadings with little maintenance required.

Low-type pavements are those with treated earth surfaces and those with loose aggregate
surfaces. A cross slope of 3 to 7 percent is desirable for low-type pavements. For further
information, see the section on “Cross Slope” in Chapter 4.
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Metric US Customary
Design speed (km/h) for

specified design volume (veh/day)
Design speed (mph) for

specified design volume (veh/day)
Type of
terrain 0 to 400

400 to
2000 over 2000 0 to 400

400 to
2000 over 2000

Level 60 80 100 40 50 60
Rolling 50 60 80 30 40 50
Mountainous 30 50 60 20 30 40

Note: Where practical, design speeds higher than those shown should be considered.

Exhibit 6-1. Minimum Design Speeds for Rural Collectors

Metric US Customary

Design
speed

Design
stopping sight

distance

Rate of vertical
curvature, Ka

(m/%)
Design
speed

Design
stopping sight

distance

Rate of vertical
curvature, Ka

(ft/%)
(km/h) (m) Crest Sag (mph) (ft) Crest Sag

20 20 1 3 15 80 3 10
30 35 2 6 20 115 7 17
40 50 4 9 25 155 12 26
50 65 7 13 30 200 19 37
60 85 11 18 35 250 29 49
70 105 17 23 40 305 44 64
80 130 26 30 45 360 61 79
90 160 39 38 50 425 84 96

100 185 52 45 55 495 114 115
60 570 151 136

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the
intersecting grades; i.e., K = L/A (see Chapter 3 for details).

Exhibit 6-2. Design Controls for Stopping Sight Distance and for Crest and
Sag Vertical Curves



Metric US Customary

Design speed
(km/h)

Design passing
sight distance (m)

Rate of vertical
curvature, Ka

(m/%)
Design speed

(mph)
Design passing

sight distance (ft)

Rate of vertical
curvature, Ka

(ft/%)
30 200 46 20 710 180
40 270 84 25 900 289
50 345 138 30 1090 424
60 410 195 35 1280 585
70 485 272 40 1470 772
80 540 338 45 1625 943
90 615 438 50 1835 1203

100 670 520 55 1985 1407
60 2135 1628

a Rate of vertical curvature, K, is the length of curve per percent algebraic difference in the intersecting grades; i.e.,
K = L/A (See Chapter 3 for details).

Exhibit 6-3. Design Controls for Crest Vertical Curves  Based on Passing Sight Distance

Metric US Customary
Maximum grade (%) for

specified design speed (km/h)
Maximum grade (%) for

specified design speed (mph)
Type of terrain 30 40 50 60 70 80 90 100 20 25 30 35 40 45 50 55 60
Level 7 7 7 7 7 6 6 5 7 7 7 7 7 7 6 6 5
Rolling 10 10 9 8 8 7 7 6 10 10 9 9 8 8 7 7 6
Mountainous 12 11 10 10 10 9 9 8 12 11 10 10 10 10 9 9 8

Note: Short lengths of grade in rural areas, such as grades less than 150 m [500 ft] in length, one-way downgrades,
and grades on low-volume rural collectors may be up to 2 percent steeper than the grades shown above.

Exhibit 6-4. Maximum Grades for Rural Collectors
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Superelevation

Many rural collector highways have curvilinear alignments. A superelevation rate
compatible with the design speed should be used. For rural collectors, superelevation should not
exceed 12 percent. Where snow and ice conditions may be a factor, the superelevation rate should
not exceed 8 percent. Superelevation runoff denotes the length of highway needed to accomplish
the change in cross slope from a section with the adverse crown removed to a fully superelevated
section and vice versa. Adjustments in design runoff lengths may be needed to provide a smooth
ride, surface drainage, and good appearance. The section on “Horizontal Alignment” in Chapter 3
provides a detailed discussion on superelevation for appropriate design speeds.

Number of Lanes

The number of lanes should be sufficient to accommodate the design volumes for the desired
level of service. Normally, capacity conditions do not govern rural collector roads, and two lanes
are appropriate. For further information, see the section on “Highway Capacity” in Chapter 2.

Width of Roadway

For high-type surfaces, the minimum roadway width is the sum of the traveled way and
shoulder widths shown in Exhibit 6-5. Shoulder width is measured from the edge of the traveled
way to the point of intersection of shoulder slope and foreslope. Where roadside barriers are
included, a minimum offset of 1.2 m [4 ft] from the traveled way to the barrier should be
provided, wherever practical. For further information, see the sections on “Shoulders” and
“Longitudinal Barriers” in Chapter 4 and the section in Chapter 3 on “Traveled Way Widening on
Horizontal Curves” for vehicle offtracking information.

Where bicycle facilities are included as part of the design, refer to the AASHTO Guide for
the Development of Bicycle Facilities (2).

Foreslopes

The maximum rate of foreslope should depend on the stability of local soils as determined
by soil investigation and local experience. Slopes should be as flat as practical, taking into
consideration other design constraints. Flat foreslopes improve safety by providing a
maneuvering area in emergencies, are more stable than steep slopes, aid in the establishment of
plant growth, and simplify maintenance work. Roadside barriers may be used where topography
and right-of-way are restrictive and a need is justified.
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Metric US Customary
Minimum width of traveled way (m)

for specified design volume
(veh/day)a

Minimum width of traveled way (ft)
for specified design volume

(veh/day)aDesign
speed
(km/h)

under
400

400 to
1500

1500 to
2000

over
2000

Design
speed
(mph)

under
400

400 to
1500

1500 to
2000

over
2000

30 6.0b 6.0 6.6 7.2 20 20b 20 22 24
40 6.0b 6.0 6.6 7.2 25 20b 20 22 24
50 6.0b 6.0 6.6 7.2 30 20b 20 22 24
60 6.0b 6.6 6.6 7.2 35 20b 22 22 24
70 6.0 6.6 6.6 7.2 40 20b 22 22 24
80 6.0 6.6 6.6 7.2 45 20 22 22 24
90 6.6 6.6 7.2 7.2 50 20 22 22 24

100 6.6 6.6 7.2 7.2 55 22 22 24 24
60 22 22 24 24

Width of shoulder on each
side of road (m)

Width of shoulder on each
side of road (ft)

All
speeds 0.6 1.5c 1.8 2.4

All
speeds 2.0 5.0c 6.0 8.0

a On roadways to be reconstructed, a 6.6-m [22 ft] traveled way may be retained where the
alignment and safety records are satisfactory.

b A 5.4-m [18-ft] minimum width may be used for roadways with design volumes under
250 veh/day.

c Shoulder width may be reduced for design speeds greater than 50 km/h [30 mph] as long
as a minimum roadway width of 9 m [30 ft] is maintained.

See text for roadside barrier and offtracking considerations.

Exhibit 6-5. Minimum Width of Traveled Way and Shoulders

Drivers who inadvertently leave the traveled way can often recover control of their vehicles
if foreslopes are 1V:4H or flatter and shoulders and ditches are well rounded or otherwise made
traversable. Such recoverable slopes should be provided where terrain and right-of-way
conditions allow.

Where provision of recoverable slopes is not practical, the combinations of rate and height of
slope provided should be such that occupants of an out-of-control vehicle have a good chance of
survival. Where high fills, right-of-way restrictions, watercourses, or other problems render such
designs impractical, roadside barriers should be considered, in which case the maximum rate of
fill slope may be used. Reference should be made to the current edition of the AASHTO
Roadside Design Guide (3). For further information, see the section on “Traffic Barriers” in
Chapter 4.

Cut sections should be designed with adequate ditches. Preferably, the foreslope should not
be steeper than 1V:3H and, where practical, should be 1V:4H or flatter. The ditch bottom and
slopes should be well rounded, and the backslope should not exceed the maximum needed for
stability.
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Structures

The design of bridges, culverts, walls, tunnels, and other structures should be in accordance
with the current AASHTO Standard Specifications for Highway Bridges (4), or with the
AASHTO LRFD Bridge Design Specification (5). Except as otherwise indicated herein, the
dimensional design of structures should also be in accordance with these standard specifications.

The minimum design loading for bridges on collector roads should be MS-18 [HS 20]. The
minimum roadway widths for new and reconstructed bridges should be as shown in Exhibit 6-6.

Metric US Customary

Design
volume

(veh/day)

Minimum clear
roadway width

for bridgesa

Design
loading

structural
capacity

Design
volume

(veh/day)

Minimum clear
roadway width

for bridgesa

Design
loading

structural
capacity

400 and
under

Traveled way +
0.6 m (each side)

MS-18 400 and
under

Traveled way +
2 ft (each side)

HS-20

400 to 1500 Traveled way +
1 m (each side)

MS-18 400 to 1500 Traveled way +
3 ft (each side)

HS-20

1500 to 2000 Traveled way +
1.2 m (each side)b

MS-18 1500 to 2000 Traveled way +
4 ft (each side)b

HS-20

over 2000 Approach roadway
(width)b

MS-18 over 2000 Approach
roadway (width)b

HS-20

a Where the approach roadway width (traveled way plus shoulders) is surfaced, that surface
width should be carried across the structures.

b For bridges in excess of 30 m [100 ft] in length, the minimum width of traveled way plus 1 m
[3 ft] on each side is acceptable.

Exhibit 6-6. Minimum Roadway Widths and Design Loadings for
New and Reconstructed Bridges

Bridges to Remain in Place

Because highway geometric and roadway improvements may encourage higher speeds and
attract larger vehicles, existing structures also should be improved correspondingly. Because of
their high cost, reasonably adequate bridges and culverts that meet tolerable criteria may be
retained.

Where an existing highway is to be reconstructed, an existing bridge that fits the proposed
alignment and profile may remain in place when its structural capacity in terms of design loading
and roadway width are at least equal to the values shown for the applicable traffic volume in
Exhibit 6-7.

The values in Exhibit 6-7 do not apply to structures with a total length greater than 30 m
[100 ft]. Such structures should be analyzed individually by taking into consideration the clear
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width provided, crash history, traffic volumes, remaining life of the structure, design speed, and
other pertinent factors.

Metric US Customary

Design
volume

(veh/day)

Design
loading

structural
capacity

Minimum
clear

roadway
width (m)a

Design
volume

(veh/day)

Design
loading

structural
capacity

Minimum
clear

 roadway
width (ft)a

under 400 MS 13.5 6.6 under 400 H 15 22
400 to 1500 MS 13.5 6.6 400 to 1500 H 15 22

1500 to 2000 MS 13.5 7.2 1500 to 2000 H 15 24
over 2000 MS 13.5 8.4 over 2000 H 15 28

a Clear width between curbs or railings, whichever is less, should be equal to or greater than
the approach traveled way width, wherever practical.

Exhibit 6-7. Structural Capacities and Minimum Roadway Widths for Bridges to
Remain in Place

Vertical Clearance

Vertical clearance at underpasses should be at least 4.3 m [14 ft] over the entire roadway
width, with an additional allowance for future resurfacing.

Horizontal Clearance to Obstructions

For rural collector roads with a design speed of 70 km/h [45 mph] or less, a minimum clear
zone of 3 m [10 ft] measured from the edge of the traveled way should be provided. This
recovery area should be clear of all unyielding objects such as trees, sign supports, utility poles,
light poles, and other fixed objects. The benefits of removing these obstructions should be
weighed against any environmental and aesthetic effects.

For rural collector roads with a design speed of 80 km/h [50 mph] or more, the AASHTO
Roadside Design Guide (3) should be used for guidance in selecting an appropriate clear zone
width.

The approach roadway (traveled way plus shoulders) should be carried across an overpass or
bridge, where practical. Approach roadside barriers, anchored to the bridge rails or parapets,
should be provided. Sidewalks should extend across a bridge if the approach roadway has
sidewalks or sidewalk areas. To the extent practical, where another highway or railroad passes
over the roadway, the overpass structure should be designed so that the pier or abutment supports
have lateral clearance as great as the clear zone on the approach roadway. Where a setback
beyond the clear zone is not practical, roadside barrier protection should be provided at the piers.
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Right-of-Way Width

The provision of right-of-way widths that accommodate construction, adequate drainage,
and proper maintenance of a highway is an important part of the overall design. Wide rights-of-
way permit the construction of gentle slopes, resulting in greater safety for the motorist and
provide for easier and more economical maintenance. The acquisition of sufficient right-of-way,
at the time of initial construction, permits subsequent widening of the roadway and the widening
and strengthening of the pavement at a reasonable cost as traffic volumes increase.

In developed areas it may be desirable to limit the right-of-way width. However, the right-
of-way width should not be less than that needed for all elements of the design cross section,
utility accommodation, and appropriate border areas.

Intersection Design

Intersections should be carefully located to avoid steep profile grades and to ensure adequate
approach sight distance. An intersection should not be situated just beyond a sharp crest vertical
curve or on a sharp horizontal curve. Where there is no practical alternative to such a location, the
approach sight distance on each leg should be checked and, where practical, backslopes should be
flattened and horizontal or vertical curves lengthened, to provide additional sight distance. The
driver of a vehicle approaching an intersection should have an unobstructed view of the entire
intersection and sufficient lengths of the intersecting roadway to permit the driver to anticipate
and avoid potential collisions. Sight distances at intersections with six different types of traffic
control cases are presented in Chapter 9.

Intersections should be designed with a corner radius for pavement or surfacing adequate for
the larger vehicles anticipated; for information on minimum edge radius, see Chapter 9. Where
turning volumes are substantial speed-change lanes and channelization should be considered.

Intersection legs that operate under stop sign control should intersect at right angles,
wherever practical, and should not intersect at an angle less than 60 degrees. For more
information on intersection angle, see Chapter 9.

A stopping area that is as level as practical should be provided for approaches on which
vehicles may be required to stop.

Railroad-Highway Grade Crossings

Appropriate grade crossing warning devices should be installed at all railroad-highway grade
crossings on collector roads and streets. Details of the devices to be used are given in the Manual
on Uniform Traffic Control Devices (MUTCD) (6). In some states, the final approval of these
devices may be vested in an agency having oversight over railroads.
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Sight distance is an important consideration at railroad-highway grade crossings. There
should be sufficient sight distance along the road for an approaching driver to recognize the
railroad crossing, perceive the warning device, determine whether a train is approaching, and stop
if necessary. Adequate sight distance along the track is needed for drivers of stopped vehicles to
decide when it is safe to proceed across the tracks. For further information on railroad-highway
grade crossings, see Chapter 9.

The roadway width at railroad crossings should be the same as the width of the approach
roadway. Crossings that are located on bicycle routes that are not perpendicular to the railroad
may need additional paved shoulder width for bicycles to maneuver over the crossing. For further
information, see the AASHTO Guide for the Development of Bicycle Facilities (2).

Traffic Control Devices

Traffic control devices should be applied consistently and uniformly. Details of the standard
traffic control devices and warrants for various conditions are found in the MUTCD (6).
Geometric design of rural collectors should include full consideration of the types of traffic
control to be used, especially at intersections where multi-phase or actuated traffic signals are
likely to be needed. For further information, see the section on “Traffic Control Devices” in
Chapter 3.

Erosion Control

Design of rural collectors should consider preservation of the natural ground cover and
desirable growth of shrubs and trees within the right-of-way. Shrubs, trees, and other vegetation
should be considered in assessing the driver’s sight line and the clear recovery distance. Seeding,
mulching, sodding, or other acceptable measures for covering slopes, swales, and other erodible
areas should also be considered in the rural collector design. For further information, see the
section on “Erosion Control and Landscape Development” in Chapter 3.

URBAN COLLECTORS

General Design Considerations

A collector street is a public facility for vehicular travel and includes the entire area within
the right-of-way. The urban collector street also serves bicycle and pedestrian traffic and often
accommodates public utility facilities within the right-of-way. The development or improvement
of streets should be based on a functional street classification established as part of a
comprehensive community development plan. The design criteria should be those for the ultimate
planned development. Design criteria for collector streets should exceed those shown below,
where practical.
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The function of urban collectors is equally divided between mobility and access. Few cities
have effective access control restrictions along collector streets; almost all such streets permit
access to abutting properties, except where access rights have been acquired. Many new
collectors are planned and constructed with little or no access restriction. However, uncontrolled
access may eventually result in the obsolescence of a collector facility. Therefore, management of
driveway access to urban collectors is desirable.

When a major objective of the design is to expedite traffic mobility, there are many
additional criteria for which guidelines are appropriate. Such criteria include minimizing conflict
points, providing adequate storage length for all turning movements, minimizing conflicts with
pedestrians and bicyclists, coordinating driveway locations on opposite sides of the roadway,
locating signals to meet progression needs, and maintaining efficient circulation while providing
adequate ingress and egress capacity. By using these design criteria, an optimum system of access
can be developed.

Access control on urban collector streets should be used primarily to ensure that access
points conform to the adopted criteria for safety, location, design, construction, and maintenance.

Design Traffic Volumes

Traffic volumes are a major factor in determining the geometric criteria to be used in
designing urban collector streets. Specifically, the design traffic volumes projected to some future
design year should be the basis of design. It usually is difficult and costly to modify the geometric
design of an existing collector street unless provisions are made at the time of initial construction.
The design traffic should be estimated for at least 10 and preferably 20 years from the anticipated
completion of construction.

Design Speed

Design speed is a factor in the design of collector streets. For consistency in design, a design
speed of 50 km/h [30 mph] or higher should be used for urban collector streets, depending on
available right-of-way, terrain, adjacent development, likely pedestrian presence, and other site
controls. See Exhibit 6-1 and the section on “Design Speed” in Chapter 2 for additional
information.

In the typical urban street grid, closely spaced intersections often limit vehicular speeds and
thus make the consideration of design speed of lesser significance. Nevertheless, the longer sight
distances and curve radii commensurate with higher design speeds result in safer highways and
should be used to the extent practical.
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Sight Distance

Stopping sight distance for urban collector streets varies with design speed. Design for
passing sight distance seldom is applicable on urban collector streets. For further information, see
Exhibits 6-2 and 6-3 and the section on “Sight Distance” in Chapter 3.

Grades

Grades for urban collector streets should be as level as practical, consistent with the
surrounding terrain. A minimum grade of 0.30 percent is acceptable to facilitate drainage.
However, it is recommended that a grade of 0.50 percent grade or more be used, where practical,
for drainage purposes. Where adjacent sidewalks are present, a maximum grade of 5 percent is
recommended to meet the Americans with Disabilities Act Accessibility Guidelines (ADAAG)
and other applicable criteria, where terrain conditions permit (7, 8). The grade of an urban street
is generally depressed below the surrounding terrain to direct drainage from adjacent property to
the curb area so that it can reach the storm drain system. Applicable gradients, vertical curve
lengths, and other pertinent features are discussed in the section on “Vertical Alignment” in
Chapter 3. Maximum grades for urban collector streets should be as presented in Exhibit 6-8.

Alignment

Alignment in residential areas should fit closely the existing topography to minimize the
need for cuts or fills without sacrificing safety.

Cross Slope

Pavement cross slope should be adequate to provide proper drainage. Cross slope should
normally be from 1.5 to 3 percent where there are flush shoulders adjacent to the traveled way or
where there are outer curbs.

Superelevation

Superelevation, in specific locations, may be advantageous for urban collector street traffic
operation. However, in built-up areas, the combination of wide pavement areas, proximity of
adjacent development, control of cross slope, profile for drainage, frequency of cross streets, and
other urban features often combine to make its use impractical or undesirable. Where used,
superelevation on urban collector streets should be 6 percent or less. The absence of
superelevation on urban collectors for low speeds of 70 km/h [45 mph] and below generally is not
detrimental to the motorist. Often, some warping or partial removal or reversal of the tangent
pavement crown may facilitate operations. When warping or removing the pavement crown,
drainage should be considered. For further information, see the sections on “Horizontal
Alignment” and “Design for Low-Speed Urban Streets” in Chapter 3.



Metric US Customary
Maximum grade (%) for

specified design speed (km/h)
Maximum grade (%) for

specified design speed (mph)
Type of terrain 30 40 50 60 70 80 90 100 20 25 30 35 40 45 50 55 60
Level 9 9 9 9 8 7 7 6 9 9 9 9 9 8 7 7 6
Rolling 12 12 11 10 9 8 8 7 12 12 11 10 10 9 8 8 7
Mountainous 14 13 12 12 11 10 10 9 14 13 12 12 12 11 10 10 9

Note: Short lengths of grade in urban areas, such as grades less than 150 m [500 ft] in length, one-way downgrades,
and grades on low-volume urban collectors may be up to 2 percent steeper than the grades shown above.

Exhibit 6-8. Maximum Grades for Urban Collectors
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Number of Lanes

Two moving traffic lanes plus additional width for shoulders and parking are sufficient for
most urban collector streets. Where the street is developed in stages, initially a rural cross section
with shoulders may be used. The street should be planned for later conversion of the shoulder
width to a parking lane or a through lane, usually with outer curbs. Where the initial development
utilizes a rural cross section, a clear zone consistent with rural conditions and commensurate with
the design speed should be provided. When the conversion of the shoulder occurs, the clear zone
can be modified to that appropriate for urban conditions. If practical and economically feasible,
the initial construction should be four lanes with curbs, allowing parking on the two outer lanes
until later development necessitates the use of all four lanes for traffic movement.

In some cases, in commercial areas where there are mid-block left turns, it may be
advantageous to provide an additional continuous two-way left-turn lane in the center of the
roadway.

The number of lanes to be provided on urban collector streets with high traffic volumes
should be determined from a capacity analysis. This analysis should consider both intersections
and mid-block locations, when appropriate, in assessing the ability of a proposed design to
provide the desired level of service. Such analyses should be made for the future design year
traffic volume utilizing the procedures in the most recent edition of the Highway Capacity
Manual (1). For further information, see the section on “Highway Capacity” in Chapter 2.

Width of Roadway

The width of an urban collector street should be planned as the sum of the widths of the
ultimate lanes for moving traffic, parking, and bicycles, including median width where
appropriate.

Lanes within the traveled way should range in width from 3.0 to 3.6 m [10 to 12 ft]. In
industrial areas, lanes should be 3.6 m [12 ft] wide except where lack of space for right-of-way
imposes severe limitations; in such cases, lane widths of 3.3 m [11 ft] may be used. Added
turning lanes at intersections, where used, should range in width from 3.0 to 3.6 m [10 to 12 ft],
depending on the percentage of trucks. Where shoulders are used, roadway widths should be
determined by referring to Exhibit 6-5.

Where bicycle facilities are included as part of the design, refer to the AASHTO Guide for
the Development of Bicycle Facilities (2).

Parking Lanes

Although on-street parking may constitute a safety problem and may impede traffic flow,
provision of parking lanes parallel to the curb is conventional on many collector streets. Parallel
parking is normally acceptable on urban collectors where sufficient street width is available to
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provide a parking lane. In residential areas, a parallel parking lane from 2.1 to 2.4 m [7 to 8 ft] in
width should be provided on one or both sides of the street, as appropriate for the lot size and
density of development. In commercial and industrial areas, parking lane widths should range
from 2.4 to 3.3 m [8 to 11 ft] and are usually provided on both sides of the street.

The principal problem of diagonal or angle parking, in comparison to parallel parking, is the
lack of adequate visibility for the driver during the back-out maneuver. Collector street designs
with diagonal or angle parking should only be considered in special cases. ADA guidelines
concerning parking should be taken into consideration (7, 8). For further information, see the
section concerning “On-Street Parking” in Chapter 4.

The determination of parking lane width should consider the appropriate width for any likely
future use as a lane for moving traffic either continuously or during peak hours. Where curb-and-
gutter sections are used, the gutter pan width may be considered as part of the parking lane width,
but, where practical, the parking lane widths discussed above should be in addition to the gutter
pan width.

Medians

Urban collector streets designed for four or more lanes should include width for an
appropriate median treatment, where practical. For general types of median treatments for
collector streets, the following widths may be considered: (1) paint-striped separation, 0.6 to
1.2 m [2 to 4 ft] wide; (2) narrow raised-curbed sections, 0.6 to 1.8 m [2 to 6 ft] wide; (3) raised
curbed sections, 3.0 to 4.8 m [10 to 16 ft] wide, providing space for left-turn lanes; (4) paint-
striped sections, 3.0 to 4.8 m [10 to 16 ft] wide, providing space for two-way left-turn lanes; and
(5) raised-curb sections, 5.4 to 7.6 m [18 to 25 ft] wide to provide more space for left-turn lanes
and for passenger cars to stop in median crossovers. Wider medians from 8 to 12 m [27 to 40 ft]
may be used for a parkway design where space is available for landscaping. Thus, each increment
in additional median width provides specific operational advantages. Median should be as wide as
practical within the constraints of each particular site.

On urban collector streets with raised-curb medians, openings should be provided only at
intersections with other streets and at reasonably spaced driveways serving major traffic
generators such as industrial plants and shopping centers. Where practical, median openings
should be designed to include left-turn lanes.

Median openings should be situated only where there is adequate sight distance. The shape
and length of the median openings depend on the width of the median and the vehicle types that
are to be accommodated. The minimum length of median openings should be that of the projected
roadway width of the intersecting cross street or driveway. Desirably, the length of median
openings should be great enough to provide a 15-m [50-ft] turning radius or the turning radius for
the design vehicle for left-turning vehicles between the inner edge of the lane adjacent to the
median and the centerline of the intersection roadway.



Collector Roads and Streets (Urban)

439

On many urban collectors it may be impractical to use a raised-curb median. A continuous
center two-way left-turn lane, flush with the adjacent traveled way, is an alternative design that
may also be considered. A further discussion on medians is found in the section on “Medians” in
Chapter 4 and the section on “Median Openings” in Chapter 9.

Curbs

Collector streets normally are designed with curbs to allow greater use of available width
and for control of drainage, protection of pedestrians, and delineation. The curb on the right side
of the traveled way should be a vertical curb, 150 mm [6 in] high, usually with an appropriate
batter. On lightly traveled residential streets with grades less than 2 percent, a sloping curb that is
lower and does not require modification at driveway entrances may be used. The curb slope
should be 1V:6H or flatter.

On divided streets, the type of median curbs should be determined in conjunction with the
median width and the type of turning movement control to be provided. Where mid-block left-
turn movements are permitted and the median width is less than 3 m [10 ft], a well-delineated
flush or rounded raised median separator 50 to 100 mm [2 to 4 in] high is effective in
channelizing traffic and in avoiding excessive travel distances and concentrations of turns at
intersections. Where wider traversable medians are appropriate, they may be either flush or
bordered with low curbs 25 to 50 mm [1 to 2 in] high. On narrow and intermediate-width
medians, and on some wide medians, where cross-median movements are undesirable or create
problems, a vertical curb should be used on the median side of the traveled way, usually 150 mm
[6 in] high and with an appropriate batter. A median barrier should be used where positive
separation of opposing traffic is essential, where there is no need for pedestrian crossings, and
where local regulations permit. For further information, see the section on “Curbs” in Chapter 4.

Vertical curbs with heights of 150 mm [6 in] or more, adjacent to the traveled way, should
be offset by 0.3 to 0.6 m [1 to 2 ft] from the edge of the traveled way. Where there is combination
curb-and-gutter construction, the gutter pan width, which is normally 0.3 to 0.6 m [1 to 2 ft], may
provide the offset distance.

Drainage

Surface runoff is gathered by a system of gutters, inlets, catch basins, and storm sewers. The
gutter grade should be 0.3 percent or more. However, a gutter grade of 0.5 percent or more should
be used, where practical, for better drainage. Inlets or catch basins with an open grate should be
located in the gutter line and should be so spaced that ponding of water on the pavement does not
exceed tolerable limits. In addition, grates should be designed to accommodate bicycle and
pedestrian traffic. For additional details, see the drainage portions of Chapters 3 and 4.
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Sidewalks

Sidewalks should be provided along both sides of urban collector streets that are used for
pedestrian access to schools, parks, shopping areas, and transit stops and along all collectors in
commercial areas. In residential areas, sidewalks are desirable on both sides of collector streets,
but should be provided on at least one side. The sidewalk should be situated as far as practical
from the traveled way, usually close to the right-of-way line. For further information, see the
section on “Sidewalks” in Chapter 4. Additional design guidance on sidewalks can also be found
in the AASHTO Guide for the Planning, Design, and Operation of Pedestrian Facilities (9).

The minimum sidewalk width should be at least 1.2 m [4 ft] in residential areas and should
range from 1.2 to 2.4 m [4 to 8 ft] in commercial areas. Sidewalk widths of at least 1.5 m [5 ft]
are recommended by the ADAAG (7, 8).

Sidewalk curb ramps should be provided at crosswalks to accommodate persons with
disabilities. The section on “Pedestrian Facilities” in Chapter 4 discusses various design
applications at such ramps.

Driveways

Driveways should be regulated as to width of entrance, placement with respect to property
lines and intersecting streets, angle of entrance, vertical alignment, and number of entrances to a
single property. ADA guidelines should be considered in the design of driveways (6, 7). Further
guidance on the design of sidewalk-driveway interfaces can be found in the AASHTO Guide for
the Planning, Design, and Operation of Pedestrian Facilities (9).

Roadway Widths for Bridges

The clear width for all new bridges on urban collector streets with curbed approaches should
be the same as the curb-to-curb width of the approaches. The bridge rail should be placed flush
with the front face of the curb if no sidewalk is present to minimize the likelihood that vehicles
will vault the rail. For urban collector streets with shoulders and no curbs, the full width of
approach roadways should preferably be extended across bridges. Sidewalks on the approaches
should be extended across all new structures. In addition, a sidewalk should be included on at
least one side on all bridges on collector streets. Further discussion of roadway widths for bridges
is presented in the section on “Traffic Barriers” in Chapter 4. Exhibits 6-6 and 6-7 apply to bridge
widths on urban collector streets.

Vertical Clearance

Vertical clearance at underpasses should be at least 4.3 m [14 ft] over the entire roadway
width, with an additional allowance for future resurfacing.
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Horizontal Clearance to Obstructions

Roadside obstructions on urban collector streets should preferably be located at or near the
right-of-way line and outside of the sidewalks. On urban collector streets that have curbs but no
shoulders, a clearance of 0.5 m [1.5 ft] or more beyond the face of the curb should be provided to
roadside obstructions, where practical. Where a continuous parking lane is provided, no clearance
is needed, but a setback of 0.5 m [1.5 ft] to obstructions is desirable to avoid interference with
opening car doors. In areas of dense pedestrian traffic, the provision of vertical curbing between
the traveled way and adjacent street fixtures will discourage drivers from encroaching on the
sidewalk. Urban collector streets with shoulders and without curbs should have clear zones, as
described previously for rural collectors.

Roadside obstacles, such as trees, that might seriously damage out-of-control vehicles should
be removed wherever practical. However, the potential benefits of removing such obstacles
should be weighed against the adverse environmental and aesthetic effects of their removal.
Therefore, trees should be removed only when considered essential for safety. However, it may
only be practical to remove those fixed objects in very vulnerable locations. For further
information, see the section on “Horizontal Clearance to Obstructions” in Chapter 4.

A wide and level border area should be provided along collector streets for the safety of the
motorist and pedestrian, as well as for aesthetic reasons. However, the preservation and
enhancement of the environment are of major importance in the design and construction of
collector streets and may preclude provision of a border area. The street alignment should be
selected to minimize cut and fill slopes.

Roadside barriers are not used extensively on urban collector streets except where there are
safety concerns or environmental considerations such as along sections with steep foreslopes and
at approaches to structures. Roadside barriers may also be needed to shield vehicles from over-
crossing structures.

Right-of-Way Width

The right-of-way width should be sufficient to accommodate the ultimate planned roadway,
including median, shoulder, grass border, sidewalks, bicycle facilities, public utilities, and outer
slopes. The width of right-of-way for a two-lane urban collector street should generally range
from 12 to 18 m [40 to 60 ft], depending on the conditions listed above.

Provision for Utilities

In addition to the primary purpose of serving vehicular traffic, urban collector streets may
accommodate public utility facilities within the street right-of-way in accordance with state law
or municipal ordinance. Use of the right-of-way by utilities should be planned to minimize
interference with traffic using the street. The AASHTO Guide for Accommodating Utilities
Within Highway Right-of-Way (10) presents general principles for utility location and
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construction to minimize conflicts between the use of the street right-of-way for vehicular
movements and the secondary objective of providing space for locating utilities.

Border Area

The border area between the roadway and the right-of-way line should be wide enough to
serve several purposes, including the provision of a buffer space between pedestrians, bicyclists,
and vehicular traffic; a sidewalk; and an area for underground and above-ground utilities such as
traffic signals, parking meters, and fire hydrants. A portion of the border area should
accommodate snow storage and may include aesthetic features such as grass or landscaping. The
border width should range from 2.4 to 3.3 m [8 to 11 ft], including the sidewalk width. For safety
reasons, traffic signals, utility poles, fire hydrants, and other utilities should be placed as far back
from the curb as practical. Breakaway features may be built into such obstacles, where practical,
as an aid to safety.

Intersection Design

The pattern of traffic movements at intersections and the volume of traffic on each approach
during one or more peak periods of the day, including pedestrian and bicycle traffic, are
indicative of the appropriate type of traffic control devices, the widths of lanes (including
auxiliary lanes), and where applicable, the type and extent of channelization needed to expedite
the movement of traffic. The arrangement of islands and the shape and length of auxiliary lanes
may differ depending on whether or not signal control is used. The composition and character of
traffic is a design control; movements involving large trucks need larger intersection areas and
flatter approach grades than those used at intersections where traffic consists predominantly of
passenger cars. Bus stops located near an intersection may create a need for additional
modification to the intersection design. Approach speeds of traffic also have a bearing on the
geometric design as well as on the appropriate traffic control devices and pavement markings. For
further information, see the section on “Traffic Control Devices” in Chapter 3.

The number and location of approach roadways and their angles of intersection are major
controls for the intersection geometric design, the location of islands, and the types of control
devices. Intersections at grade preferably should be limited to no more than four approach legs.
When two crossroads intersect the collector highway in close proximity, they should be combined
into a single intersection.

Important design considerations for at-grade intersections fall into two major categories: the
geometric design of the intersection (including a capacity analysis) and the location and type of
traffic control devices. For the most part, these considerations are applicable to both new and
existing intersections although, for existing intersections in built-up areas, heavy development
may make extensive design changes impractical.

Chapter 9 presents a discussion of all major aspects of intersection design.
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Railroad-Highway Grade Crossings

Appropriate grade crossing warning devices should be installed at all railroad-highway grade
crossings on collector streets. Details of these devices are given in the MUTCD (5). In some
states, the final approval of these devices may be vested in an agency having oversight over
railroads.

Sight distance is an important consideration at railroad-highway grade crossings on collector
streets. There should be sufficient sight distance along the street for the approaching driver to
recognize the railroad crossing, perceive the warning device, determine whether a train is
approaching, and stop if necessary. Adequate sight distance along the tracks is also needed for
drivers of stopped vehicles to decide when it is safe to proceed across the tracks.

The roadway width at all crossings should be the same as the curb-to-curb width of the
approaches. Where street sections are not curbed, the crossing width should be consistent with the
approach street and shoulder widths. Sidewalks should be provided at railroad crossings where
approach sidewalks exist or are planned within the near future. Provisions for future sidewalks
should be incorporated into design, if they can be anticipated, to avoid future crossing work on
the railroad facility.

Crossings that are located on bicycle routes that are not perpendicular to the railroad may
need additional paved shoulder width for bicycles to maneuver over the crossing. For further
information, see the AASHTO Guide for the Development of Bicycle Facilities (2).

The design of railroad-highway grade crossings is discussed more fully in Chapter 9.

Street and Roadway Lighting

Good visibility under both day and night conditions is fundamental to enabling motorists,
pedestrians, and bicyclists to travel on roadways in a safe and coordinated manner. Properly
designed and maintained street lighting should provide comfortable and accurate night visibility,
which should facilitate vehicular, bicycle, and pedestrian traffic.

Decisions concerning appropriate street lighting should be coordinated with safety
management, crime prevention, and other community concerns. The AASHTO publication An
Informational Guide for Roadway Lighting (11) provides discussion on street and roadway
lighting. Further information is also provided in the section on “Lighting” in Chapter 3.

Traffic Control Devices

Traffic control devices should be applied consistently and uniformly. Details of the standard
devices and warrants for many conditions are found in the MUTCD (6).
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Geometric design of streets should include full consideration of the types of traffic control to
be used, especially at intersections where multi-phase or actuated traffic signals are likely to be
needed. Signal progression, signal phasing (including pedestrian and bicycle phases), and traffic
flow rates are important considerations in major signalized intersection design. For further
information, see the section on “Traffic Control Devices” in Chapter 3.

Erosion Control

Design of streets should consider preservation of natural ground cover and desirable growth
of shrubs and trees within the right-of-way. Seeding, mulching, sodding, or other acceptable
measures for covering slopes, swales, and other erodible areas should also be considered in urban
collector street design. For further information, see the section on “Erosion Control and
Landscape Development” in Chapter 3.

Landscaping

Landscaping should be provided in keeping with the character of the street and its
environment for both aesthetic and erosion control purposes. Landscape designs should be
arranged to permit a sufficiently wide, clear, and safe pedestrian walkway. The needs of
individuals with disabilities, bicyclists, and pedestrians should be considered. Combinations of
turf, shrubs, and trees should be considered in continuous border areas along the roadway.
However, care should be exercised to ensure that sight distances and guidelines on clearance to
obstructions are observed, especially at intersections. The roadside should be developed to serve
both the community and the traveling motorist. Landscaping should also consider maintenance
problems and costs, future sidewalks, utilities, additional lanes, and possible bicycle facilities. For
further information on landscaping, see the AASHTO Guide for Transportation Landscape and
Environmental Design (12).
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CHAPTER 7
RURAL AND URBAN ARTERIALS

INTRODUCTION

The principal and minor arterial road systems provide a high-speed, high-volume network
for travel between major points in both rural and urban areas. Chapter 1 discusses extensively the
functional purposes of this class of facility, both rural and urban. This chapter provides the
general information needed to establish the basis of design for these roadways.

The design of these arterials covers a broad range of roadways, from two-lane to multilane,
and is the most difficult class of roadway design because of the need to provide safe and efficient
operations under sometimes unusual or constrained conditions. The designer should be
thoroughly familiar with the material in all chapters of this publication in order to skillfully blend
the various types of arterials into the functional network. Although freeways are included in the
functional description of an arterial, they have distinctive design requirements and are therefore
treated separately in Chapter 8.

This chapter considers rural and urban arterials separately because each has distinctive
features. However, the designer should be prepared to use design features from both arterial types
to provide for suitable transitions as an arterial moves between rural and urban settings.

RURAL ARTERIALS

General Characteristics

Rural arterials constitute an important part of the rural highway system, including cross
sections that range from two-lane roadways to multilane, divided controlled-access highways.
The first portion of this chapter relates to the design of new rural arterials and the reconstruction
of existing ones. Such roadways are designed on the basis of traffic volume needs and should be
constructed to the most favorable design criteria practical.

Rural principal arterials comprise the Interstate system and most rural freeways. They also
include other multilane roadways and some two-lane highways that connect urban centers. Minor
rural arterials link urban centers to larger towns and are spaced to provide a relatively high level
of service to developed areas of a state.

The appropriate design geometrics for an arterial may be readily determined from the
selected design speed and the design traffic volumes, with consideration of the type of terrain, the
general character of the alignment, and the composition of traffic. Operational characteristics,
design features, cross sections, and rights-of-way are also discussed in this chapter.

Two-lane highways constitute the majority of the rural arterial system. Such roadways are
adequate where traffic volumes are light and long sight distances are generally available.
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Two-lane arterials generally have all-weather surfaces and are marked and signed in accordance
with the current edition of the Manual on Uniform Traffic Control Devices (MUTCD) (1).

General Design Considerations

Design Speed

Rural arterials, excepting freeways, should be designed for speeds of 60 to 120 km/h [40 to
75 mph] depending on terrain, driver expectancy and, in the case of reconstruction projects, the
alignment of the existing facility. Design speeds in the higher range—100 to 120 km/h [60 to
75 mph]—are normally used in level terrain, design speeds in the midrange—80 to 100 km/h
[50 to 60 mph]—are normally used in rolling terrain, and design speeds in the lower range—60 to
80 km/h [40 to 50 mph]—are used in mountainous terrain. Where a lower design speed is used,
refer to Chapters 2, 3, and 4 to select appropriate design features.

Design Traffic Volume

Before an existing rural arterial is improved or a new rural arterial is constructed, the design
traffic volume should be determined. The first step in determining the design traffic volume is to
determine the current average daily traffic (ADT) volume for the roadway; in the case of new
construction, the ADT can be estimated. These ADT values should then be projected to the
design year, normally 20 years into the future. The design of low-volume rural arterials is
normally based on ADT values alone because neither capacity nor intersection operations
typically govern the overall operation. Such roadways normally provide free flow under all
conditions. By contrast, it is usually appropriate to design high-volume rural arterials using an
hourly volume as the design traffic volume. The design hourly volume (DHV) that should
generally be used in design is the 30th highest hourly volume of the year, abbreviated as 30 HV,
which is typically about 15 percent of the ADT on rural roads. For further information on the
determination of design traffic volumes, see the section on “Traffic Characteristics” in Chapter 2.

Levels of Service

Procedures for estimating the traffic operational performance of particular highway designs
are presented in the Highway Capacity Manual (HCM) (2), which also presents a thorough
discussion of the level-of-service concept. Although the choice of an appropriate design level of
service is left to the highway agency, designers should strive to provide the highest level of
service practical and consistent with anticipated conditions. Level-of-service characteristics are
discussed in Chapter 2 and summarized in Exhibit 2-31. For acceptable degrees of congestion,
rural arterials and their auxiliary facilities (i.e., turning lanes, passing sections, weaving sections,
intersections, and interchanges) should generally be designed for level-of-service B, except in
mountainous areas where level-of-service C is acceptable.



Rural and Urban Arterials (Rural)

449

Sight Distance

Sight distance is directly related to and varies appreciably with design speed. Stopping sight
distance, a key safety-related design element, should be provided through the length of the
roadway. Passing and decision sight distances influence roadway operations and should be
provided wherever practical. Providing decision sight distance at locations where complex
decisions are made greatly enhances the chances that drivers will be able to safely accomplish
maneuvers. Examples of locations where complex decisions are required include high-volume
intersections, transitions in roadway width, and transitions in the number of lanes. Provision for
adequate sight distance on rural arterials, which may combine both high speeds and high traffic
volumes, can be complex. Exhibit 7-1 presents the recommended minimum values of stopping
and passing sight distance. Refer to Chapter 3 for a comprehensive discussion of sight distance
and for tabulated values for decision sight distance.

Metric US Customary

Design
speed
(km/h)

Minimum
stopping sight
distance (m)

Minimum
passing sight
distance (m)

Design
speed
(mph)

Minimum
stopping sight
distance (ft)

Minimum
passing sight
distance (ft)

50 65 345 30 200 1090
60 85 410 35 250 1280
70 105 485 40 305 1470
80 130 540 45 360 1625
90 160 615 50 425 1835

100 185 670 55 495 1985
110 220 730 60 570 2135
120 250 775 65 645 2285
130 285 815 70 730 2480

75 820 2580
80 910 2680

Exhibit 7-1.  Minimum Sight Distances for Arterials

Ideally, intersections and railroad crossings should be grade separated or provided with
adequate sight distance. Intersections should be placed in sag and/or tangent locations, where
practical, to allow maximum visibility of the roadway and pavement markings.

Alignment

A smooth flowing alignment is desirable on a rural arterial. Changes in alignment, both
horizontal and vertical, should be so gradual that they will not surprise the driver. Roads with
adequate alignment usually operate more efficiently and safely than roads with poor alignment,
even where improved signing and pavement marking are provided; therefore, adequate alignment
should be provided wherever practical.
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Grades

The length and steepness of grades directly affect the operational characteristics of an
arterial. Exhibit 7-2 presents recommended maximum grades for rural arterials. When vertical
curves for stopping sight distance are considered, there are seldom advantages to using the
maximum grade values except when grades are long.

Metric US Customary

Type of
Maximum grade (%) for

specified design speed (km/h)
Maximum grade (%) for

specified design speed (mph)

terrain 60 70 80 90 100 110 120 130 40 45 50 55 60 65 70 75 80

Level 5 5 4 4 3 3 3 3 5 5 4 4 3 3 3 3 3
Rolling 6 6 5 5 4 4 4 4 6 6 5 5 4 4 4 4 4
Mountainous 8 7 7 6 6 5 5 5 8 7 7 6 6 5 5 5 5

Exhibit 7-2.  Maximum Grades for Rural Arterials

Number of Lanes

The number of lanes on an arterial roadway should be determined based on consideration of
volume, level of service, and capacity conditions. A multilane arterial, as discussed in this
chapter, refers to four or more lanes.

Superelevation

Where curves are used on a rural arterial alignment, a superelevation rate compatible with
the design speed should be used. Superelevation rates should not exceed 12 percent; however,
where ice and snow conditions are a factor, the maximum superelevation rate should not exceed
8 percent. Superelevation runoff denotes the length of roadway needed to accomplish the change
in cross slope from a section with adverse crown removed to a fully superelevated section and
vice versa. Adjustments in design runoff lengths may be needed for smooth riding, drainage, and
appearance. Chapter 3 provides a detailed discussion of superelevation and tables of appropriate
superelevation rates and runoff lengths for various design speeds.

Cross Slope

Cross slope is provided to enhance roadway drainage. Two-lane rural roadways are normally
designed with a centerline crown and cross slopes ranging from 1.5 to 2 percent with the higher
values being most prevalent. Multilane roadways are either crowned at the centerline or sloped in
one direction.
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When three or more lanes are inclined in the same direction on multilane highways, each
successive pair of lanes, or portion thereof, outward from the first two lanes from the crown line,
may have an increased slope.  For a more complete discussion, see the section on “Cross Slope”
in Chapter 4.

Vertical Clearances

New or reconstructed structures should provide 4.9-m [16-ft] clearance over the entire
roadway width. Existing structures that provide clearance of 4.3 m [14 ft], if allowed by local
statute, may be retained. In highly urbanized areas, a minimum clearance of 4.3 m [14 ft] may be
provided if there is an alternate route with 4.9-m [16-ft] clearance. Structures should provide
additional clearance for future resurfacing of the underpassing road.

Structures

The full width for the approach roadways should normally be provided across all new
bridges. Long bridges, defined as bridges having an overall length in excess of 60 m [200 ft], may
have a lesser width. On long bridges, offsets to parapet, rail, or barrier should be at least 1.2 m
[4 ft] measured from the edge of the traveled way on both sides of the roadway. See Chapter 10
for further information on bridge widths.

For an existing bridge to remain in place, it should have adequate structural strength and a
width at least equal to the width of the traveled way plus 0.6 m [2 ft] clearance on each side.
Bridges should be considered for ultimate widening or replacement if they do not provide at least
MS-18 [HS-20] loadings. As an interim measure, narrow bridges should be considered for special
narrow bridge treatments such as signing and pavement marking.

Traffic Control Devices

Signs, pavement delineation, and pavement marking play an important role in the optimum
operation of rural arterials. Placement of these items should be considered early in the design
stage while adjustments to the alignment and intersection design can be easily considered. Refer
to the current MUTCD (1) for guidance in signing and marking.

Erosion Control

Consideration of erosion control features is important to the proper design of a rural arterial.
By controlling erosion, the safety of the roadside is maintained and the environment downstream
is protected from siltation and other possible harmful effects. Providing adequate ground
treatment and cover has the additional benefit of assuring a pleasing roadside appearance.
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Widths

The logical approach to determining appropriate lane and shoulder widths is to provide a
width related to the traffic demands. Exhibit 7-3 provides values for the width of traveled way
and usable shoulder that should be considered for the volumes indicated. Regardless of weather
conditions, shoulders should be usable at all times. On high-volume highways, shoulders should
generally be paved, but because of economic constraints, paved shoulders may not always be
practical. As a minimum, 0.6 m [2 ft] of the shoulder width should be paved to provide for
pavement support, wide vehicles, collision avoidance, and additional pavement width for
bicyclists. The shoulder should be constructed to a uniform width for relatively long stretches of
roadway. For additional information concerning shoulders, refer to Chapter 4.

Metric US Customary

Minimum width of traveled way (m)a

for specified design volume (veh/day)
Minimum width of traveled way (ft)a

for specified design volume (veh/day)Design
speed
(km/h)

under
400

400 to
1500

1500 to
2000

over
2000

Design
speed
(mph)

under
400

400 to
1500

1500 to
2000

over
2000

60 6.6 6.6 6.6 7.2 40 22 22 22 24
70 6.6 6.6 6.6 7.2 45 22 22 22 24
80 6.6 6.6 7.2 7.2 50 22 22 24 24
90 6.6 6.6 7.2 7.2 55 22 22 24 24

100 7.2 7.2 7.2 7.2 60 24 24 24 24
110 7.2 7.2 7.2 7.2 65 24 24 24 24
120 7.2 7.2 7.2 7.2 70 24 24 24 24
130 7.2 7.2 7.2 7.2 75 24 24 24 24

Width of usable shoulder (m)b Width of usable shoulder (ft)bAll
speeds 1.2 1.8 1.8 2.4

All
speeds 4 6 6 8

a On roadways to be reconstructed, an existing 6.6-m [22-ft] traveled way may be retained
where alignment and safety records are satisfactory.

b Usable shoulders on arterials should be paved; however, where volumes are low or a narrow
section is needed to reduce construction impacts, the paved shoulder may be reduced to
0.6 m [2 ft].

Exhibit 7-3.  Minimum Width of Traveled Way and Usable Shoulder for Rural Arterials

Horizontal Clearance to Obstructions

A clear unobstructed roadside is highly desirable. Where fixed objects or nontraversable
slopes fall within the clear roadside zones discussed in the section on “Horizontal Clearance to
Obstructions” in Chapter 4, refer to AASHTO Roadside Design Guide (3) for guidance in
selecting the appropriate treatment. Utilities and trees that will grow to 100 mm [4 in] or more in
diameter should be located near the right-of-way line and should be outside the selected clear
zone.
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Cross Section and Right-of-Way

The type of surfacing and shoulder treatment should fit the volume and composition of
traffic. Two-lane rural arterials are normally crowned to drain away from the centerline except
where superelevation is provided. The treatment of cross slopes, drainage channels, and
sideslopes is discussed in Chapter 4. The right-of-way should be wide enough to accommodate all
of the cross-sectional elements throughout the project. This usually precludes a uniform right-of-
way width since there are typically many situations where additional width is very desirable.
Such situations occur where the sideslopes extend beyond the normal right-of-way, for clear areas
at the bottom of traversable slopes, for wide clear areas on the outside of curves, where greater
sight distance is desirable, at intersections and junctions with highways, at railroad-highway
grade crossings, for environmental considerations, and for maintenance access.

Local conditions such as drainage and snow storage should be considered in determining
right-of-way widths. Where additional lanes may be needed in the future, the initial right-of-way
width should be adequate to provide the wider roadway section. It may be desirable to construct
the initial two lanes off center within the right-of-way, so the future construction will cause less
interference with traffic and the investment in initial grading and surfacing can be salvaged.

Provision for Passing

In designing two-lane, two-way arterials, the alignment and profile should provide sections
for safe passing at frequent intervals. Design of the horizontal and vertical alignment should
provide as great a proportion of the highway length as practical with adequate passing sight
distance. Exhibit 7-1 presents the minimum passing sight distances for design speeds greater than
50 km/h [30 mph]. Restrictive cases may exist where passing sight distance is economically
difficult to justify. Even in those instances, passing sections should be provided with at least the
frequency to attain the desired level of service. Where achievement of sufficient passing sight
distance is not practical, auxiliary lanes such as truck climbing lanes or passing lanes should be
considered as a means to obtain the desired level of service.

Although truck climbing lanes are normally provided to prevent unreasonable reductions in
operating speeds on upgrades, they also provide opportunities for passing in areas that normally
would not permit passing. Adequately designed and well-marked climbing lanes will usually be
used by slow-moving vehicles and allow passing by drivers who prefer to move at normal speeds.
Climbing lanes are usually provided to the right of the normal traffic lane and should be the same
width as the through lanes with a somewhat reduced shoulder width. A usable shoulder width of
1.2 m [4 ft] or greater is acceptable. The design elements and warrants for the use of climbing
lanes are discussed in Chapter 3. An example of a climbing lane on a two-lane rural arterial is
shown in Exhibit 7-4.

Passing lanes should be considered where climbing lanes are not warranted and where the
extent and frequency of passing sections are too few. The use of passing lanes to increase passing
opportunities on two-lane highways is addressed in Chapter 3.
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Exhibit 7-4.  Climbing Lane on Two-Lane Rural Arterial

In conclusion, a summary of the design procedures to be followed in providing passing
sections on two-lane highways includes:

1. Design of the horizontal and vertical alignment should provide as great a proportion of
the highway length as practical with adequate passing sight distance.

2. For design volumes approaching capacity, the effect of passing sections on increasing
capacity should be considered.

3. For further information for climbing lane warrants, refer to Chapter 3.

4. Where the extent and frequency of passing opportunities made available by application
of items 1 and 3 are insufficient, consideration should be given to the construction of
passing lanes utilizing a three-lane cross section.

Ultimate Development of Four-Lane Divided Arterials

Although many two-lane arterials will adequately serve the traffic demands in the future,
there are numerous instances, particularly near urban areas, where two-lane arterials will require
ultimate development to a higher type arterial to handle the expected traffic.

Where it is anticipated that the DHV for the design year will be in excess of the service
volume of the two-lane arterial for its desired level of service, the initial improvement should be
patterned to the ultimate development of a four-lane divided arterial and provision made for
acquisition of the needed right-of-way. Refer to the HCM (2) for traffic operational analysis
procedures to determine whether a two-lane arterial can provide the desired level of service or
whether a four-lane arterial should be considered. The eventual need for additional lanes should
be considered during the design of a two-lane arterial. Even where right-of-way is restricted,
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some form of separator should be used in the ultimate facility, with a median at least 1.2 m [4 ft]
wide and preferably much wider. (Four-lane undivided arterials are discussed in a subsequent
section of this chapter).

In the ultimate development of a four-lane divided arterial, the initial two-lane roadway
should be constructed so that it can eventually form one of the two-lane, one-way roadways. The
advantages of this approach over building the initial two lanes in the center of the right-of-way
are as follows:

1. There is no loss of investment in existing surfacing and in highway and railroad
overcrossings when the second roadway is constructed.

2. This approach allows grading of the entire roadway and/or the construction of
undercrossings and overcrossings to accommodate the ultimate improvement when a
decision to do so is warranted. The economics of such a decision needs to be carefully
considered, as do the benefits associated with minimization of future impacts.

If the entire roadway is graded initially, traffic will be subjected to little restriction or
delay when the additional two-lane surfacing is constructed. The two-lane surfacing
originally constructed continues in use as a two-way highway, no detours are needed,
and contact with construction operations is restricted to intersections and turnouts on
one side.

If the decision is to construct undercrossings and overcrossings, similar benefits also
occur.

3. It is often desirable to initially acquire sufficient right-of-way for the ultimate
development, including that required for future intersection improvements and grade
separations. The economics of such a decision are important to consider, but the
preservation of the right-of-way for the ultimate improvement is typically the
compelling factor. Increase in land value, particularly after the construction or
improvement of the arterial may more than offset the investment in additional right-of-
way.

4. Later adjustment of minor road structures and plant growth are reduced to a minimum.
When the entire grade for the ultimate four-lane divided arterial is constructed initially,
all structures such as drains and culverts usually are completed and remain undisturbed
when the final two lanes are added. If grading for only one of the two-lane roadways is
economically advisable, road structures may be completed on one side, and temporary
headwalls and open drains may be provided on the side where additional lanes will be
placed later.

5. By grading the entire roadway for four lanes, future impacts to wetlands created by
roadside ditches and recharge basins are avoided.

Care should be exercised, however, to ensure that an appropriate clear zone is provided in
the initial stage. A similar procedure may be adopted for topsoiling, seeding, planting, and any
other work that is done to prevent soil erosion, the value of which increases with time.
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Two-lane arterials planned for ultimate conversion to a divided arterial usually have
sufficient volume initially to warrant a traveled way of 7.2 m [24 ft] wide and usable shoulders,
2.4 m [8 ft] wide, as shown in Exhibit 7-5A. These traveled way and shoulder dimensions are
commensurate with those recommended for four-lane divided arterials, as discussed later in this
chapter. Where an arterial will ultimately be developed to a four-lane divided arterial with a wide
median and the initial roadway is offset to one side of the right-of-way centerline, the roadway
generally is crowned to drain both ways. Ultimately, the wide median is depressed to be self-
draining and may receive surface runoff from one-half of each roadway (Exhibit 7-5B). Grading
for the future development generally is deferred when the median is wide.

Where the right-of-way for the future four-lane arterial is restricted, a narrow median, which
should be not less than 1.2 m [4 ft] wide, may need to be used. If provision of a median barrier is
anticipated for the ultimate improvement, space for a wider median should be provided to
accommodate the width of the barrier plus the appropriate clearance between the edge of the
traveled way and the face of the barrier. As in the case of a wide median, the initial two-lane
construction should be offset so that the ultimate development is centered on the right-of-way. To
economize on the cost of drainage structures and to simplify construction, the initial and future
two-lane roadways may be positioned to drain to the outside (Exhibit 7-5C). Future grading may
or may not be deferred, depending on local conditions and on the probable length of time to the
full development.

On most two-lane arterials constructed many years ago, no provision was made for future
improvement to a higher roadway type. In such instances, where practical, a new two-lane, one-
way roadway should be provided approximately parallel to the first, which is then converted to
one-way operation to form a divided arterial. Where there is adjacent development, it may be
more practical to construct another one-way, two-lane roadway nearby without disturbing the
existing development. This method also may be advantageous where topography is not favorable
to direct widening of the existing roadway section. If this construction cannot be accomplished, it
may be practical to obtain a divided section by widening 4.2 m [14 ft] on each side of the existing
roadway  (Exhibit 7-5D). When none of these methods is practical, it may be necessary to find a
new location. The old road then becomes a local facility and may also serve as an alternate route.
From the standpoint of adequacy and service provided to through traffic, the last method is
preferred because the arterial on a new location will not be influenced by the old facility and can
be built to modern design criteria, preferably with some control of access.

For roadways that will ultimately be developed with narrow medians (Exhibits 7-5C and
7-5D), all of the cross sections shown have minimum combined widths of roadways and median
of 20 m [70 ft]. About 3.6 m [12 ft] or more of additional width should be obtained so that
median lanes for left turns may be provided at intersections.
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Exhibit 7-5.  Two-Lane Arterial Cross Section With Ultimate Development
to a Four-Lane Arterial

Multilane Undivided Arterials

A multilane undivided arterial is the narrowest arterial on which each traffic lane is intended
to be used by traffic in one direction of travel, and all passing is accomplished on lanes not
subject to use by opposing traffic. The ability to pass without traveling in the lane of opposing
traffic results in a freer and smoother operation and a large increase in arterial capacity over that
of two-lane arterials. Because of the generally higher volumes, drivers on multilane arterials are
confronted with additional traffic friction—from opposing traffic, roadsides, and traffic in the
same direction. The crash rate on multilane undivided arterials is often higher than on two-lane
arterials because multilane arterials generally carry heavier traffic volumes, have a higher
frequency of intersections and other access points, and have greater development of adjacent
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land. Frequency of at-grade crossings has appreciable bearing on crash experience and capacity.
Turn lanes and adequate intersection sight distance greatly improve the safety of intersection
operations.

The elements of design discussed in preceding chapters are applicable generally to multilane
undivided arterials, except that passing sight distance is not essential. The sight distance that
should be provided at all points is the stopping sight distance because passing can be
accomplished without the necessity of using an opposing traffic lane. In addition, intersection
sight distance, as described in Chapter 9, should be provided at intersections.

Undivided arterials with four or more lanes are most applicable in urban and suburban areas
where there is concentrated development of adjacent land. If traffic volumes justify the
construction of multilane arterials in rural areas where speeds are apt to be high, it is generally
considered that opposing traffic should be separated by a median. All arterials on new locations
that need four or more lanes should be designed with a median. Preferably a median should be
provided for improved safety in the improvement of an existing two-lane arterial to a multilane
facility.

Divided Arterials

General Features

A divided arterial is one with separated lanes for traffic in opposite directions. It may be
situated on a single roadbed or may consist of two widely separated roadways. The width of the
median may vary and is governed largely by the type of area, character of terrain, intersection
treatment, and economics. An arterial is not normally considered to be divided unless two full
lanes are provided in each direction of travel and the median has a width of 1.2 m [4 ft] or more
and is constructed or marked in a manner to preclude its use by moving vehicles except in
emergencies or for left turns. A four-lane rural facility should have adequate median width to
provide for protected left turns, which is a very important safety consideration. For example,
vehicles making left turns should not be required to stop in the passing lane of a roadway
designed for high volumes and speeds.

The principal advantages of dividing multilane arterials are increased safety, comfort, and
ease of operation. A key reason for providing a median is the reduction in head-on collisions,
which are usually serious, and the virtual elimination of such crashes on sections with wide
medians or with a median barrier. Where median lanes for left turns are provided, rear-end
collisions and other inconveniences to through traffic resulting from left-turn movements are
greatly reduced. Pedestrians crossing the divided arterial are required to watch traffic in only one
direction at a time and are provided a refuge at the median, particularly if a raised island is
provided. Where the median is wide enough, crossing and left-turning vehicles can slow down or
stop between the one-way roadways to take advantage of breaks in traffic and cross when it is
safe to do so. Research has shown that four-lane undivided facilities have significantly more
collisions than four-lane facilities with medians. Therefore, four-lane undivided facilities should
be proposed only as a last resort when a median or turn lanes cannot be provided. Divided
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multilane arterials provide for more relaxed and pleasant operation, particularly in inclement
weather and at night when headlight glare is bothersome. Headlight glare is reduced somewhat by
narrow medians but can almost be eliminated by wide medians or glare screens on a median
barrier.

Lane Widths

Roadways on divided arterials should be designed with lanes 3.6 m [12 ft] wide. The high
speeds and large volumes associated with divided arterials will justify the construction of 3.6-m
[12-ft] lanes. On reconstructed arterials, it may be acceptable to retain 3.3-m [11-ft] lanes if the
alignment and safety record are satisfactory.

Cross Slope

Each roadway of a divided arterial may be sloped to drain to both edges, or each roadway
may be sloped to drain to its outer edge, depending on climatic conditions and the width of
median. Roadways on divided arterials should have a normal cross slope of 1.5 to 2 percent.
Traveled ways with unidirectional slope may have the outer lane on a steeper slope than the inner
lane. On an auxiliary lane, the cross slope should not normally exceed 3 percent on tangent
alignment. In no case should the cross slope of an outer and/or auxiliary lane be less than the
adjacent lane.

Shoulders

Arterials with sufficient traffic volume to justify the construction of four lanes also justify
the provision of full-width shoulders. The width of usable outside shoulders should be at least
2.4 m [8 ft] and be usable during all seasons. Paving of the usable width of shoulder is preferred.

The normal roadway section, including usable shoulders, should be extended across all
structures except for long bridges (over 60 m [200 ft] in length, which may have 1.2-m [4-ft]
shoulders).

Shoulder space on the left side of the individual roadways of a four-lane divided arterial
(i.e., within the median) is not intended to serve the same purpose as the right shoulder. The
shoulder on the right, through customary use on undivided arterials, is accepted by all drivers as a
suitable refuge space for stops. Where the median is flush with the roadway or has sloping curbs,
vehicles may encroach or drive on it momentarily when forced to do so to avoid a crash. Only on
rare occasions should drivers need to use the median for deliberate stops.

On divided arterials with two lanes in each direction, a paved shoulder strip 1.2 m [4 ft] wide
should satisfy the needs for a shoulder within the median. Such a shoulder strip will preclude
rutting at the edge-of-traveled way and will alleviate possible loss of driver control of vehicles
that inadvertently encroach on the median.
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On divided arterials with three or more lanes in each direction, a driver in distress in the lane
nearest the median may have difficulty maneuvering to the right-hand shoulder. Consequently, a
full-width shoulder within the median is desirable on divided arterials having six or more lanes.

Guardrail and median barrier should be considered in accordance with the AASHTO
Roadside Design Guide (3).

Median Barrier Clearance

In cases where a wall or median barrier is used in the median, the AASHTO Roadside
Design Guide (3) should be consulted for guidance in selecting an appropriate lateral clearance
from the normal edge of the traveled way to the base of the wall or barrier and the type of barrier
to be used.

Medians

On highways without at-grade intersections, the median may be as narrow as 1.2 to 1.8 m
[4 to 6 ft] under very restricted conditions, but wider medians should be provided, wherever
practical. A wide median allows the use of independent profiles. In addition, reduced frequency
of cross-median crashes and reduction of headlight glare are safety features associated with a
wide median.

Where intersections are to be provided, special concern should be given to median width.
NCHRP Report 375 (4) has found that most types of undesirable driving behavior in the median
areas of divided highway intersections are associated with competition for space by vehicles
traveling through the median in the same direction. The potential for such problems is limited
where crossroad and U-turn volumes are low, but may increase at higher volumes. Types of
undesirable driving behavior observed include side-by-side queuing, angle stopping, and
encroaching on the through lanes of a divided highway. At rural unsignalized intersections, the
frequency of undesirable driving behavior and crashes was observed to decrease as the median
width increased; this implies that medians should be as wide as practical. It was also found that
the frequency of undesirable driving behavior increased as the median opening length increased.

While medians as narrow as 1.2 to 1.8 m [4 to 6 ft] may be used under very restricted
conditions, medians 3.6 to 9 m [12 to 30 ft] wide provide protection for left-turning vehicles at
intersections. Medians of 1.2 to 2.4 m [4 to 8 ft] wide should be avoided, if practical, where left
turns are common. Such widths do not provide sufficient space for turning vehicles and may
encourage other motorists to encroach into the adjacent lane when attempting to pass a turning
vehicle that is only partially in the median.

In many cases, the median width at rural unsignalized intersections is a function of the
design vehicle selected for turning and crossing maneuvers. Where a median width of 7.5 m
[25 ft] or more is provided, a passenger car making a turning or crossing maneuver will have
space to stop safely in the median area. Medians less than 7.5 m [25 ft] wide should be avoided at
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rural intersections because drivers may be tempted to stop in the median with part of their
vehicles unprotected from through traffic. The school bus is often the largest vehicle to use the
median roadway frequently. The selection of a school bus as the design vehicle results in a
median width of 15 m [50 ft]. Larger design vehicles, including trucks, may be used at
intersections where enough turning or crossing trucks are present; median widths of 25 m [80 ft]
or more may be needed to accommodate large tractor-trailer trucks without encroaching on the
through lanes of a major road.

There was concern that median widths in the range of 15 to 25 m [50 to 80 ft] at divided
highway intersections could cause some drivers to become confused. No evidence of such
confusion at rural intersections has been found (4). However, an intersection with a wider median
may become confusing to some drivers if the median is so wide that a driver on the crossroad
approach cannot see the far roadway of the divided highway. Such designs should be avoided
and, where they are used, signing should be provided to discourage wrong-way movements.

Median widths of more than 18 m [60 ft] are undesirable at intersections that are signalized
or may need signalization in the foreseeable future. The efficiency of signal operations decreases
as the median width increases, because drivers need more time to traverse the median and special
detectors may be needed to avoid trapping drivers in the median at the end of the green phase for
traffic movements that pass through the median. Furthermore, if the median is so wide that
separate signals are needed on the two roadways of the divided highway, delays to motorists will
increase substantially and careful attention should be given to vehicle storage needs on the
median roadway between the two signals.

The subsequent section in this chapter concerning median widths at intersections on urban
arterials indicates that wider medians may increase crashes and lead to undesirable driving
behavior. Therefore, consideration should be given to limiting use of wider medians at rural
intersections that are likely to undergo urban or suburban development in the foreseeable future.

Undesirable driving behavior at rural unsignalized intersections increases as the median
opening length increases (4). The median opening length should be equal to a least that described
in Chapter 9, but median openings at rural unsignalized intersections should not be unnecessarily
long.

Medians should be designed to provide a forgiving roadside and guardrail or median barrier
should be considered in accordance with the AASHTO Roadside Design Guide (3). Further
information on median design is presented in Chapter 4.

Alignment and Profile

A divided arterial generally serves high-volume and high-speed traffic for which a smooth
flowing alignment should be provided. Because a divided arterial consists of two separated
roadways, there may be instances where median widths and roadway elevations can be varied.
Special topographic or intersection considerations may necessitate such treatments for economic
or operational reasons. Precaution should be taken that such variations do not adversely affect
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operations. Potential problems associated with sharp reverse curves, headlight glare, roadside
design, and grades of intersection crossings should be considered.

Profile design is less difficult for multilane highways than for two-lane highways. With two
or more lanes for travel in each direction, the profile grade is generally governed by stopping
sight distance, except at intersections. For volumes well below capacity, grades may be steeper
and longer on multilane highways than on two-lane arterials, because there is a continuous lane
for passing of heavy, slow vehicles on upgrades.

Although vertical design controls may be less restrictive for divided arterials than for two-
lane arterials because passing sight distance need not be considered, the design of appropriate
profiles for divided arterials involves design judgment and careful study. Even though a profile
may satisfy all of the design controls, the finished product can appear forced and angular. A
smooth-flowing roadway with gradual changes in horizontal and vertical alignment should be
designed to the extent practical. Such design is of primary importance where a median of constant
width is used in rolling terrain. The lack of a need to provide passing sight distance may tempt
designers to use a roller coaster profile, which appears more displeasing on a divided arterial than
on a two-lane arterial. With a wide divided arterial of uniform cross section, the driver’s
longitudinal perspective of distance is compressed and can make the combination of horizontal
and vertical alignment appear abrupt and disjointed. The relation of horizontal and vertical
alignment should be studied to obtain a suitable combination. To avoid an undesirable
appearance, profile designs should be checked in long continuous plots, wherein the
foreshortened aspect can be simulated. The section on “Combinations of Horizontal and Vertical
Alignment” in Chapter 3 provides additional guidance on this topic.

Climbing Lanes on Multilane Arterials

Multilane rural roads usually have sufficient capacity to handle their traffic load, including
the normal percentage of heavy trucks, without becoming severely congested. Climbing lanes
generally are not as easily justified on multilane arterials as on two-lane arterials, because on two-
lane arterials vehicles following slow-moving trucks on upgrades may be unable or
psychologically discouraged from using an adjacent traffic lane for passing. By contrast, on
multilane arterials, drivers have an adjacent lane available to them in which to pass slow-moving
vehicles.

Furthermore, a climbing lane on a two-lane, two-way road is useful during both peak and
non-peak hours, whereas on a multilane arterial, a climbing lane is likely to have only limited use
during non-peak hours. During periods of lower traffic volumes, a vehicle following a slow-
moving truck in the right lane can readily move to the adjacent lane and proceed without
difficulty, although there is evidence that slow vehicles on through-traffic lanes may cause
crashes.

Because new or reconstructed arterials are designed for 20 years or more in the future, there
is little likelihood of climbing lanes being justified on multilane arterials for several years after
their initial construction, even though they are deemed desirable for the peak hours of the design
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year. Thus, there may be an economic advantage in designing for, but deferring construction of,
climbing lanes on multilane arterials. In this situation, grading for the future climbing lane should
be provided initially. Very little additional grading is needed because a full shoulder is likely to
be provided where there is no climbing lane; however, only a narrow shoulder is typically used
outside of a climbing lane, because the climbing lane itself can serve as an emergency stopping
area when needed. A full discussion on the need for climbing lanes is found in Chapter 3.

Superelevated Cross Sections

A divided arterial on a curve should be superelevated to ensure safe traffic operation,
pleasing appearance, and economy. Care should be taken in the superelevation transition to fit site
conditions and to meet controls of intersection design.

General methods of attaining superelevated cross sections for divided arterials are discussed
in Chapter 3. In the design of arterials, the inclusion of a median in the cross section alters the
manner in which superelevation is attained. Depending on the width of median and its cross
section, there are three general cases for attaining superelevation.

Case I—The whole of the traveled way, including the median, is superelevated as a plane
section. Case I should necessarily be limited to narrow medians and moderate superelevation
rates to avoid substantial differences in elevation of the extreme edges of the traveled way arising
from the median tilt. Specifically, Case I should be applied only to median with widths of 4.5 m
[15 ft] or less.

Case II—The median is held in a horizontal plane and the two traveled ways are rotated
separately around their median edges. Case II can apply to any width of median but is most
appropriate for medians with widths between 4 and 18 m [15 and 60 ft]. By holding the median
edges level, the difference in elevation between the extreme traveled way edges can be limited to
that needed to superelevate the roadway. Superelevation transition design for Case II usually has
the median-edge profiles as the control. One traveled way is rotated about its lower edge and the
other about its higher edge.

Case III—The two traveled ways are treated separately for superelevation with a resulting
variable difference in elevation at the median edges. Case III design can be used on wide medians
(i.e., those with widths of 18 m [60 ft] or more). For this case, the difference in elevation of the
extreme edges of the traveled way is minimized by a compensating slope across the median. With
a wide median, it is possible to design the profiles and superelevation transition separately for the
two roadways.

Chapter 3 and, specifically, Exhibit 3-37, contains additional guidance concerning methods
for attaining superelevation for Cases I, II, and III.

Exhibit 7-6 demonstrates treatment of cross sections for narrow and wide medians with
superelevated roadway in relation to the width of median for the three cases noted. In Cross
Sections A and D both roadways lie in the same plane. The roadways are superelevated by
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rotating them about a profile control on the centerline of the median. The same effect can be
obtained by rotation about the edge of the traveled way or any other convenient control line.

Where Cross Section A of Exhibit 7-6 is used, the median should be graded in accordance
with the AASHTO Roadside Design Guide (3) and designed so that surface water from the higher
roadway does not drain across the lower roadway. On tangent alignment, a shallow drainage
swale can be provided in a median about 4.5 m [15 ft] wide and a well-rounded drainage channel
with a width of about 18 m [60 ft] as shown in Exhibit 7-7F. On a superelevated section rotated
about the median centerline, as in Cross Section A of Exhibit 7-6, approximately 9 m [30 ft] of
median width is needed for a rounded drainage channel and adequate left shoulders. In a median
less than 9 m [30 ft] wide, a channel with flat sideslopes can be provided if the superelevation
rate is small, or a paved channel can be used in conjunction with higher rates of superelevation.

The projection of superelevation across wide medians may be fitting in some instances as in
Cross Section A of Exhibit 7-6, but its general use in conjunction with large rates of
superelevation is not satisfactory in appearance and generally not economical. It may fit at
highway intersections where the profile of the intersecting road approximates the superelevated
slope. Occasionally, it may fit the natural slope of the terrain. However, unless these conditions
prevail, the large difference in elevation between the outer shoulder edges is likely to be
objectionable. For example, the difference in elevation between the outer shoulder edges of a
four-lane divided arterial with a median of 12 m [40 ft] and a superelevation rate of 8 percent is
about 2.4 m [8 ft].

In level terrain and in terrain where the natural slope of the land is adverse to the cross-
sectional slope, substantial improvement in appearance and economy in earthwork results if the
wide median is made level as in Cross Section B of Exhibit 7-6, or sloped opposite to the
superelevation plane as in Cross Section C.

Superelevation runoff lengths may vary for each of the three cases (refer to Exhibit 3-29).
For Case I designs, the length of runoff should be based on the total rotated width (including the
median width). Runoff lengths for Case II designs should be the same as those for undivided
highways with a similar number of lanes. Finally, runoff lengths for Case III designs are based on
the needs of the separate one-way roadways, as defined by their superelevation rates and rotated
widths.

In Cross Sections B and E of Exhibit 7-6 the edges of roadways on the median sides are at
the same elevation. Designs on this basis are pleasing in appearance and generally are desirable
for safe operation. With a wide separation between the one-way roadways, Cross Section B has
considerable advantage over Cross Section A in the reduction in difference in elevation across the
entire roadbed. On roadways having a superelevation rate near 10 percent, the treatment in Cross-
Section B requires a minimum median width of about 9 m [30 ft] to provide fully effective
shoulder areas and a well-rounded traversable swale.
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Exhibit 7-6.  Methods of Attaining Superelevation on Divided Arterials

In Cross Sections C and F of Exhibit 7-6, the two one-way roadways have a common
centerline grade. The difference in elevation of the outer extremities of the superelevated
roadways is minimal, being the product of the superelevation rate and the width of one of the one-
way roadways. The method of attaining superelevation runoff is directly applicable to each one-
way roadway.

With a wide median, the treatment of Cross-Section C of Exhibit 7-6 allows the desired
appearance to be maintained and permits economy in the wide-graded cross section. The roadway
as a whole will appear fairly level to the motorist, who will not readily perceive the difference in
elevation of the inside edges of roadway. This cross section generally is not suitable for important
at-grade intersections unless the median is very wide. The median should be sufficiently wide in
relation to superelevation to afford a smooth S-shaped profile across its width. The width for this
shape is somewhat more than that needed for the previous sections. About 12 m [40 ft] is needed,
with a superelevation rate of 10 percent and adequate shoulder areas. This width can be reduced
to about 9 m [30 ft] when a paved channel is provided.

On a divided arterial with variable width of median and difference in elevation between the
two roadways, each roadway is designed with a separate profile. With a reasonably wide median,
each roadway can be superelevated in any manner suitable for a single roadway with little effect
on the median slope. With a narrow median, an appreciable difference in elevation might require
a retaining wall in the median. The manner of superelevating the roadways has some effect on the
height of wall, but this amount is minimal and should have little bearing on design. Exhibit 7-7



AASHTO—Geometric Design of Highways and Streets

466

shows various median configurations that may be used on rural arterials, excepting
Configurations C, D and E, which are more appropriate for urban situations as described later in
this Chapter. Refer to the AASHTO Roadside Design Guide (3) for guidance on designing a
forgiving roadside.

Exhibit 7-7.  Typical Medians on Divided Arterials

Cross Section and Right-of-Way Widths

Cross-sectional elements of divided arterials—the widths and details of traveled ways,
shoulders, medians, sideslopes, clear zones and drainage channels—have been discussed
separately in this and other chapters. The appropriate right-of-way widths, including all elements
in a composite arterial cross section, are presented in Exhibit 7-8. In an ideal situation, the
topography, other physical constraints, and economic feasibility permit the design of a well-
balanced cross section of desirable dimensions, for which an adequate width of right-of-way is
established and procured. On the other hand, the constraints may be so tight that if a divided
arterial is to be provided at all, it should be designed within a limited width of right-of-way, using
minimum or near-minimum dimensions for each element of the arterial cross section. In the first
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instance, the right-of-way is based on the most favorable design criteria for the cross-sectional
elements; in the latter case the cross section is determined on the basis of the available width of
right-of-way.

The widths of cross-sectional elements should be proportioned to provide a well-balanced
arterial section. Recommended traveled way and shoulder widths are shown in Exhibit 7-3. The
border width is affected directly by the depth of cut or fill. If the right-of-way is restricted, the
border area or median width, rather than the lane or shoulder width, should be reduced.  The
extent to which the border area and/or median width is reduced respectively should be decided
carefully. Provision of a median width greater than that which eliminates the need for a median
barrier is generally not warranted if doing so would subsequently require provision of substantial
amounts of roadside guardrail that would otherwise not be needed, or if adjacent roadside
development is present or anticipated. Consideration should be given to achieving approximately
the same clear zone width for both the median and roadside.

Exhibit 7-8C shows a desirable divided arterial cross section warranted for a high-type
facility where liberal width of right-of-way is attainable. Where these wider widths cannot be
obtained, attempts should be made to provide a right-of-way width that permits the use of a
median 9 m [30 ft] or more and sufficient borders to provide for the needed clear zone. For
additional information on clear zones, refer to the AASHTO Roadside Design Guide (3).

Sometimes the right-of-way may be so restricted that minimum or near-minimum widths of
cross-sectional elements must be used. If at all practical, the right-of-way should be wide enough
to permit the use of median and borders of not less than 4.5 m [15 ft] (see Exhibit 7-8A). A 4.5-m
[15-ft] median is near the minimum median width within which a median lane can be provided at
intersections. Exhibit 7-7 shows some sections with curbs, which are generally not recommended
along rural roadways.  Sloping curbs may be used in restricted areas where needed to control
drainage, or where special treatment is needed at locations such as intersections.

The cross sections and right-of-way widths shown in Exhibit 7-8 pertain to four-lane
facilities. Where provision is to be made for ultimate conversion to a six- or eight-lane facility,
the right-of-way widths should be increased by the width of lanes to be added. It is preferable to
include this additional width in the median.

The cross-sectional arrangements shown in Exhibit 7-8 indicate generally balanced sections
for what are termed “desirable,” “minimum,” and “restricted” rights-of-way. Some variation in
these arrangements may be appropriate in individual cases. The right-of-way width need not be
uniform and may be varied along the course of the arterial as needed for grading, for safe
roadside design, and other conditions. Where controls become rigid, the two roadways may have
to be brought closer together. Where physical conditions are favorable and land is readily
available, the roadways of a divided highway may be spread farther apart. Where future grade
separations and ramps are envisioned, provision for the initial acquisition of additional rights-of-
way should be considered.
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Exhibit 7-8.  Cross Sectional Arrangements on Divided Arterials

The cross sections depicted in Exhibit 7-8 represent normally divided facilities in rural areas.
Sometimes in rural areas, and particularly in and near urban districts, it is appropriate to separate
through traffic from local traffic. Where such is the case, frontage roads may be provided along
the outer limits of the highway cross section (Exhibit 7-9). Frontage roads serve to collect and
distribute local traffic to and from adjacent development and provide parking and service thereto
removed from the main traveled way, thus freeing through traffic from the disturbance introduced
by local operation. The component parts of a typical cross section with frontage roads in
generally flat terrain are shown in Exhibit 7-9A. The frontage roads are shown within the right-
of-way limits, which is the typical arrangement. Frontage roads sometimes are provided outside
the right-of-way limits, in which case the right-of-way can be narrower than shown. Where the
profile of the through traveled way passes over or cuts through the natural ground, frontage roads
are generally held at the level of the existing development, and the difference in elevation
between the main traveled ways and the frontage roads is affected within the outer separations by
earth slopes or retaining walls.
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Exhibit 7-9.  Cross Sectional Arrangements on Divided Arterials

Some crossroads in divided arterials may be grade separated from the through traveled way
with local service provided by frontage or other roads. If all crossroads were grade separated in
this manner, the facility would be a freeway. However, grade separation on divided arterials may
be appropriate at some crossroads but not at others. A typical cross section at a separated
crossroad with a depressed arterial is depicted in Exhibit 7-9B. Where frontage roads are
provided, the outer separations should be wider on arterials with two-way frontage roads and on
arterials with grade separations than on arterials crossing at grade to allow for roadside slopes and
ramps. Further discussion on interchanges is presented in Chapter 10.

Sections With Widely Separated Roadways

Occasionally, it is practical to widely separate the one-way roadways of a divided arterial.
This design may be appropriate where an existing two-lane arterial proves inadequate and is
improved to a four-lane section but for which direct widening is not practical because of
topography or adjacent development. In such a case, the old roadway is not disturbed but is
converted to one-way operation and another, completely separate, one-way roadway is
constructed. This action sometimes results in acquisition of two separate rights-of-way to contain
the individual roadways of the divided arterial.

Widely separated one-way roadways may be particularly appropriate for certain topographic
conditions. In valleys where drainage makes the location difficult, individual roadways may be
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situated on each side of the valley. Drainage of roadways is then simplified, with both sides
draining directly to the natural channel. Along ridges or where there is a continual change in
ground cross slopes, the separate roadways may be better fitted to the terrain than an arterial on a
single roadbed. Such arrangements simplify location problems because only one roadway is
considered at a time. With reduced roadway prisms, construction scars are kept to a minimum and
more of the natural growth is retained, particularly between the separate roadways. In areas where
right-of-way is not restricted, designs involving widely separated roadways often result in lower
construction costs.

Intersections between a crossroad and a one-way roadway are greatly simplified in design
and operation. Crash potential is generally reduced and the capacity of intersections is increased.
Moreover, operation on widely separated roadways provides the maximum in driver comfort.
Strain is lessened by largely eliminating the view and influence of opposing traffic. Substantial
reduction or elimination of headlight glare at night is especially helpful in easing driver tension.

Operational problems of intersections on roadways with very wide medians should be
considered. Desirably, a wide median is adequate to store the longest legal vehicles. To determine
the number of intersection lanes needed, all movements and their volumes should be considered.
The need for turn-arounds, connecting roadways, and frontage roads should be considered along
with the effect on adjacent property owners. Signing to prevent wrong-way operation should be
provided in accordance with the MUTCD (1), particularly when both roadways of the divided
highway are not visible to drivers stopped at the crossroad. Additional discussion on wide
medians is presented in the earlier section of this chapter on “Medians.”

If arterials of appreciable length have roadways separated so widely that each roadway
cannot be seen from the other, drivers may assume that they are on a two-way instead of a one-
way roadway and hesitate to pass slow-moving vehicles. This situation can be alleviated by an
occasional open view between the two roadways.

Intersections

The liberal use of high-type intersections and interchanges is highly desirable on arterials
that do not have full control of access. Adequate turning widths with acceleration and
deceleration tapers will provide a minimum design for minor intersections on a minor arterial.
Where practical, principal arterials that intersect should be served by interchanges, possibly of the
free-flow type. A comprehensive study of all intersections is needed for new and reconstruction
projects, and a suitable design, consistent with the desired level of service, should be selected.
Rural intersection control by traffic signals is not desirable. Drivers generally do not anticipate
signals in rural areas that have high operating speeds, especially when traffic volumes are
relatively low. Curbed islands present an obstacle to drivers and may become snow traps in
regions that receive frequent snowfalls. Therefore, curbs at intersections should be avoided in
high-speed areas.

If interchanges are intermixed with intersections, adequate merging distances should be
provided to allow ramp traffic to operate freely. The merging driver should not have to be
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concerned with cross traffic at a downstream intersection while making a merging maneuver.
Design of intersections and interchanges should be in accordance with Chapters 9 and 10,
respectively.

Access Management

Arterials are designed and built with the intention of providing better traffic service than is
available on local roads and streets. Although an arterial may not have more traffic lanes, its
ability to carry greater volumes is usually related to the amount of crossroad interference or side
friction to which it is subjected. One of the most important considerations in arterial development
is the amount of access control, full or partial, that can be acquired. The ability to control access
on an arterial will often relate directly to the project’s safety.

Controlling access is vital to maintaining operations and safety and to preserving the level of
service for which the arterial was initially designed. Access control is usually not too difficult to
obtain in a rural area where development is light. Adequate access can normally be provided
without great interference to traffic operations. However, rural areas do pose distinct access-
related problems. The movement of large, slow-moving farm machinery is not uncommon and
numerous field entrances are also requested by landowners. Because of these unique problems,
access points should be situated to minimize their detrimental effects to through traffic. If access
points are needed on opposite sides of the roadway, they should be situated directly opposite each
other to allow vehicles to cross the arterial in the shortest possible time. Where access is needed
for two adjacent properties or where different land uses adjoin one another, providing one
driveway to serve both properties will reduce the number of access locations needed. Adequate
and uniform spacing between access points will also help eliminate many conditions where a
large vehicle at an intersection hides another vehicle on a nearby approach. Consideration should
also be given to the location of access points in relationship to intersection sight distance
restrictions and other intersections. High-volume access points can lead to particular operational
problems if not properly situated. Short sections of rural frontage roads may be used to combine
access points and minimize their operational effect to the arterial.

The appropriate degree of access control or access management depends on the type and
importance of an arterial. Anticipation of future land use is a critical factor in determining the
degree of access control. Provision of access management is vital to the concept of an arterial
route if it is to provide the service life for which it is designed. For additional guidance on access
management techniques for arterials, refer to NCHRP Report 420, Impacts of
Access-Management Techniques (5).

Bikeways and Pedestrian Facilities

Rural arterials often provide the only direct connection between populated areas and
locations to which the public wishes to travel. Schools, parks, and rural housing developments are
usually located to be readily accessible by automobile. However, pedestrians and bicyclists may
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also wish to travel to the same destination points. Where demands for pedestrian and bicycle
travel exist, the designer should consider their effects on the safety and operation of the arterial.

Where pedestrian use of the travel lanes or paved shoulders is deemed undesirable,
pedestrians may be accommodated by sidewalks on one or both sides of the roadway. If off-
roadway bicycle facilities are desired, they should be designed as shared-use paths in accordance
with the AASHTO Guide for the Development of Bicycle Facilities (6).

Bus Turnouts

Where bus routes are located on a rural arterial, provision should be made for loading and
unloading of passengers. Because of its size, a bus cannot easily leave the roadway unless special
provisions are made. A well-marked, widened shoulder or an independent turnout is highly
desirable and should be provided, if practical. Although it may be impossible or impractical to
provide, for example, school bus turnouts for every dwelling, they should be provided at locations
where there are known concentrations of passengers. Adequate provisions for buses will provide
greater capacity and safety for a rural arterial. For additional guidance concerning bus turnouts,
refer to Chapter 4.

Railroad-Highway Crossings

Desirably, all railroad crossings on the rural arterial system should be grade separated.
However, practical considerations make it likely that many crossings will be at grade. Various
treatments can be applied at railroad-highway crossings to encourage safe operation including
adequate signing, signals, signals with gates, and grade separations. Judgment should be used in
the selection of appropriate design and traffic control treatments for railroad-highway crossings;
factors to be considered in such judgments include the volume and speed of traffic on both
roadways and railroads, the available sight distance, and the anticipated safety benefits of specific
treatments. Given the high traffic volumes and speeds on many arterials, the designer should
attempt to provide the most protection practical. For further guidance on traffic control systems
for railroad-highway grade crossings, refer to the MUTCD (1). For further information on design
criteria for railroad-highway grade crossings, see Chapter 9.

Rest Areas

The provision of rest areas on the rural arterial system is a desirable feature particularly on
principal arterials. Rest areas provide the high-speed, long-distance traveler with the opportunity
for short periods of relaxation, which relieves driver fatigue. These facilities serve as a desirable
safety feature, as evidenced by public recognition of the fatigue problem and their use of rest
areas.

The location of rest areas should be considered early in development of a rural multilane
arterial. Sites of special interest or visual quality provide additional reasons for the motorist to
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stop and usually extend the length of their stay. The spacing of rest areas depends on many
considerations. For example, construction and operating costs for rest areas are significant, but
benefits to drivers should also be considered. Additional information on rest areas may be found
in the AASHTO Guide for Development of Rest Areas on Major Arterials and Freeways (7).

URBAN ARTERIALS

General Characteristics

Urban arterials carry large traffic volumes within and through urban areas. Their design
varies from freeways with fully controlled access to two-lane streets. The type of arterial selected
is closely related to the level of service desired. The principal objective for an urban arterial
should be mobility with limited or restricted service to local development. If restriction of local
access is not practical, special designs that incorporate access management are desirable. Such
designs can vary from roadways that provide separate turn lanes to one-way streets.

Urban arterials are capable of providing some access to abutting property. Such access
service should, however, be only incidental to the arterial’s primary function of serving major
traffic movements.

Before designing an urban arterial, it is important to establish the extent and need for such a
facility. Once the need is established, steps should then be taken to protect the ability of the
arterial to serve traffic at the desired level of service from future changes, such as strip
development or the unplanned location of a major traffic generator. Development along an
arterial should be anticipated regardless of a city’s size. However, with proper planning and
design, such development need not seriously affect the arterials’ major function of safely serving
through travel. Rather, it can complement such development and continue to provide the desired
level of service.

Urban arterials are functionally divided into two classes, principal and minor. These classes
are discussed in detail in Chapter 1. The urban arterial system, which includes arterial streets and
freeways, serves the major activity centers of a metropolitan area, the highest traffic volume
corridors, and the longest trips. The portion of the arterial system, either planned or existing, on
which access is not fully controlled constitutes the arterial street system for the urban area. From
the standpoint of design characteristics, all such urban streets are treated as a single class and are
addressed in this chapter. Design of freeways is addressed in Chapter 8.
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General Design Considerations

In the development of a transportation improvement program, routes selected for
improvement as arterials may comprise portions of an existing street system, or they may be
projected locations on new alignments through relatively undeveloped areas. Usually, they will be
existing streets because, historically, the need for improving existing streets has surpassed the
availability of resources. As a consequence, street improvements tend to lag, rather than lead,
land-use development.

Major improvement of existing arterials can be extremely costly, particularly where
additional rights-of-way need to be acquired through highly developed areas. Accordingly, it is
often necessary to use design values that are less than desirable and below the design values that
are used where sufficient right-of-way is available or can be acquired economically. When
restricted conditions are encountered, consideration should be given to providing above-desirable
values for other design or traffic control elements that tend to offset those created by the
restriction (e.g., eliminating left-turn movements through an area having less-than-normal lane
widths).

Design Speed

Design speeds for urban arterials generally range from 50 to 100 km/h [30 to 60 mph].
Lower speeds apply in central business districts and in more developed areas, while higher speeds
are more applicable to outlying suburban and developing areas. Design speed should be selected
as described in Chapter 2.

Design Traffic Volume

The design of urban arterials should be based on traffic data developed for the design year,
normally 20 years from the date of construction completion. The DHV is the most reliable traffic
volume measure representing the traffic demand for use in design of urban arterials.  Sometimes,
capacity analysis, which is used to determine whether a particular design can provide a desired
level of service for those conditions represented by the design traffic volume, is also used as a
design tool. Refer to Chapter 2 for further information on design traffic volumes and capacity
analysis.

Levels of Service

For acceptable degrees of congestion, rural and suburban arterials and their auxiliary
facilities (i.e., turning lanes, weaving sections, intersections, interchanges, and traffic control
systems [traffic signals], etc.), should generally be designed for level-of-service C. In heavily
developed sections of metropolitan areas, the use of level-of-service D may be appropriate. When
level-of-service D is selected, it may be desirable to consider the use of one-way streets or
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alternative bypass routes to improve the level of service. For additional guidance on determining
the level of service for a specific facility, refer to the HCM (2).

Sight Distance

The provision of adequate sight distance is important in urban arterial design. Sight distance
affects normal operational characteristics, particularly where roadways carry high traffic volumes.
The sight distance values given in Exhibit 7-1 are also applicable to urban arterial design. Design
values for intersection sight distance are presented in Chapter 9.

Alignment

The alignment of an urban arterial should be developed in strict accordance with its design
speed, particularly where a principal arterial is to be constructed on a new location and is not
restricted by normal right-of-way constraints. There are many situations, however, where this is
not practical.  An example of this is the necessity to shift (deflect) the alignment of through lanes
to accommodate the inclusion of left turn lanes in an intersection area. Under such circumstances,
the intersection alignment should be consistent with the guidance in Chapter 9.  It is desirable to
use the best alignment design practical since curves on urban arterials are often not superelevated
in the low-speed range (see discussion in this chapter in the section below on “Superelevation”
for further explanation).

Grades

The grades selected for an urban arterial may have a significant effect on its operational
performance. For example, steep grades affect truck speeds and the overall capacity on the
facility. On arterials having large numbers of trucks and operating near capacity, flat grades
should be considered to avoid undesirable speed reductions. Steep grades may also result in
operational problems at intersections, particularly during adverse weather conditions. For these
reasons, it is desirable to provide the flattest grades practical while providing at least minimum
gradients to ensure adequate longitudinal drainage in curbed sections. The recommended
maximum grades for urban arterials are presented in Exhibit 7-10. Where steep grades cannot be
flattened, climbing lanes should be considered, based on the warrants presented in Chapter 3.

Superelevation

Curves on low-speed, curbed arterial streets are often not superelevated. Difficulties
associated with drainage, ice formation, driveways, pedestrian crossings, and the effect on
adjacent developed property should be evaluated when superelevation is considered. The section
on “Horizontal Alignment” in Chapter 3 provides a more detailed discussion of superelevation.
When little or no superelevation is to be provided on curves for low-speed arterial streets, the
Case II distribution of superelevation discussed in Chapter 3 usually is used. Supplemental
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guidance applicable to both rural and urban arterials is presented in the section on “Superelevated
Cross Sections” in the earlier discussion of rural arterials in this chapter.

Metric US Customary

Maximum grade (%) for
specified design speed (km/h)

Maximum grade (%) for
specified design speed (mph)

Type of terrain 50 60 70 80 90 100 30 35 40 45 50 55 60

Level 8 7 6 6 5 5 8 7 7 6 6 5 5
Rolling 9 8 7 7 6 6 9 8 8 7 7 6 6
Mountainous 11 10 9 9 8 8 11 10 10 9 9 8 8

Exhibit 7-10.  Maximum Grades for Urban Arterials

Cross Slope

Sufficient cross slope for adequate pavement drainage is important on urban arterials. The
typical problems related to splashing and hydroplaning are compounded by heavy traffic volumes
and curbed sections, especially for high speeds. Cross slopes should range from 1.5 to 3 percent;
the lower portion of this range is appropriate where drainage flow is across a single lane and
higher values are appropriate where flow is across several lanes. Even higher cross-slope rates
may be used for parking lanes. The overall cross section should provide a smooth appearance
without sharp breaks. Because urban arterials are often curbed, it is necessary to provide for
longitudinal as well as cross-slope drainage. The use of higher cross-slope rates also reduces flow
on the roadway and ponding of water due to pavement irregularities and rutting. The section on
“Cross Slopes” in Chapter 4 provides additional guidance.

Vertical Clearances

New or reconstructed structures should provide 4.9-m [16-ft] vertical clearance over the
entire roadway width. Existing structures that provide clearance of 4.3 m [14 ft], if allowed by
local statute, may be retained. In highly urbanized areas, a minimum clearance of 4.3 m [14 ft]
may be provided if there is an alternate route with 4.9-m [16-ft] clearance. Structures should
provide additional clearance for future resurfacing of the underpassing road.

Lane Widths

Lane widths may vary from 3.0 to 3.6 m [10 to 12 ft]. Lane widths of 3.0 m [10 ft] should be
used in highly restricted areas having little or no truck traffic. Lane widths of 3.3 m [11 ft] are
used quite extensively for urban arterial street designs. The 3.6-m [12-ft] lane widths are most
desirable and should be used, where practical, on higher speed, free-flowing, principal arterials.
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Under interrupted-flow operating conditions at low speeds (70 km/h [45 mph] or less),
narrower lane widths are normally adequate and have some advantages. For example, reduced
lane widths allow more lanes to be provided in areas with restricted right-of-way and allow
shorter pedestrian crossing times because of reduced crossing distances. Arterials with reduced
lane widths are also more economical to construct. A 3.3-m [11-ft] lane width is adequate for
through lanes, continuous two-way left-turn lanes, and lanes adjacent to a painted median. Left-
turn and combination lanes used for parking during off-peak hours and for traffic during peak
hours may be 3.0 m [10 ft] in width. If provision for bicyclists is to be made, see the AASHTO
Guide for the Development of Bicycle Facilities (6).

If substantial truck traffic is anticipated, additional lane width may be desirable. The widths
needed for all lanes and intersection design controls should be evaluated collectively. For
instance, a wider right-hand lane that provides for right turns without encroachment on adjacent
lanes may be attained by providing a narrower left-turn lane. Local practice and experience
regarding lane widths should also be evaluated.

Curbs and Shoulders

Shoulders are desirable on any highway, and urban arterials are no exception. Where four
lanes are warranted, shoulders are desirable. They contribute to enhanced safety by affording
maneuver room and providing space for immobilized vehicles. They offer a measure of safety to
the occasional pedestrian in sparsely developed areas where sidewalks are not appropriate and
provide space for bicyclists where allowed by law. They also serve as speed-change lanes for
vehicles turning into driveways and provide storage space for plowed snow.

Despite the many advantages of shoulders on arterial streets, their use is generally limited
due to restricted right-of-way and the necessity of using the available right-of-way for traffic
lanes. Where the abutting property is used for commercial purposes or consists of high-density
residential development, a shoulder, if provided, is subject to such heavy use in serving local
traffic that the pavement strength of the shoulder must be about the same as that for the travel
lanes. In urban and suburban areas, the outside edges of shoulders are often curbed and a closed
drainage system provided to minimize the amount of right-of-way needed. In addition, curbs are
often appropriate in heavily developed areas as a means of controlling access.

In those instances where sufficient right-of-way exists to consider shoulders, refer to the
discussion on shoulders in the rural arterial section of this chapter for guidance. Where provision
of shoulders is not practical, and curbs are to be used, refer to the section on “Curb Placement” in
Chapter 4.

Number of Lanes

The number of lanes varies, depending on traffic demand and availability of the right-of-
way, but the normal range for urban arterial streets is four to eight lanes in both directions of
travel combined. A capacity analysis should be performed to determine the proper number of
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lanes. In addition, roadways are sometimes widened through intersections by the addition of one
or two lanes to accommodate turning vehicles. Chapter 2 presents additional information on
capacity analysis.

Width of Roadway

The roadway width should be adequate to accommodate through and turning traffic lanes,
medians, curbs, and appropriate clearances from curb or barrier faces. Parking on arterial streets
should only be considered when needed because of existing conditions. When parking lanes are
provided, consideration should be given to providing a width adequate to allow ultimate operation
as a traffic lane. In many instances at intersections, the parking lane is used to provide a right-turn
lane or used as a through lane in order to provide additional width for a left-turn lane.

Medians

Medians are a desirable feature of arterial streets and should be provided where space
permits. Medians and median barriers are discussed in Chapter 4. Where right-of-way is limited,
it is frequently necessary to determine how best to allocate the available space between border
areas, traveled way, and medians. On the lower volume arterials, the decision is often resolved in
favor of no median at all. However, a median 1.2 m [4 ft] wide is better than none, and it should
be noted that any additional median width provides an added increment of safety and improved
operation between intersections.

At intersections in urban and suburban areas, median widths should be limited, whenever
practical, to those widths needed to accommodate appropriate left-turn treatments for current and
future traffic volumes. At intersections where left turns are made, a left-turn lane is always
desirable to increase capacity and safety. To accommodate left-turn movements, the median
should be at least 3.6 m [12 ft] wide. Desirably, the median should be at least 5.4 m [18 ft] wide
to provide for a 3.6-m [12-ft] turning lane and a 1.8-m [6-ft] medial separator between the turning
lane and the opposing traffic lane. At restricted locations, a 3.0-m [10-ft] lane with a 0.6-m [2-ft]
medial separator may be used. Refer to Chapter 9 for additional guidance concerning provision of
dual left-turn lanes and other special intersection treatments.

Exhibit 7-8 presents various configurations for medians that may be used on urban arterials.
The type of median treatment used is usually dependent on local practice and available right-of-
way widths. The median type selected should be compatible with the needs of drainage and street
hardware.

Median openings on divided highways with depressed or raised curbed medians should be
carefully considered. Such openings should only be provided for street intersections or for major
developments. Spacing between median openings should be adequate to allow for introduction of
left-turn lanes.
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Where intersections are relatively infrequent (e.g., 1.0 km [0.5 mi] or more apart), the
median width may be varied by using a narrow width between intersections for economy and then
gradually widening the median on the intersection approaches to accommodate left-turn lanes.
This solution is rarely practical, however, and should generally not be used where intersections
are closely spaced because the curved alignment of the lane lines may result in excessive
maneuvering by drivers to stay within the through lanes. It is far more desirable that the median
be of uniform width. Where a narrow median is provided on a high-speed facility, consideration
should be given to inclusion of a median barrier. Refer to the AASHTO Roadside Design Guide
(3) for guidance on use and placement of median barriers.

For a street with an odd number of lanes, typically three or five, the center lane is often used
to provide a deceleration and storage lane for left-turning vehicles. Left-turn bays are marked in
advance of intersections. The center lane between left-turn bays is typically used for vehicles
making midblock left turns. In some cases, the center lane is designated for “Left-Turn Only”
from either direction, commonly referred to as two-way left-turn lane (TWLTL) design, without
specially marked bays at minor intersections. This type of operation works well where the speed
on the arterial highway is relatively low (40 to 70 km/h [25 to 45 mph]) and there are no heavy
concentrations of left-turning traffic.

Where an arterial passes through a developed area having numerous cross streets and
driveways, and where it is impractical to limit left turns, the two-way left-turn lane is often the
only practical solution. Because left-turning vehicles are provided a separate space to slow and
wait for gaps in traffic, the interference to traffic in through lanes is minimized. Continuous two-
way left-turn lanes should be identified by lane and arrow markings placed in accordance with the
MUTCD (1). Exhibit 7-11 shows an example of a two-way left-turn lane. For further information,
see the section on “Medians” in Chapter 4 and the section on “Continuous Left-Turn Lanes” in
Chapter 9.

A raised curbed median may be used on low-speed urban arterial streets. This median type is
used where it is desirable to manage access along an arterial street by preventing midblock left
turns. Raised curbed medians provide a refuge for pedestrians and a good location for signs and
other appurtenances. In snow-belt areas, raised curbed medians provide positive delineation, in
contrast to flush medians that may become indiscernible under the lightest of snowfall conditions.

However, raised curbed medians also present disadvantages that should be considered. On
streets serving high-speed traffic, a raised curbed median does not prevent pedestrian or cross-
median crashes unless a median barrier is provided. If accidentally struck, the raised curb may
cause drivers to lose control of their vehicles. Also, such medians can be difficult to see at night
without appropriate fixed-source lighting or proper delineation. Additionally, raised curb medians
cast a shadow from oncoming headlights that not only makes the curb difficult to see but also
places some of the adjacent lane in shadow. In some cases, the prevention of midblock left turns
may cause operational problems at intersections because of increased concentrations of left-
turning traffic or motorists making U-turns.
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Exhibit 7-11.  Continuous Two-Way Left-Turn Lane

The foregoing disadvantages of raised curbed medians can be largely eliminated by use of
flush medians or low-profile sloped curbs. However, flush medians are difficult to see under wet
nighttime conditions and may become indiscernible under the lightest of snowfall conditions.
Visibility of flush medians can be improved by use of a contrasting pavement texture and by
improved delineation, such as the use of reflectorized pavement markers. The use of raised bars
or blocks has proven to be an ineffective median treatment and should not be considered.

When a two-lane suburban arterial is proposed for improvement to a multilane facility with a
median, access management principles suggest that a raised curbed median is more desirable than
a flush median. The limiting of left-turns except at intersections discourages uncontrolled
development and access to the highway and promotes improved traffic operations.

Special consideration should be given to the median width where intersections are provided.
Research in NCHRP Report 375 (4) found that most types of undesirable driving behavior in the
median area of divided highway intersections are associated with competition for space by
vehicles traveling through the median in the same direction. The potential for such problems is
generally greater at urban and suburban rather than at rural intersections, where volumes of
turning and crossing traffic are lower. Types of undesirable driving behavior observed include
side-by-side queuing, angle stopping, and encroaching on through lanes of a divided highway. At
urban and suburban unsignalized intersections, the frequency of crashes and undesirable driving
behavior were observed to increase as the median width increased. Thus, medians at urban and
suburban unsignalized intersections should not be wider than necessary. This trend is opposite to
that observed at rural unsignalized intersections.
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The median at an urban or suburban unsignalized intersection should be wide enough to
accommodate the left-turn treatment selected by the designer. As at rural intersections, the
appropriate design vehicle for turning and crossing maneuvers, based on the vehicle mix for
crossroad and U-turn traffic, should be considered in determining the median width. At urban and
suburban unsignalized intersections, medians less than 7.5 [25 ft] wide can be used effectively to
discourage drivers from stopping in the median and multiple vehicles traveling in the same
direction from using the median at the same time. At locations with substantial crossing and
turning volumes of larger vehicles, such as school buses or trucks, it may be appropriate to
provide enough width to store such vehicles in the median without encroaching on the through
lanes of the major road.

Urban and suburban unsignalized intersections with median widths from 9 to 15 m [30 to
50 ft] generally experience slightly higher crash rates than intersections with narrower medians
but appear to operate quite well (4). Such intersections apparently are within the realm of normal
operational expectations of the driver. However, urban and suburban intersections with medians
wider than 15 m [50 ft] have more crashes, and intersections with medians wider than 18 m
[60 ft] are difficult to signalize properly.

Experience indicates that at unsignalized intersections drivers on divided arterials in urban
areas prefer medians that are obviously narrow or those that provide an adequate refuge area to
allow independent crossing of the two roadways of a divided highway.

At urban and suburban signalized intersections, crash frequency increases as the median
width increases (4). Therefore, median widths at urban and suburban signalized intersections
should not be wider than necessary and should be determined primarily by the space needed in
the median for current or future left-turn treatments. Median widths of more than 18 m [60 ft] are
undesirable at intersections that are signalized or that may need signalization in the foreseeable
future. The efficiency of signal operations decreases as the median width increases, because
drivers need more time to traverse the median and special detectors may be needed to avoid
trapping drivers in the median at the end of the green phase for traffic movements passing
through the median. Furthermore, if the median becomes so wide that separate signals are needed
on the two roadways of the divided highway, delays to motorists will increase substantially.
Careful attention should be given to vehicle storage needs in the median area between the two
signals.

Uncurbed, unpaved narrow medians often present problems for turning movements at
intersections in that vehicles tend to run off the roadway edges. To minimize this problem, the
provision of edge lines and sufficient paved area beyond the edge lines will provide positive
guidance and will accommodate the turning paths of passenger cars and occasional large vehicles.

A median barrier may be desirable on some arterial streets with fast-moving traffic. A barrier
provides a positive separation of traffic and discourages indiscriminate pedestrian crossings.
Where the median barrier is terminated at cross streets and other median openings, it should have
a crashworthy terminal or terminal end appropriate for the speed of traffic.  Further discussion on
treatment of the ends of barriers is presented in the Roadside Design Guide (3). Additional



AASHTO—Geometric Design of Highways and Streets

482

information on median barriers and median treatments at intersection areas is found in Chapters 4
and 9, respectively. The information on medians and median barriers in Chapter 4 is especially
pertinent to urban arterials since they need the most varied application of these features.

Drainage

An adequate drainage system to accommodate design runoff should be included in the
design of every arterial street. Inlets that are safe for bicycles should be located adjacent to and
upstream of intersections and at intermediate locations where necessary. Where a shoulder or
parking lane is provided, the full width of the shoulder or parking lane may be utilized to conduct
surface water to the drainage inlets. Where no shoulder or parking lane is provided, one-half of
the outside traffic lane and curb offset may be utilized to conduct surface drainage, provided two
or more traffic lanes exist in each direction. Ponding of water at low points in the traveled way on
arterial streets is undesirable. The width of water spread on the roadway should not be
substantially greater than the width of spread encountered on continuous grades. Highways with
design speeds greater than 70 km/h [45 mph] will have a higher potential for hydroplaning if the
traveled way is covered with water. Additional inlets should be provided in sag locations to avoid
ponding of water where the grade flattens to zero percent and to mitigate flooding should an inlet
become clogged. Chapters 3 and 4 have comprehensive discussions concerning drainage.

Parking Lanes

Where parking is needed and adequate off-street parking facilities are not available or
practical, parallel parking may be considered as long as adequate capacity is provided by the
through lanes. However, parking is highly undesirable on high-speed roadways.

Passenger vehicles parked adjacent to a curb will occupy, on the average, approximately
2.1 m [7 ft] of street width. Therefore, the total parking lane width for passenger cars should be
3.0 to 3.6 m [10 to 12 ft]. This width is also adequate for an occasional parked commercial
vehicle. For desirable widths to accommodate usage by bicyclists, refer to the AASHTO Guide
for the Development of Bicycle Facilities (6). Where it is unlikely that there will be a future need
to use the parking lane as a through lane, a parking lane width as narrow as 2.4 m [8 ft] may be
acceptable.

A parking lane less than 3.3 m [11 ft] in width is considered undesirable if future use of the
parking lane for through traffic is anticipated. Such a lane can be used as an additional through-
traffic lane during peak hours by prohibiting parking during these hours. A parking lane 3.0 m
[10 ft] in width is acceptable for use as a storage lane for turning vehicles at signalized
intersections by prohibiting parking for some distance upstream from the intersection. A parking
lane of 2.7 m [9 ft] may be acceptable as a storage lane for turning vehicles where the design
speed on the arterial is 60 km/h [40 mph] or less.

The marking of parking spaces on arterial streets encourages more orderly and efficient use
where parking turnover is substantial and also tends to prevent encroachment on fire hydrant
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zones, bus stops, loading zones, approaches to corners, clearance space for islands, and other
zones where parking is prohibited. Typical parking-space markings are shown in the
MUTCD (1).

In downtown districts and in areas with large office or industrial buildings, it may be
possible to provide parking turnouts as shown in Exhibit 7-12. The paved area of the turnout is
7.2 m [24 ft] wide, a curbed island with entrance and exit tapers separates the through lanes from
the turnout.

Exhibit 7-12.  Parking Turnouts in Downtown District

Borders and Sidewalks

The border is the area between the roadway and the right-of-way line that separates traffic
from adjacent homes and businesses. For a minimum section in a residential area, the border area
should include a sidewalk and a buffer strip between the sidewalk and curb. Exhibit 7-13
illustrates an arterial street in a residential area. The exhibit shows curbs, a parking lane, curb cuts
for driveways, and sidewalks. In blocks that are fully developed with retail stores and offices, the
entire border area usually is devoted to sidewalk.

Some factors to be considered in determining border widths are width of sidewalk for
pedestrian needs, snow storage, storm drainage, traffic control devices, roadside appurtenances,
and utilities. The minimum border should be 2.4 m [8 ft] wide and preferably 3.6 m [12 ft] or
more. Every effort should be made to provide wide borders not only to serve functional needs but
also as a matter of aesthetics, safety, and reducing the nuisance of traffic to adjacent development.
Where sidewalks are not included as a part of the initial construction, the border should be
sufficiently wide to provide for their future installation. For further information, see the section
on “Pedestrian Facilities” presented later in this chapter.
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Exhibit 7-13.  Arterial Street in Residential Area

Where bicycle traffic is anticipated or is to be served on arterial streets, provisions to
accommodate bicycles should be in accordance with the AASHTO Guide for the Development of
Bicycle Facilities (6).

Exhibit 7-14 illustrates a divided arterial street in a residential area. This type of arterial
features a turf buffer strip that is provided between the sidewalk and the curb. In addition,
vertical-curb and gutter sections are employed on the outside of parking lanes that may also serve
as shoulders.

Railroad-Highway Crossings

Railroad-highway crossings on an urban arterial can often be the most disruptive feature
affecting its operation. Crossings that are frequently occupied or occupied during high-volume
traffic periods should be treated by providing a grade separation. Crossings that are occupied only
infrequently or during off-peak traffic periods may be operated as an at grade crossing with high-
type traffic control, such as gate-equipped automatic flashing signals.

At-grade crossings that involve bicycle routes that are not perpendicular to the railroad may
need additional paved shoulder width to allow bicyclists to maneuver over the crossing. For
further information, see the AASHTO Guide for the Development of Bicycle Facilities (6).



Rural and Urban Arterials (Urban)

485

Exhibit 7-14.  Divided Arterial Street With Parking Lanes

Roadway Width for Bridges

The minimum clear width for new bridges on arterial streets should be the same as the curb-
to-curb width of the street. On long bridges, defined as bridges with overall lengths in excess of
60 m [200 ft], the offsets to parapets, rails, or barriers may be reduced to 1.2 m [4 ft] where
shoulders or parking lanes are provided on the arterial. For further relevant discussion, see the
sections on “Curbs,” “Sidewalks,” “Traffic Barriers,” and “Bridge Railings” in Chapter 4.

Bridges to Remain in Place

Reasonable attempts should be made to improve existing structures that do not meet current
design policies or guidelines, but are otherwise suitable for retention. When making this decision,
an important consideration is the extent to which such features that do not meet current policies
and guidelines are likely to contribute to crash frequency and operational deficiencies. Other
factors to be considered include the remaining life, the cost of improvements and/or rehabilitation
compared to replacement, and the historical significance, aesthetic value, and notoriety of the
structure.

Horizontal Clearance to Obstructions

Clear roadside design is recommended for urban arterials whenever practical. On curbed
street sections, clear roadsides are often impractical, particularly in restricted areas. In such areas,
a clearance between curb face and object of 0.5 m [1.5 ft] (or wider where practical) should be
provided. A 1.0-m [3-ft] clearance to roadside objects should be provided particularly near
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turning radii at intersections and driveways. This offset provides sufficient clearance to keep the
overhang of a truck from striking an object. Where pedestrians are not a factor, obstructions
should be set well back, protected, or provided with breakaway features. For further guidance,
refer to the AASHTO Roadside Design Guide (3).

Right-of-Way Width

The width of right-of-way for the complete development of an arterial street is influenced by
traffic demands, topography, land use, cost, intersection design, and the extent of ultimate
expansion. The width of right-of-way should be the summation of the various cross-sectional
elements: through traveled ways, medians, auxiliary lanes, shoulders, borders, and, where
appropriate, frontage roads, roadside clear zones, sideslopes, drainage facilities, utility
appurtenances, and retaining walls. The width of right-of-way should be based on the preferable
dimensions of each element to the extent practical in developed areas. The designer is confronted
with the problem of providing an overall cross section that will give maximum service within a
limited width of right-of-way. Right-of-way widths in urban areas are governed primarily by
economic considerations, physical obstructions, or environmental concerns. Along any arterial
route, conditions of development and terrain vary, and accordingly, the availability of right-of-
way varies. For this reason, the right-of-way on a given facility should not be a fixed width
predetermined on the basis of the most critical point along the facility. Instead, every opportunity
should be taken to provide a desirable right-of-way width along most, if not all, of the facility.

Traffic Barriers

Traffic barriers are sometimes used on urban arterials in restricted areas, at separations, and
in medians. The barrier should be compatible with the desired visual quality and should be
installed in accordance with accepted practice. Exposed ends should be treated with crashworthy
designs or other appropriate means. For further information, refer to the AASHTO Roadside
Design Guide (3).

Access Management

General Features

Partial control of access and the application of access management techniques are highly
desirable on an urban or suburban arterial. Effective access management will not only enhance
the initial level of service of a facility but may also preserve that original level of service as
further development occurs. While access to abutting property may be required, it should be
carefully regulated to limit the number of access points and their locations. Access management
is especially important on intersection approaches on both the arterial and cross streets where
auxiliary and storage lanes may be needed.
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Access control and access management may be exercised by statute or through application of
zoning ordinances, driveway regulations, turning and parking regulations, and effective geometric
highway design. Implementation of any of these options should involve coordination with the
community and adjacent property owners. For additional discussion on access control and access
management, refer to Chapter 2.

Access Control by Statute

Where a high degree of access control is desired, it is usually accomplished by statute. When
statutory control is applied to an arterial street, access is usually limited to the cross streets or to
other major traffic generators.

Access Control by Zoning

Zoning can be used effectively to control the type of property development along an arterial
and thereby influence the type and volume of traffic generated. Property uses can be limited to
those that attract very few people, excluding those uses that generate significant volumes of
traffic during peak hours of through-traffic movements. In certain cases, it may be desirable to
exclude land uses that generate heavy volumes of commercial traffic if, for various reasons, this
class of vehicle cannot be accommodated readily due to limitations in the highway geometrics.

Zoning regulations should require ample off-street parking as a condition for approval of a
building permit. Also, the internal arrangement of the land-use development should be such that
the parking spaces most distant from the arterial street are the most attractive to the user. This
type of internal design minimizes congestion in the vicinity of the entrance at the street. Vehicles
exiting from the parking facility to the arterial (or preferably to a cross street) should not impede
traffic entering the parking facility from the arterial.

Subdivision or zoning ordinances should require that the developer of a major traffic
generator provide a suitable connection to the arterial street (or preferably to a cross street)
comparable to that for a well-designed street intersection serving a similar volume of traffic. If
direct access to the arterial is provided, it should be understood that the intersection is subject to
the same traffic control measures, including restrictions to turning movements, as are applicable
elsewhere on the arterial. The developer may be required to provide a frontage road along the
property that connects the major entrances to the arterial in order to maintain a high level of
operation and safety on the arterial.

Access Control Through Driveway Regulations

Driveway controls can be effective in preserving the functional character of arterial streets.
In heavily built-up areas and areas with potential for intensive development, permits for
driveways and entrances can be controlled to minimize interference with the free flow of traffic
on the arterial. In more sparsely developed areas with little potential for dense development,
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driveway controls are also desirable to ensure that future driveways are located so that there will
continue to be minimum interference with the free movement of traffic.

Access Control Through Geometric Design

Left turns in and out of adjacent properties can have a great effect on the safety and
operation of an arterial. Such movements can be prohibited by constructing a raised curbed
median or by installing a median barrier. Left turns can be accommodated by U-turns at
intersections, jug-handle configurations, or around-the-block movements. The operational and
safety effects of relocating mid-block turns to these alternative locations should be carefully
considered when evaluating this option. Additional information concerning the effects of mid-
block left-turn lanes can be found in NCHRP Report 395, Capacity and Operational Effects of
Midblock Left-Turn Lanes (8). Right-turn-in and right-turn-out arrangements are another
important geometric design feature to control access to an arterial.

Frontage roads and grade separations provide the ultimate in access control. Fully developed
frontage roads effectively control access to through lanes on an arterial street while providing
access to adjoining property, separating local from through traffic, and permitting circulation of
traffic along each side of the arterial. When used in conjunction with grade-separation structures
at major cross streets, an arterial takes on many of the operating characteristics of a freeway.

Due to right-of-way restrictions, frontage roads are usually located immediately adjacent to
the arterial. For this reason, careful attention should be given to proper signing to minimize the
potential for wrong-way entry into the through lanes of the arterial. Efforts should be made to
provide adequate storage distance for turning vehicles on the crossroad between the frontage road
and the arterial, although this is often difficult because of restricted right-of-way width. If
signalization is needed at the intersection of the crossroad and the frontage road, the operation of
this signal should be coordinated with the signal at the intersection of the crossroad and the
arterial.

General features of frontage roads and their design are discussed in Chapter 4. The effect of
frontage roads on the design of intersections is addressed in the section on “Intersection Design
Elements With Frontage Roads” in Chapter 9. Additional information concerning access
management can be found in NCHRP Report 420, Impacts of Access-Management Techniques
(5).

Pedestrian Facilities

Arterial streets may accommodate both vehicles and pedestrians; therefore, the design
should include sidewalks, crosswalks, and sometimes grade separations for pedestrians.
Pedestrian facilities and control measures will vary, depending largely on the volume of
pedestrian traffic, volume of vehicular traffic to be crossed, number of lanes to be crossed, and
number of vehicles turning at intersections.
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On some sections of arterial streets that traverse relatively undeveloped areas, no initial
pedestrian demand may be present. Therefore, sidewalks may not be needed initially. Because
these areas will usually be developed in the future, the design should allow for the ultimate
installation of sidewalks. However, as a general practice, sidewalks should be constructed
initially along all arterial streets that are not provided with shoulders, even through pedestrian
traffic may be light.

The major pedestrian-vehicular conflict usually occurs at intersections. On the lower classes
of arterials, especially at intersections with minor cross streets where turning movements are
light, pedestrian facilities are usually limited to crosswalk markings. Features that help the
pedestrian include fixed-source lighting, refuge islands, barriers, and signals. Such features are
discussed in Chapter 4.

On the higher-volume arterials (i.e., six or eight lanes wide with heavy traffic volumes), the
interference between pedestrians and vehicles at intersections sometimes presents a serious
problem. The problem is especially acute where the arterial traverses a business district and there
are intersections with higher-volume cross streets. Although grade separations for pedestrians are
justified in some instances, crosswalks are the predominant form of crossing. Conflicts between
pedestrians and vehicular traffic can be reduced by shortening pedestrian crossing distances by
various means such as curb bulbs or narrower lanes, restricting left and/or right turns and separate
pedestrian signal phases. The accommodation of pedestrians can have an effect on the capacity of
intersections and should be evaluated during design.

The number of pedestrian crossings on heavily traveled arterials should be kept to a
minimum, but in and near developed areas it is usually appropriate to provide crosswalks at every
intersecting street. Enforcement of a ban on pedestrian crossings at an intersection is very
difficult. A crossing should not be closed to pedestrians unless the benefits in improved safety
and traffic operation are sufficient to offset the inconvenience to pedestrians. In addition,
indiscriminate closing of pedestrian crossings will lead to illegal crossing maneuvers. Therefore,
proper and reasonable design for pedestrians is important.

The pedestrian walk signal is especially desirable on wide arterials having frontage roads
because of the great distances to be traversed. On exceptionally wide arterial streets, pedestrian
signals may be mounted in the median as well as on the far side of the intersection and, where
appropriate, in the outer separators. Refer to the current MUTCD (1) for additional information
concerning installation of signals.

Where intersections are channelized or a median is provided, consideration should be given
to the use of curbing for those areas likely to be used by pedestrians for refuge when crossing the
roadway. For design speeds less than 80 km/h [50 mph], a 150-mm [6-in] sloping curb is the
preferred type. For design speeds of 80 km/h [50 mph] or greater, a 100-mm [4-in] sloping curb is
preferred. In all cases, the curb offset should be consistent with the design criteria in Chapter 4.

The use of crosswalks at typical curbed-street intersections may be difficult for persons with
disabilities. Curb ramps of appropriate width and slope must be provided in curbed areas that
have sidewalks. Sidewalk curb ramps are addressed in Chapter 4.
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For further guidance on the accommodation of pedestrians, refer to the AASHTO Guide for
the Planning, Design, and Operation of Pedestrian Facilities (9).

Provision for Utilities

The urban arterial system often serves as a utility corridor. Desirably utilities are located
underground or at the outer edge of the right-of-way. In addition, poles should be located as near
the right-of-way lines as practical. Whenever practical, service access openings and covers should
not be located in the traveled way but should desirably be placed outside the entire roadway.
However, locations in the medians or parking lanes may be acceptable under special conditions.
Utilities should seldom be added to an arterial by the open-cut method. Additional installations
should be bored or jacked to avoid interference with normal traffic movements.

Intersection Design

The design and operation of intersections have a significant effect on the operational quality
of an arterial. Intersection and stopping sight distance, pedestrian movements, capacity, grades,
and provision for turning movements all affect intersection operation. Turning movements onto
arterials and crossroads should not encroach on adjacent lanes; where avoiding encroachments on
adjacent lanes is not practical, the effects of such encroachments should be considered. It is
recommended that each individual intersection be carefully evaluated in the early design phases.
Chapter  9 discusses intersection development in detail.

Operational Control and Regulations

The efficiency of an arterial street system is strongly influenced by the adequacy of traffic
control devices and the degree of enforcement of traffic regulations. If the demand for arterial
route service exists within the traffic corridor, traffic control devices and traffic regulations are of
such importance that it may be possible to convert a street with only moderately good design into
a major traffic artery.

The potential of traffic control measures to improve capacity and level of service should be
exploited to the maximum degree on properly designed arterial streets. Improvements to the
arterial system may help to relieve congestion on the local street system by diverting traffic to the
higher speed arterial. Traffic control measures may be divided into the following categories:  (1)
traffic control devices, (2) regulatory measures, and (3) directional lane usage.

Traffic Control Devices

Where traffic signals are anticipated during the initial planning of an arterial street,
intersection design should integrate the ultimate signal operation. The design should consider the
reduction of signal phases by providing for concurrent opposing left-turn phases and by
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constructing left-turn lanes in a manner that will allow their free operation. Channelization, which
provides for single or double left turns and free-flow right turns, often results in better signal
control and may assist pedestrian crossings. However, multiple lane shifts to accommodate the
installation of turn lanes should be designed in accordance with Chapter 9.

Signal spacing to allow free-flow timing in both directions of travel is highly desirable and
may be achieved by controlling intersection locations during early development stages. If this
cannot be achieved, suitable time-space diagrams based on traffic forecasts may be used to
determine signal timing and spacing for major access points. Such efforts will allow optimum
signal progression to provide maximum vehicle capacity and minimum vehicle delay time.
Driveway location also affects signal operation significantly. In addition, driveway locations that
allow interference with major through movements should be avoided. Locations at which entering
or exiting vehicles will generate false calls to the signal are also undesirable. The physical
location of signal supports can often be improved for safety and signal visibility reasons when an
intersection is considered in the roadway design stage.

The ultimate goal of any intersection design should be to serve the traffic demands safely at
a level of service consistent with the overall arterial design. This goal requires that all intersection
elements, including traffic signals, be integrated into all aspects of the design process. Traffic
control devices such as signs, markings, signals, and islands are placed on or adjacent to an
arterial to regulate, warn, or guide traffic. Each device is designed to fulfill a specific need with
respect to traffic operation, control, or safety. The need for traffic control devices should be
determined by an engineering study conducted in conjunction with the geometric design of the
street or highway. To assure uniform design and installation application of the various traffic
control devices, refer to the current MUTCD (1).

The importance of a signal system that is responsive to traffic demands cannot be
overemphasized. Traffic demands fluctuate from hour to hour and from day to day. The signal
system should likewise be flexible. The system should include detection and data processing
components as well as a control component. The installation of a sophisticated signal system is
generally the most economical method to improve traffic service in a densely developed area.

Among other considerations, signal systems should allocate green time to each movement in
accordance with the demand for that movement. Signals should be coordinated for progressive
movement in the direction of the predominant flow of traffic on the arterial street, although the
optimum traffic service for the arterial system as a whole should also be considered. Where
multiple phasing is needed to control various traffic movements at intersections, the detection and
programming equipment should provide the capability to skip specific signal phases when there is
no traffic demand. Idle and lost green time due to lack of demand or too many phases should be
kept to a minimum. Signal equipment to accomplish this goal is available. Although it is
expensive to improve traffic service through use of signal systems, it is usually less costly than
purchasing additional right-of-way and constructing additional lanes, which may be the only
other alternative to improve the arterial’s capacity. Sophisticated traffic signal systems require
considerable effort to maintain and operate; therefore, the operating agency should be prepared to
assign adequate resources, including capable maintenance staff, to the system if optimum benefits
are to be realized.
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Progression of through movements on an arterial is one of the most effective means of
improving operations on both arterials and cross streets. By moving queues of traffic through the
corridor, the corridor remains open, allowing more time for cross-street movements. The
selection and operation of the optimum traffic control equipment is related to the design of the
arterial.

Successful operation of an urban arterial depends largely on proper pavement marking,
especially on arterials having multiple lanes and particularly when special provision is made for
left turns. Recent developments in pavement marking materials show considerable promise
toward providing effective long-life markings, even for areas where snow removal often
obliterates ordinary markings in very short time periods. Overhead lane signing is usually very
helpful. Signs enable drivers to make maneuvers well in advance and are especially helpful under
adverse weather conditions, such as rain or snow. Adequate crosswalk markings enhance
pedestrian safety on urban arterials.

Regulatory Measures

Regulatory measures take many forms, as discussed in the Uniform Vehicle Code (10) and
the Model Traffic Ordinance (11). The two measures that contribute most to the operational
efficiency of arterial streets are restrictions on turning movements and prohibition of curbside
parking, stopping, or standing.

Restrictions on turning movements at both midblock and intersection locations promote
efficient operation if applied wisely; however, such restrictions should not be applied
indiscriminately. Some alternative route must be provided for roadway users to reach their
destinations, and this can only be accomplished by providing them with turning opportunities at
another location.

Operational and Control Measures for Right-Turn Maneuvers

In most cases, vehicles making right turns from an arterial interfere little with through traffic.
However, at intersections where there are heavy pedestrian movements, right-turning vehicles
may delay through traffic as they wait for a pedestrian to cross. Where corner curb radii are short,
vehicles slowing to turn right may also interfere with through traffic to an extent that is out of
proportion to their numbers. In such cases, it may be desirable to prohibit turns during certain
hours if there are alternative routes for motorists to reach their destinations.

Operational and Control Measures for Left-Turn Maneuvers

Vehicles turning left into cross streets or at midblock locations may cause substantial delays
to through traffic and may contribute to crashes, thus diminishing arterial effectiveness. There is a
popular belief that the effects of such left-turn movements can be eliminated simply by placing
“No Left Turn” signs. In fact, motorists that desire to turn left do not just disappear, but reach
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their destinations by alternative routes. Thus, prohibition of left turns at some locations may
create or increase operational or safety problems at other locations.

Effective control of turning movements lies in discovering or anticipating the extent of the
problem and in providing for the movements through a combination of measures including
selective prohibition of turns, geometric design, and traffic control. It is difficult to discuss these
factors independently, and no firm rules are applicable to all situations. Several principles and
methods that, if properly considered and applied, will lead to appropriate designs are outlined as
follows:

1. The capability for motorists to reach their desired destinations must be provided. Left
turns should not be prohibited unless alternative routings are available.

2. As a general rule, the fewer the number of left turns at any location, the less the
interference with other traffic. Thus, for a given total number of left turns within a
given length of highway, it may be better to encourage a few left turns at each of
several locations than to concentrate the turns at a single location.

3. Separate signal phases for left-turn movements reduce the amount of green time
available for other movements at the intersection. Multiphase signals are therefore
advantageous only if traffic operation and safety are improved sufficiently to offset the
loss in green time. This determination should be made on a case-by-case basis.

4. Where selective prohibition of left turns is necessary, there are operational advantages
in concentrating left turns at intersections where the volume of cross traffic is low so
that a large fraction of the signal time is available for the green phase on the arterial.
Where two arterial streets intersect, there may be advantage in requiring left-turning
vehicles to bypass the main intersection. For instance, one manner in which the left-turn
maneuver from an arterial to another can be accomplished is to require the motorist to
turn left from the first arterial a block in advance of the main intersection, then proceed
one block, turn right, proceed another block, and turn left. Where such techniques are
used, clear guide signing is essential.

5. It is sometimes advantageous to route left-turning traffic around a block, through a
series of right turns after passing through the main intersection, rather than permitting a
direct left-turn maneuver. However, this approach has disadvantages as well. Traffic
volumes are increased because the left-turning vehicle now must pass through the
intersection twice. In addition, the distance of travel by the vehicle that desires to turn
left is increased, and the increased right-turn volumes may have an impact on the
operation of three other intersections. This approach to left-turn maneuvers should
generally be limited to locations where the left-turn volumes are small and the provision
of a separate left-turn lane is not practical.

6. The desirability of exclusive left-turn lanes cannot be overemphasized. Such lanes may
consist of separate left-turn lanes in the median or continuous center lanes used
exclusively for left turns from both directions. Multiphase signal control is very
inefficient if turning traffic and through traffic both use the same lane. Where turning
traffic is light, a left-turn lane may eliminate the need for left-turn signal phasing
because the storage of left-turning vehicles will not affect through traffic. Traffic safety



AASHTO—Geometric Design of Highways and Streets

494

is greatly enhanced if turning vehicles can be stored separately from lanes used by
through vehicles.

7. With a separate left-turn phase, dual left-turn lanes can accommodate up to about
180 percent of the volume that can be served by a single left-turn lane with the same
available green time, depending on the width of the cross street and the radius of turn.
Desirably, the turning radius for a dual left-turn lane is 27 m [90 ft]. Thus, where
sufficient right-of-way, space for a long-radius turn, and a wide cross street are
available, the installation of dual left-turn lanes may be a practical design to serve a
heavy left-turn movement. Exhibit 7-15 shows an example of dual left-turn lanes at an
intersection on an urban arterial. Further guidance concerning the design of dual left-
turn lanes is presented in Chapter 9 and in the HCM (2).

Exhibit 7-15.  Urban Arterial With Dual Left-Turn Lanes

8. Grade separations or other special treatments for left-turn movements are sometimes
appropriate, as discussed in Chapter 10.

In summary, left-turn demands should be accommodated as near as practical to the point at
which the motorist desires to turn left. Shifting the left-turn maneuvers away from this point of
desire may lead to secondary problems. Nevertheless, if the point at which motorists desire to
turn left is highly objectionable from the standpoint of design, traffic control, or safety, regulatory
measures may be employed to move those left turns to a location that is more suitable. Only in
exceptional cases should such maneuvers be shifted more than two blocks from the point of
desire. Where left turns are permitted from an arterial street, the intersection design should
incorporate left-turn storage lanes unless it is impractical to provide them.
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Regulation of Curb Parking

Curb parking is permissible on arterials when speeds are low and traffic demand is well
below capacity. At higher speeds and during periods of heavy traffic movement, curb parking is
incompatible with arterial street service and should not be permitted.

Curb parking reduces capacity and interferes with free flow of adjacent traffic. Eliminating
curb parking can increase the capacity of arterials with four- or six-lane curb-to-curb widths by
50 to 80 percent.

Where parking provisions are included in the design, cross-sectional dimensions should be
such that the entire width can be used by moving traffic when parking is removed. At
intersections, there should be a liberal distance from the corner of the intersection to the nearest
parking stall. This distance should be at least 6.0 m [20 ft] from a crosswalk. This provides extra
maneuvering space for turning traffic, reduces the conflict with through traffic, and increases
sight distance.

No other single operational control can have as dramatic an effect on traffic flow on arterial
streets as the proper regulation of parking, including the enforcement of “No Parking” regulations
in loading zones and at bus stops.

Directional Lane Usage

Typically, the conventional arterial street is a multilane two-way facility with an equal
number of lanes for traffic in each direction of travel. Often, however, one-way operation is
employed where conditions are suitable. Somewhat less frequently, reversible lane operation is
used to improve operational efficiency. The conditions under which each form of operation is
most suitable depend largely on traffic flow characteristics, the street pattern, and the geometric
features of the particular street. Where a street system is undergoing expansion or improvement,
the ultimate form of directional usage should be anticipated, and the design should be prepared
accordingly. Once an arterial street is completed, conversion from one form of directional usage
to another may involve considerable expense and disruption to traffic. For existing streets of
conventional design, this conversion may be a practical alternative for increasing traffic capacity.
For information concerning signing for directional lane usage, refer to the current MUTCD  (1).

One-way operation. An arterial facility consisting of one or more pairs of one-way streets
can generally be employed where the following conditions exist:  (1) a single two-way street does
not have adequate capacity and does not lend itself readily to improvement to accommodate
anticipated traffic demand, particularly where left-turning movements at numerous intersections
are difficult to handle, (2) there are two parallel arterial streets a block or two apart, and (3) there
are a sufficient number of cross streets and appropriate spacing to permit circulation of traffic.

One-way streets have the following advantages:



AASHTO—Geometric Design of Highways and Streets

496

• Traffic capacity may be increased as a result of reduced mid-block and intersection
conflicts and more efficient operation of traffic control devices.

• Travel speed is increased as a result of reducing mid-block conflicts and delays caused
by slowing or stopped left-turning vehicles. The increase in the number of lanes in one
direction permits ready passing of slow-moving vehicles. One-way operation permits
good progressive timing of traffic signals.

• The number and severity of crashes is reduced by eliminating head-on crashes and
reducing some types of intersection conflicts.

• Traffic capacity may be increased by providing an additional lane for through traffic.
Although a two-way street with only one lane in each direction may not have sufficient
width to accommodate two lanes in each direction, it may have sufficient width to
accommodate three lanes in one direction when converted to one-way operation.

• The available street width is used fully through the elimination of need for a median.

• On-street parking that would otherwise have to be eliminated or curtailed may be
retained.

Disadvantages to one-way operation are:

• Travel distances are increased because certain destinations can be reached only by
around-the-block maneuvers. This disadvantage is more acute if the street grid is
composed entirely of one-way streets.

• One-way streets may be confusing to strangers.

• Emergency vehicles may be blocked by cars in all lanes at intersections waiting for
signals to change.

In summary, there are several advantages and disadvantages to one-way operation. The
choice of one- or two-way operation depends largely on which type of operation can serve the
traffic demands most economically and with greatest benefit to the adjacent property. Both types
of operation should be considered. In many cases, the proper choice is immediately obvious. In
other instances, a thorough study involving all relevant considerations may be needed.

Reverse-flow operation. The familiar imbalance in directional distribution of traffic during
peak hours on principal radial streets in large and medium-sized cities often results in congestion
in the direction of heavier flow and excess capacity for opposing traffic. Capacity during peak
hours can be increased by using more than half of the lanes for the peak direction of travel.

Reverse-flow operation on undivided streets generally is justified where 65 percent or more
of the traffic moves in one direction during peak periods, where the remaining lanes for the
lighter flow are adequate for that traffic, where there is continuity in the route and width of street,
where there is no median, and where left turns and parking can be restricted. Refer to the
AASHTO Guide for the Design of High Occupancy Vehicle Facilities (12) for additional
guidance concerning the appropriateness of reverse-flow operation.
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The conventional undivided street need not be changed appreciably for conversion to
reverse-flow operation, and the cost of additional control measures is not great. On a five-lane
street, three lanes can be operated in the direction of heavier flow. On a six-lane street with
directional distribution of approximately 65 to 35 percent, four lanes can be operated inbound and
two lanes outbound during the morning peak. The assignment of the center lanes can be reversed
during the evening peak so that two lanes are generated inbound and four lanes outbound. During
off-peak periods, traffic is accommodated on three lanes in each direction or on two lanes in each
direction with curb parking.

Streets with three or four lanes can also be operated with a reverse flow. However, with only
one lane in the direction of lighter flow, a slow vehicle or one picking up or discharging a
passenger delays all traffic in that direction of travel, and a vehicle breakdown blocks traffic in
that direction completely. Occasionally, circumstances may be such that such streets can be
adapted to complete reverse flow (i.e., one-way inbound in the morning and one-way outbound in
the evening). At other times the street may be operated as a two-way street, with or without
parking.

Direct left turns by traffic in the off-peak direction on a two-way reversible street should be
carefully controlled. Left turns from the predominant flow are subject to the same considerations
and regulations as they are for conventional operation with two-way traffic. By contrast, on a
one-way reversible street, left turns at all intersections can be made readily.

Reverse-flow operation requires special signing and additional control devices. More
policing and staffing are also needed to operate the control devices. Stanchions or traffic cones
are usually desirable to separate opposing traffic, and “No Left Turn” and “Keep Right” signs on
pedestals or stanchions are often used.

Assigning traffic to proper lanes can be accomplished by placing overhead signs indicating
lane usage for specific times of day. These signs should be supplemented with traffic control
signals located directly over each lane indicating when reversible lanes are open or closed to
traffic in the specified direction. This is usually accomplished with a signal head displaying a red
“X” for closed or a green directional arrow for open. Refer to the MUTCD (1) for further
guidance. This combination of signs and signals will decrease the potential for motorists to pull
out for left turns into a lane that is signed for traffic in the opposite direction. It is better to place
separate lane-use control signals at intervals over each lane. This method is particularly adaptable
to long bridges and sections of streets without side connections.

Further efficiency can be gained for the predominant direction of travel by progressive
timing of signals. With a three-dial interconnected signal system, signals are set for proper
progression of the major movement in the peak periods.  A third setting is used for the traffic
flow during off-peak periods. In some cases, the signals for the center lane or lanes are set red in
both directions during off-peak hours, thus converting the unused traveled way into a median area
for safety.

Reverse-flow operation on a divided facility is termed “contra-flow operation.”  While the
principle of reverse-flow operation is applicable to divided arterials, the arrangement is more
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difficult than on an undivided roadway. The difficulty of handling cross and turning traffic, the
potential confusion for pedestrians, and the potential for conflicts between opposing vehicles at
high volumes may make other arrangements preferable to contra-flow operation. For example, the
capacity of an undivided arterial with a reverse-flow lane allocation of three-two-three or three-
three-three lanes (equivalent to the peak directional capacity of 10- or 12-lane conventional
sections, respectively) may be comparable to the capacity of a six-lane freeway. For these widths,
likely volumes would be 3,500 to 4,000 vehicles per hour in one direction, or two-way ADT
volumes of 50,000 to 60,000 vehicles per day, for which a freeway is warranted. Furthermore,
traffic flows that are currently unbalanced may not remain unbalanced in future years. Reverse-
flow operation for at-grade facilities is applicable chiefly as a means of increasing capacity on
existing highways.

Frontage Roads and Outer Separations

Frontage roads are sometimes used on arterial streets to control access, as discussed in the
preceding section on “Access Control Through Geometric Design” in this chapter. Other
important functions of frontage roads are minimizing interference with operations on the through-
traffic lanes while still providing access to abutting properties. For data on widths and other
design features of frontage roads and outer separations, refer to Chapters 4, 9, and 10.

Exhibit 7-16 is an example of a two-way frontage road along a divided arterial. Notice the
distance from the edge of the arterial to the location of the intersection of the cross street and
frontage road. Providing sufficient distance for turn-lane storage on the cross street is an
important design feature in frontage road design.

Grade Separations and Interchanges

Grade separations and interchanges are addressed in Chapter 10 and many of the principles
discussed are applicable to arterial streets. Although grade separations and interchanges are not
often used on arterial streets, due to high cost and limited right-of-way, they may be the only
means available for providing sufficient capacity at some critical intersections.

In some cases, grade separations can be constructed within the existing right-of-way.
Locations where grade separations should be considered on urban arterial streets are:

• at very high-volume intersections between principal arterials
• at high-volume intersections having more than four approach legs
• at high-type arterial street intersections where all other principal intersections are grade

separated
• at all railroad crossings
• at sites where terrain conditions favor separation of grades
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Exhibit 7-16.  Divided Arterial Street With Two-Way Frontage Road

Normally, where a grade separation is provided on an urban arterial street, it is included as
part of a diamond interchange. A single point urban interchange (SPUI) can provide the benefits
of a grade separation while reducing cross-street delays and right-of-way needs. Other types of
interchanges have application where more than four legs are involved. These interchange types
are discussed in Chapter 10.

Where a grade separation is proposed, it is desirable to carry the entire approach roadway
width, including parking lanes or shoulders, across or under the grade separation. However, in
cases with restricted right-of-way it may be appropriate to reduce the width. Such a reduction is
not as objectionable on arterial streets as on freeways because of lower speeds. The reduction in
parking-lane or shoulder width should be accomplished with a taper. See Chapter 10 for a
discussion on taper design elements.

Interchange elements for arterial streets may be designed with lower dimensional values than
with freeways. Desirably, loop ramps should have radii no less than 45 m [150 ft]. Diamond
ramps may have lengths as short as the minimum distance necessary to overcome the difference
in elevation between the two roadways at suitable gradients. The length of speed-change lanes
should be consistent with design speed. Chapter 10 provides criteria for design of interchanges
and grade separations.
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Erosion Control

When an urban arterial is designed with an open-ditch cross section, rural erosion control
measures should be applied and water quality impacts should be considered. Curbed cross
sections usually need more intensive treatment to prevent damage to adjacent property and
siltation in sewers and drainage systems. Seeding, mulching, and sodding are usually employed to
protect disturbed areas from erosion. Landscaping features, such as ground cover plantings,
bushes, and trees, are also employed to control erosion, enhance beauty, and provide a visual
buffer for adjacent properties.

Lighting

Adequate lighting is very important for safe operation of an urban arterial and also aids older
drivers. The higher volumes and speeds, that are typically found on an arterial, make it especially
challenging for the driver to make correct decisions with adequate time to execute the proper
maneuvers without creating undue conflict in the traveled way. Where lighting is adequate,
sudden braking and swerving are minimized. The visibility of signing and pavement marking also
helps to smooth traffic flow. A safely designed, adequate lighting system is more important to
optimum operation of an urban arterial than for any other type of city street. The lighting should
be continuous and of an energy-saving type. Lighting in an urban area is often a matter of civic
pride and is a deterrent to crime. In the event that it is impractical to provide continuous lighting,
consideration should be given to providing intermittent lighting at such locations as intersections
and ramp termini. The AASHTO Informational Guide for Roadway Lighting (13) is
recommended as a source of lighting information.

Bikeways

Appropriate consideration should be given to practical measures for enhancing bicycle
travel. If special bicycle facilities are desired, roadway widths should be adequate and the design
of such facilities should be in accordance with the AASHTO Guide for the Development of
Bicycle Facilities (6). For additional information on bicycle facilities, Chapters 2 and 4 also
should be consulted.

Public Transit Facilities

Wherever there is a demand for highways to serve passenger car traffic, there is likewise a
potential demand for public transportation. With almost total elimination of fixed-rail transit
vehicles from surface streets and the increased use of free-wheeled buses, public transit has
become increasingly compatible with other highway traffic. Other high-volume passenger
vehicles such as the minibus, taxicab, and limousine may merit serious consideration in the
overall planning of a high-volume arterial. The transit vehicle is more efficient than the private
automobile with respect to street space occupied per passenger carried. With proper recognition
of bus needs and provisions for them in the design and operation of highways, buses can become



Rural and Urban Arterials (Urban)

501

even more compatible with highway traffic in the future.  The detailed discussion of bus facilities
presented below is not intended to indicate that other types of mass transit facilities should not be
considered. The more sophisticated public transit modes, including fixed rail, present unique and
varied problems that are outside the scope of roadway design. Therefore, this discussion
concentrates on the transit arrangements that most directly affect roadway design. Other transit
modes need studies appropriate for that specific mode.

The vehicle-carrying capacity of through traffic lanes is decreased when a transit vehicle and
other traffic use the same lanes. A bus stopping for passenger loading, for example, not only
blocks traffic in that particular lane but affects traffic operations in all lanes. It is desirable that
such interferences be minimized through careful planning, design, and traffic control measures.

The needs of public transit should be considered in the development of an urban highway
improvement program. The routings of transit vehicles (including turns and transfer points) and
the volumes of buses (i.e., average or minimum headways) should be considered in highway
design. Design and operational features of the highway that are affected by these considerations
include:  (1) locations of bus stops (spacing and location with respect to intersections), (2) design
of bus stops and turnouts, (3) reservation of bus lanes, and (4) special traffic control measures.
Because some of the design and control measures that are beneficial to bus operation have an
adverse effect on other traffic, and vice versa, a compromise that is most favorable to all users is
appropriate.

Location of Bus Stops

The demand for bus service is largely a function of land-use patterns. The general location of
bus stops is largely dictated by patronage and by the locations of intersection bus routes and
transfer points. Bus stops should be located for the convenience of patrons.

The specific location of a bus stop within the general area where a bus stop is needed is
influenced not only by convenience to patrons but also by the design and operational
characteristics of the highway. Except where cross streets are widely spaced, but stops are usually
located in the immediate vicinity of intersections. This facilitates crossing of streets by patrons
without the need for midblock crosswalks. Midblock locations for bus stops may be appropriate
where blocks are exceptionally long, or where bus patrons are concentrated at places of
employment or residences that are well removed from intersections.

Bus stops at intersections may be located on the near (approach) or far (departure) side of the
intersection. There are advantages and disadvantages to both near- and far-side locations, and the
specific location for each bus stop should examined separately to determine the most suitable
arrangement. Factors that should be considered include service to bus patrons, efficiency of
transit operations, and efficiency of traffic operations. Far-side bus stops are advantageous at
intersections where (1) other buses may turn left or right from the arterial, (2) turning movements
from the arterial by other vehicle types, particularly right turns, are heavy, and (3) approach
volumes are heavy, creating a large demand for vehicle storage on the near-side approach. Far-
side bus stops have also proven to be effective in reducing collisions involving pedestrians. Sight
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distance conditions generally favor far-side bus stops, especially at unsignalized intersections; a
driver approaching a cross street on the through lanes of an arterial can better see any vehicles
approaching from the right if no bus is present. At near-side bus stops, the view of through
drivers to their right may be blocked by a stopped bus. If the intersection is signalized, the bus
may block the view of one of the signal heads.

Another disadvantage of near-side bus stops is the difficulty encountered by other vehicles in
making turns while a bus is loading. Drivers frequently proceed around the bus to turn right,
which interferes first with other traffic on the arterial and then with the bus as it leaves the stop.
This disadvantage is eliminated if the cross street is one way from right to left. Thus, where the
street pattern consists of a one-way grid, there is some advantage in having stops at alternate
cross streets in advance of the streets crossing from right to left.

Where buses turn left, the bus stop should be located at least one block before the turn. Even
with this arrangement the bus must cross all traffic lanes in the direction of travel to reach the left
lane for the turn. Midblock bus stops are used occasionally under these circumstances, but the bus
maneuver may be more difficult.

On highly developed arterials with ample rights-of-way, bus turnouts, and speed-change
lanes, there is a definite traffic advantage to the far-side bus stop, as shown in Exhibit 7-17A.
Such stops can be combined with speed-change lanes for turning vehicles entering the arterial.
Where the stop is located on the near side of an intersection, vehicles turning right from the
through lanes of the arterial cannot use the deceleration lane when it is occupied by a transit
vehicle and instead may maneuver around it on the through lanes. Where the bus stop is located
on the far side of the intersection, traffic turning right from the arterial does so freely. A far-side
bus stop should be situated a short distance beyond the intersection so that vehicles making right
turns onto the arterial can use a part of the acceleration lane as a maneuvering area and so that
succeeding buses have space to stop without blocking the cross street.

Bus stops on cross streets should be located and arranged so that transferring riders do not
need to cross the arterial, regardless of the direction they wish to travel. Exhibit 7-17A shows
such an arrangement.

In another bus-stop arrangement for an arterial with frontage roads (Exhibit 7-17B), buses
leave and return to the arterial by special openings in the outer separation in advance of and
beyond the intersection. This arrangement has the advantage that buses stop in a position well
removed from the through lanes. Right-turning traffic to and from the arterial street may also use
these special openings, thereby reducing conflicts at the intersection proper. In an alternate
arrangement, no slot in advance of the intersection is provided, and buses cross to the frontage
road at the intersection proper. Both slots may be eliminated where the frontage road is
continuous between successive cross streets because buses can leave the through lanes at one
intersection and use the frontage road to reenter the arterial at the next intersecting street. This
type of operation is fitting where bus stops are widely spaced.
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Exhibit 7-17.  Bus Stops at Special Locations Adjacent to Certain Arterials

Midblock bus stops, like far-side stops, have an advantage over near-side stops in that the
full roadway width on the intersection approach is made available for vehicle storage and turning
maneuvers to maintain as high a capacity as practical. However, midblock bus stops are not
generally suitable for streets where parking is permitted, as is the case on some arterials during
off-peak hours. Usually, a crosswalk is needed at midblock bus stops to provide access to the
stops from either side of the arterial and to serve as an intermediate crosswalk for other pedestrian
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traffic. In such cases, signal control may be needed to create safe crossing opportunities for
pedestrians. Midblock signals violate driver expectations and merit careful consideration of their
safety and operational implications. At a major transit stop and heavy pedestrian movements, a
pedestrian grade separation may be warranted.

Additional information concerning the location and design of bus stops is presented in TCRP
Report 19, Guidelines for the Location and Design of Bus Stops (14).

Bus Turnouts

The interference between buses and other traffic can be considerably reduced by providing
stops clear of the lanes for through traffic. However, since bus operators may not use the turnout
if they have difficulty maneuvering back into traffic, the bus turnout should be designed so that a
bus can enter and leave easily. The preceding discussion and Exhibit 7-17 illustrate methods for
reducing interference between buses and through traffic on high-type arterials. It is somewhat rare
that sufficient right-of-way is available on lower-type arterial streets to permit turnouts in the
border area, but advantage should be taken of every opportunity to do so. For geometric details,
see the section on “Bus Turnouts” in Chapter 4.

Reserved Bus Lanes

Some improvement in transit service can be realized by excluding other traffic from the curb
lane of arterial streets. The success of this regulatory measure is rather limited in most instances,
however, for the reason that vehicles making right turns must occupy this same lane, it is not
practical to exclude them, for distances up to a block or two in advance of the turn. Vehicles
preparing to turn right cannot be distinguished from through traffic, so compliance with the
exclusive bus lane regulation is largely on a voluntary basis. Nevertheless, there are certain
combinations of conditions under which at least a modest improvement in transit service can be
achieved. These conditions are not always apparent or definable, and the only way to determine
conclusively that there will be overall benefit is to test the regulation in practice at locations
where a preliminary investigation indicates likelihood of success.

There is one arrangement by which exclusive use of the reserved lane by buses can be
ensured with little enforcement. This can be accomplished by offsetting the division line on a
multilane street so that there is only one lane in a given direction of travel and that lane is
reserved for the exclusive use of buses; the remaining lanes are available for normal traffic in the
opposite direction of travel. The current MUTCD (1) specifies markings for the division line
separating traffic in the two directions of travel. Permanently installed flexible stanchions may be
used to further accentuate the division between the bus lane and lanes for ordinary traffic.
Exhibits 7-18 illustrates a street operated in this manner. The lane on the left in the exhibit is
reserved for buses traveling toward the viewer. This arrangement is sometimes referred to as a
“contra-flow” system. This system may facilitate bus movements under high-density traffic
conditions.



Rural and Urban Arterials (Urban)

505

Exhibit 7-18.  Exclusive Bus Lane

Reserved bus lanes of the type described above may be justified even for relatively few
buses. Because the carrying capacity of a bus is many times that of a passenger car, a small
number of buses can serve the same number of people as a large number of passenger cars.

Traffic Control Measures

Traffic control devices on arterial streets are usually installed with the intent of favoring
automobile traffic, with only secondary consideration to transit vehicles. For express-bus
operation, the control measures that are most favorable for one mode will generally be equally
well suited for the other. However, where local service is provided by buses with frequent stops
to pick up and discharge passengers, a signal system that provides for good progressive
movement of privately operated vehicles may actually result in reverse progression for buses. The
resulting slow travel speed for buses tends to discourage patronage, further adding to the already
heavy volume of automobile traffic.

Limited effort has been devoted to development of traffic control systems that are more
favorable for bus service without serious adverse effects on other traffic. This approach holds
some promise of improving travel speeds for buses and making public transit more attractive.
This result can be achieved only at the expense of reduced travel speed for passenger cars, but in
some instances this solution may be the most beneficial from the overall point of view.
Development of a suitable signal system requires careful investigation by those possessing the
proper technical skills and should be a part of the arterial improvement program, involving the
joint efforts of traffic specialists, the transit industry, and the design team.
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Although the major emphasis in the application of traffic control measures is in minimizing
delay, the control measures can be used to facilitate bus operation in other respects, particularly
where buses turn from the arterial onto a cross street.

Buses making right turns may create a problem where the cross street is narrow and the
adjoining property is developed so intensively that it is not practical to provide a sufficiently long
curb return radius. Buses turning right from the curb lane may encroach beyond the centerline of
the cross street. At signalized intersections, the space beyond the centerline is normally occupied
by vehicles stopped for the red signal. Under such conditions, the stop line on the cross street
should be relocated to provide sufficient space for a bus to turn, and where needed, an auxiliary
signal head should be placed at the relocated stop line to obtain compliance.
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CHAPTER 8
FREEWAYS

INTRODUCTION

Freeways are arterial highways with full control of access. They are intended to provide for
high levels of safety and efficiency in the movement of large volumes of traffic at high speeds.
Control of access refers to the regulation of public access rights to and from properties abutting
the highway. With full control of access, preference is given to through traffic by providing
access connections with selected public roads only and by prohibiting crossings at grade and
direct private driveway connections.

The principal advantages of access control include preservation of highway capacity, higher
speeds, and improved safety for highway users. Highways with fully controlled access have grade
separations at all railroads and grade separations or interchanges at selected public crossroads.
The remaining crossroads are interconnected or terminated.

Essential freeway elements include the roadway, medians, grade separations at crossroads,
ramps to and from the traveled way at selected locations, and in some cases, frontage roads.
Chapters 2, 3, and 4 describe roadway design elements, controls, and criteria applicable to all
highway classes. This chapter identifies the various types of freeways, emphasizes selected
features, and discusses other design details unique to freeways. The design of freeway
interchanges is discussed in Chapter 10.

This chapter is organized with an introductory section on the general design considerations
for freeways, followed by separate discussions of the design of rural and urban freeways.

GENERAL DESIGN CONSIDERATIONS

Design Speed

As a general consideration, the design speed of urban freeways should not be so high as to
exceed the limits of prudent construction, right-of-way, and socioeconomic costs. However, this
design speed should not be less than 80 km/h [50 mph]. Wherever this minimum design speed is
used, it is important to have a properly posted speed limit, which is enforced during off-peak
hours. On many urban freeways, particularly in developing areas, a design speed of 100 km/h
[60 mph] or higher can be provided with little additional cost. In addition, the corridor of the
main line may be relatively straight with the character of the roadway and location of
interchanges permitting an even higher design speed. Under these conditions, a design speed of
110 km/h [70 mph] is desirable because higher design speeds are closely related to the overall
quality and safety of a facility. For rural freeways, a design speed of 110 km/h [70 mph] should
be used. In mountainous terrain, a design speed of 80 to 100 km/h [50 to 60 mph], which is
consistent with driver expectancy, may be used.
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Design Traffic Volumes

Both urban and rural freeways should normally be designed to accommodate traffic
projections for a 20-year period, particularly in the case of new construction. However, some
elements of freeway reconstruction may be based on a lesser design period. For further guidance
on the selection of appropriate periods for forecasting design traffic volumes, refer to Chapter 2.
Specific capacity needs should be determined from directional design hourly volumes (DDHV)
for the appropriate design period. In large metropolitan areas, the selection of appropriate design
traffic volumes and design periods may be influenced by system planning. Segments of freeways
may be constructed or reconstructed to be commensurate with either intermediate traffic demands
or traffic based on the completed systems, whichever may be most appropriate.

Levels of Service

Procedures for traffic operational analyses for freeways, including appropriate adjustments
for operational and highway factors, are found in the Highway Capacity Manual (HCM) (1),
which also presents a thorough discussion of the level-of-service concept. Designers should strive
to provide the highest level of service practical and consistent with anticipated conditions. The
levels of service concept is discussed in Chapter 2 and the levels of service are summarized in
Exhibit 2-31. For acceptable degrees of congestion, freeways and their auxiliary facilities
(i.e., ramps, mainline weaving sections, and C-D roads in urban and developing areas) should
generally be designed for level-of-service C. In heavily developed sections of metropolitan areas,
achievement of level-of-service C may not be practical and the use of level-of-service D may be
appropriate. In rural areas, level-of-service B is desirable for through and auxiliary lanes,
although level-of-service C may be acceptable on auxiliary facilities carrying unusually high
volumes.

Pavement and Shoulders

Freeways should have a minimum of two through-traffic lanes for each direction of travel.
Through-traffic lanes should be 3.6 m [12 ft] wide. Pavements should have a high-type surface
with adequate skid resistance and provide a high degree of structural adequacy. Cross slopes
should range between 1.5 and 2 percent on tangent sections, with the higher value recommended
for areas with moderate rainfall. For areas of heavy rainfall, a cross slope of 2.5 percent may be
needed to provide adequate pavement drainage. Appropriate cross-slope rates are discussed in
Chapter 4. For elevated freeways on viaducts, two-lane pavements usually are sloped to drain the
full width of the roadway. On wider facilities, particularly in areas with heavy rainfall, the crown
may be located on the lane line at one-third or one-half the total width from one edge, thus
providing two directions for surface drainage. In areas that experience snow, the median and
cross slopes of the traveled way should be designed to prevent snow stored in the median from
melting and draining across the roadway. This may result in icing conditions during freezing
temperatures.
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Paved shoulders should be continuous on both the right and left sides of all freeway
facilities. The usable paved width of the right shoulder should be at least 3.0 m [10 ft]; where the
DDHV for truck traffic exceeds 250 veh/h, the right shoulder width should be 3.6 m [12 ft]. On
four-lane freeways, the median (or left) shoulder is normally 1.2 to 2.4 m  [4 to 8 ft] wide, at least
1.2 m [4 ft] of which should be paved and the remainder stabilized. On freeways of six or more
lanes, the usable paved width of the median shoulder should also be 3.0 m [10 ft] and preferably
3.6 m [12 ft] where the DDHV for truck traffic exceeds 250 veh/h. Ramp shoulder widths are
usually constructed adjacent to acceleration and deceleration lanes with transitions to the freeway
shoulder width at the taper ends. Shoulder cross slope should range between 2 and 6 percent and
can be at least 1 percent greater than the pavement cross slope on tangent sections to facilitate
drainage. To provide visual contrast, the color or texture of the shoulders should be different from
that of the traveled way. On viaducts, differentiation between traveled way and shoulders is
sometimes accomplished by striping and pavement marking, or by corrugated depressions.

Curbs

In the interest of safety, caution should be exercised in the use of curbs on freeways; where
curbs are provided in special cases, they should not be closer to the traveled way than the outer
edge of shoulder and should be easily traversable. An example of a special case in which shoulder
curbs are used on freeways is at locations where curbs are provided to control drainage and
reduce erosion. For more information, refer to the discussion on curb types and their placement in
Chapter 4.

Superelevation

The full superelevation rates used on freeways that are depressed, built at ground-level, or
elevated on embankments are not generally applicable to elevated freeways on viaducts.
Appearance and adjacent development somewhat limit the difference in elevation between the
edges of multilane pavements. Superelevation rates of 6 to 8 percent are generally the maximum
that should be used on viaducts. The lower value may be used where freezing and thawing
conditions are likely, because bridge decks generally freeze more rapidly than other roadway
sections. Combinations of design speed and curvature that result in superelevation rates greater
than these values should be avoided. Where freeways are intermittently elevated on viaducts, the
lower superelevation rates should be used throughout to promote consistently safe operation.
Maximum superelevation rates of 8 to 12 percent are applicable for freeways if snow and ice
conditions are not a factor. In lower speed situations, a maximum superelevation rate of 6 percent
may be applicable.

Grades

Maximum grades for freeways are presented in Exhibit 8-1 as a function of design speed and
terrain type. Grades on urban freeways should be comparable to those on rural freeways of the
same design speed. Steeper grades may be tolerated in urban areas, but the closer spacing of
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interchange facilities and the need for frequent changes in speed make it desirable to use flat
grades wherever practical. On sustained upgrades, the need for climbing lanes should be
investigated, as discussed in Chapter 3.

Metric US Customary

Design Speeds (km/h) Design Speeds (mph)

80 90 100 110 120 130 50 55 60 65 70 75 80Type of
Terrain Grades (%)a Grades (%)a

Level 4 4 3 3 3 3 4 4 3 3 3 3 3
Rolling 5 5 4 4 4 4 5 5 4 4 4 4 4
Mountainous 6 6 6 5 – 6 6 6 5 5 – –
a  Grades 1% steeper than the value shown may be used for extreme cases in urban areas

where development precludes the use of flatter grades and for one-way downgrades except
in mountainous terrain.

Exhibit 8-1.  Maximum Grades for Rural and Urban Freeways

Structures

The design of bridges, culverts, walls, tunnels, and other structures should be in accordance
with the principles of the current Standard Specifications for Highway Bridges (2) or with the
AASHTO LRFD Bridge Design Specification (3). Structures carrying freeway traffic should
provide an MS-18 [HS20-44] design loading.

The clear width on bridges carrying freeway traffic should be as wide as the approach
roadway, as discussed in Chapter 10. On bridges longer than 60 m [200 ft], some economy in
substructure costs may be gained by building a single structure rather than twin parallel
structures. In such cases, the approach shoulder widths are provided and a median barrier is
extended across the bridge.

Structures carrying ramps should provide a clear width equal to the ramp width and paved
shoulders. Clear widths for structures carrying auxiliary lanes are discussed in Chapter 10.

The structure width and lateral clearance of highways and streets overpassing or
underpassing the freeway are dependent on the functional classification of the highway or street
as discussed in Chapters 5, 6, and 7.

Vertical Clearance

The vertical clearance to structures passing over freeways should be at least 4.9 m [16 ft]
over the entire roadway width, including auxiliary lanes and the usable width of shoulders (with
an allowance for future resurfacing). In highly developed urban areas, where attainment of the
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4.9-m [16-ft] clearance would be unreasonably costly, a minimum clearance of 4.3 m [14 ft] may
be used if there is an alternate freeway facility with the minimum 4.9-m [16-ft] clearance.

Because of their lesser resistance to impacts, the vertical clearance to sign trusses and
pedestrian overpasses should be 5.1 m [17 ft]. Similarly, the vertical clearance from the deck to
the cross bracing of through-truss structures should also be a minimum of 5.1 m [17 ft], with an
allowance for future resurfacing.

Horizontal Clearance to Obstructions

Urban freeways at ground level and rural freeways should have clear zone widths consistent
with their operating speed and side slopes, as discussed in the section on “Horizontal Clearance to
Obstructions,” the section in Chapter 4. Detailed discussions of clear zone are also included in the
AASHTO Roadside Design Guide (4). Non-traversable obstacles within the clear zones should be
shielded by an appropriate barrier as long as the barrier represents a lower potential for severe
crashes. Fixed objects that cannot be relocated beyond the clear zone should be of a “breakaway”
design or shielded by barriers or attenuators. Bridge piers and abutments should be located as
near to the clear-zone edge as practical. Where the width of the median is less than twice the
width of the clear zone, shielding of median piers may be appropriate depending on median width
and traffic volumes.

In rural cut sections, drainage is carried in side ditches. The foreslope and backslope should
provide an acceptable recovery area in case drivers lose control and leave the traveled way.
Where the right-of-way on a depressed freeway is insufficient to provide for a swale, the drainage
is usually carried in a gutter section along the outside edge of the shoulder. Details of gutter
sections are covered in the section on curbs in Chapter 4.

Depressed freeways in urban areas have more restrictive rights-of-way and retaining walls or
bridge piers may need to be placed within the clear zone. Such walls and piers should not be
located on the shoulder and preferably should be at least 0.6 m [2 ft] beyond the outer edge of
shoulder. Retaining walls and pier crash walls should incorporate an integral concrete barrier
shape, or they should be offset from the shoulder to permit shielding with a barrier, as discussed
in the section on “Lateral Clearances” in Chapter 10. Where walls are located beyond the clear
zone or are not needed, back slopes should be traversable and fixed objects within the clear zone
should be of a “breakaway” design or shielded.

Elevated freeways on embankments generally warrant roadside barriers where slopes are
steeper than 1V:3H or where the area beyond the toe of slope remaining within the clear zone is
not traversable. The tops of retaining walls used in conjunction with embankment sections should
be located no closer to the roadway than the outer edge of shoulder, and the walls should
incorporate the concrete barrier shape or be appropriately shielded.
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Ramps and Terminals

The design of ramps and connections for all freeway types is covered in Chapter 10.

Outer Separations, Borders, and Frontage Roads

An outer separation is defined as the area between the traveled way of the main lanes and a
frontage road or local street. A border is defined as the area between the frontage road or local
street and the private development along the road. Where there are no frontage roads or local
streets functioning as frontage roads, the area between the traveled way of the main lanes and the
right-of-way limit should be referred to as the border. Because of the dense development along
urban freeways, frontage roads are often needed to maintain local service and to collect and
distribute ramp traffic entering and leaving the freeway. Where the freeway occupies a full block,
the adjacent parallel streets are usually retained as frontage roads, which are discussed in detail in
Chapter 4.

The outer separation or border provides for shoulders, sideslopes, drainage, access-control
fencing, and in urban areas, retaining walls and ramps. In sensitive areas, the outer separation or
border may also provide for noise abatement measures. Usually, the outer separation is the most
flexible element of an urban freeway section. Adjustment in width of right-of-way, as may be
needed through developed areas, ordinarily is made by varying the width of the outer separation.

The outer separation or border should be as wide as can be attained economically to provide
a buffer zone between the freeway and its adjacent area. The border should extend beyond the
construction limits, where practical, to facilitate maintenance operations and safety. Wide outer
separations also permit well-designed ramps between the freeway and the frontage road. The
typical range in widths of outer separations is 25 to 45 m [80 to 150 ft], but much narrower
widths may be used in urban areas if retaining walls are employed.

RURAL FREEWAYS

Rural freeways are similar in concept to urban ground-level freeways, but the alignment and
cross-sectional elements are more generous in design, which is commensurate with the higher
design speed and generally with greater availability of right-of-way.

Where terrain permits, a design speed of 110 km/h [70 mph] should be used on rural
freeways, which will result in a safer freeway than one designed for a lower speed. In some cases,
fewer lanes will also be needed to accommodate a given volume of traffic at the desired level of
service, which for rural freeways is usually level-of-service B. In addition to the increased safety
and capacity, for a given level of service higher design speeds result in a more comfortable
driving environment and reduce both fuel consumption and operating costs.

Freeways are initially designed to accommodate anticipated traffic for about 20 years and
remain in service for a much longer time. Any cost savings realized by initially constructing for
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lower design speeds may be outweighed by the high costs, disruption to the environment, and
inconvenience to traffic that accompany the reconstruction of major facilities.

Although level-of-service B is desirable for rural freeways, level-of-service C may be
appropriate on auxiliary facilities where volumes are unusually high. Rural freeways generally
have four through-traffic lanes except on approaches to metropolitan areas where six or more
lanes may be provided. Where intersecting highways are classified as collectors and higher,
interchanges are usually provided. Local roads may be terminated at the freeway, connected to
frontage roads or other local roads for continuity of travel, or carried over or under the freeway by
grade separation with or without interchange.

Alignment and Profile

Rural freeways are generally designed for high-volume and high-speed operation. They
should, therefore, have smooth flowing horizontal and vertical alignments. Proper combinations
of flat curvature, shorter tangents, gentle grades, variable median widths, and separate roadway
elevations to enhance the safety and aesthetic aspects of freeways. Advantage should be taken of
favorable topographic conditions to achieve the desired goals. Changing median widths on
tangent alignments should be avoided where practical to avoid a distorted appearance.

Because there are usually fewer physical constraints in constructing the rural road network
than its urban counterpart, rural freeways can usually be constructed near ground level with
smooth and relatively flat profiles. The profile of a rural freeway is controlled more by drainage
and earthwork considerations and less by the need for frequent grade separations and
interchanges. If the need for elevated or depressed sections should occur, the guidelines for urban
freeways are appropriate.

Even though the profile may satisfy all the design controls, the finished vertical alignment
may appear forced and angular if minimum criteria are used. The designer should check profile
designs in long continuous plots to help avoid an undesirable roller-coaster alignment in rolling
terrain. The relation of horizontal and vertical alignment should be studied simultaneously to
obtain a desirable combination.

Exhibit 8-2 illustrates a typical ground-level rural freeway with a curvilinear alignment.

Medians

Median widths of about 15 to 30 m [50 to 100 ft] are common on rural freeways. The 15-m
[50-ft] dimension shown in Exhibit 8-3A provides for 1.8-m [6-ft] graded shoulders and 1V:6H
foreslopes with a 1.0-m [3-ft] median ditch depth. Adequate space is provided for vehicle
recovery; however, median piers may need shielding for heavier traffic volumes, in accordance
with Chapter 4. The 30-m [100-ft] dimension shown in Exhibit 8-3B permits the designer to use
independent profiles in rolling terrain to blend the freeway more appropriately with the
environment while maintaining flat slopes for vehicle recovery. In flat terrain, the 30-m [100-ft]
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median is also suitable when stage construction will involve the future addition of two 3.6-m
[12-ft] traffic lanes.

Exhibit 8-2.  Typical Ground-Level Rural Freeway

Where the terrain is extremely rolling, or the land is not suitable for cultivation or grazing, a
wide variable median with an average width of 45 m [150 ft] or more, as shown in Exhibit 8-3C,
may be attainable. Such a width permits the use of independent roadway alignment, both
horizontally and vertically, to its best advantage in blending the freeway into the natural
topography. Foreslopes and backslopes used within the clear zone should provide for vehicle
recovery. The remaining median width may be left in its natural state of vegetation, trees, and
rock outcroppings to reduce maintenance costs and add scenic interest to passing motorists. The
combination of independent alignment and a natural park-like median is pleasing to motorists.
For driver reassurance, the opposing roadway should be in view at frequent intervals.

Median widths in the range of 3.0 to 9.0 m [10 to 30 ft], as shown in Exhibit 8-3D, may be
needed where right-of-way restrictions dictate or in mountainous terrain. These medians are
usually paved, and where roadways are crowned, underground drainage should be provided.
Considering the usual developing-area traffic volumes as well as operational characteristics in
mountainous areas, a median barrier is usually warranted as a safety measure.

To avoid extreme adverse travel for emergency and law-enforcement vehicles, emergency
crossovers on rural freeways are normally provided where interchange spacing exceeds 8 km
[5 mi]. Between interchanges, emergency crossovers are spaced at 5- to 6.5-km [3- to 4-mi]
intervals. Maintenance crossovers may be needed at one or both ends of interchange facilities,
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depending on interchange type, for the purpose of snow removal and at other locations to
facilitate maintenance operations. Maintenance or emergency crossovers generally should not be
located closer than 450 m [1,500 ft] to the end of a speed-change taper of a ramp or to any
structure. Crossovers should be located only where above-minimum stopping sight distance is
provided and preferably should not be located on superelevated curves.

Exhibit 8-3.  Typical Rural Medians
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The width of the crossover should be sufficient to provide safe turning movements and
should have a surface capable of supporting maintenance equipment used on it. The crossover
should be depressed below shoulder level to be inconspicuous to traffic and should have 1V:10H
or flatter sideslopes to minimize its effect as an obstacle to uncontrolled vehicles. Crossovers
should not be placed in restricted-width medians unless the median width is sufficient to
accommodate the vehicle length (i.e., 7.5 m [25 ft] or more). Where median barriers are
employed, each end of the barrier at the median opening may need a crashworthy terminal. For
further information, refer to the AASHTO Roadside Design Guide (4).

Sideslopes

Flat, rounded sideslopes, fitting with the topography and consistent with available right-of-
way, should be provided on rural freeways. Foreslopes of 1V:6H or flatter are recommended in
cut sections and for fills of moderate height, as discussed in Chapter 4. Where fill heights are
intermediate, a combination of recoverable and non-recoverable slopes may be used to provide
the acceptable vehicle recovery area, (see the AASHTO Roadside Design Guide [4] for further
information). For high fills, steeper slopes protected by guardrail may be needed. In addition,
backslopes of 1V:3H or flatter permit normal landscaping and erosion control practices and ease
maintenance operations. In highly productive agricultural areas, steeper slopes may be used, but
the combination of foreslope, backslope, and ditch configuration should permit vehicle recovery.
Where rock or loess deposits are encountered, backslopes may be nearly vertical, but, where
practical, should be located to provide an adequate recovery area for errant vehicles.

Frontage Roads

The need for local service across and along rural freeway corridors is usually considerably
less than that along highly developed urban freeways. Therefore, along rural freeways, frontage
roads are usually intermittent and relatively short. They either provide access to one or more
severed properties or provide continuity of a local road by connecting it with a grade-separated
crossroad.

Where a rural freeway is located parallel to and in close proximity to a major highway, the
major highway is often converted to a continuous two-way frontage road and serves as a collector
facility.

Because of the lack of continuity and the type of service being provided, newly constructed
frontage roads are normally two-way facilities in rural areas. Since traffic operations at two-way
frontage road intersections with grade-separated crossroads are more complex, such intersections
are generally located as far as practical from grade-separation structures and interchange ramp
terminals.

Rural frontage roads are generally outside the control-of-access line but within the right-of-
way limits. Design details for rural frontage roads are similar to those used for local roads, as
discussed in Chapters 3 and 5.
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URBAN FREEWAYS

General Design Characteristics

Urban freeways are capable of carrying high traffic volumes. While freeways may have from
4 to 16 through-traffic lanes, typically there are no more than 4 through lanes in one direction.
Urban freeways are classified as depressed, elevated, ground-level, or combination-type. These
freeway types are used as is appropriate for conditions. Special freeway designs are appropriate
for special conditions, including freeways with reverse-flow roadways, dual-divided freeways,
and freeways with collector-distributor roads.

This section on urban freeways first discusses the design of freeway medians that is common
to all freeway types. Then, separate discussions are presented on depressed, elevated, ground-
level, and combination-type freeways, as well as special freeway designs that may be used in
urban areas. The accommodation of transit and high-occupancy vehicle facilities within a freeway
is also discussed.

Medians

A wide separation between traffic in opposing directions is safer and more comfortable for
motorists, and therefore the median on urban freeways should be as wide and flat as practical.
Additional median width may be used for mass transit or to provide additional lanes if more
capacity is needed in the future. However, in densely developed areas with expensive right-of-
way, the width available for a median is usually restricted. The minimum median width for a
four-lane urban freeway should be 3.0 m [10 ft], which provides for two 1.2-m [4-ft] shoulders
and a 0.6-m [2-ft] median barrier. For freeways with six or more lanes, the minimum width
should be 6.6 m [22 ft], and preferably 7.8 m [26 ft] when the DDHV for truck traffic exceeds
250 veh/h to provide a wider median shoulder to accommodate a truck. The AASHTO Roadside
Design Guide (4) should be utilized to determine median barrier warrants. When a median barrier
is present, additional horizontal clearance may be needed to provide minimum stopping sight
distance along the inside lane on sharper curves. Narrow medians should generally be paved for
the full width with a material that is contrasting in color or texture.

Median crossovers for emergency or maintenance purposes are not generally warranted on
urban freeways due to the close spacing of interchange facilities and the extensive development
of the abutting street network.

Depressed Freeways

General Characteristics

A depressed freeway may occupy a full-block width and be parallel to the grid street system
for most of its length. The roadways of a depressed freeway are typically located at an
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approximate depth of 4.9 m [16 ft] in addition to the clearance for structural depth below the
surface of the adjacent streets. An allowance for future pavement overlays is frequently
considered in setting the vertical clearance. In addition, depressed freeways are often flanked on
one or both sides by frontage roads at the street level. All important streets pass over the through
roadways while other streets are intercepted by frontage roads or terminated at the right-of-way
line. Interchange with surface streets is usually accomplished by ramps that connect directly with
frontage roads or by diamond interchanges where there are no frontage roads. Higher types of
interchanges are usually provided at intersections with certain major arterials. For a more detailed
discussion of interchange design, see Chapter 10.

Depressed freeways are desirable in that they reduce the impacts of the freeway on adjacent
areas. They are less conspicuous than ground-level or elevated freeways, permit surface streets to
cross at their normal grade, and reduce freeway noise. However, these advantages have to be
balanced against the increased cost of providing for drainage. While gravity drainage facilities are
sometimes feasible to accommodate the design storm without inundating the traveled way,
pumping stations may be needed. For design guidance on pumping stations, refer to the AASHTO
Model Drainage Manual (5).

Structures passing over the depressed freeway and retaining walls located in close proximity
to the traveled way should be fenced to prevent objects being dropped or thrown onto vehicles
below.

Slopes and Walls

Sideslopes of a depressed freeway are designed in the same manner as those for cut slopes,
except that the slopes are more likely to be controlled by width restrictions. Foreslopes, if used
beyond the shoulder, should be safely traversable.

Normally foreslopes are not used beyond the shoulder on depressed freeways and, in such
cases, backslopes should not be steeper than 1V:3H. In developed areas, space may not be
available for desirable slopes, particularly where ramps are present, and full- or partial-height
retaining walls may be needed. Various forms of retaining walls are appropriate for depressed
freeways, including those constructed of solid masonry, concrete, stone, precast panels, or metal.
Wall types include cantilevered, crib or bin, mechanically stabilized, or sheet piling. Where
retaining walls are used in combination with earth slopes, the walls may be located either at the
roadway level adjacent to the shoulder or on the outer portion of the separation above the
depressed roadway.

Retaining walls above the roadway are desirable from the driver’s viewpoint, because they
provide a more open feeling at the roadway level. This arrangement also provides space for
storage of snow plowed from the freeway traveled way and shoulders. However, it may be more
advantageous for the surrounding neighborhood if the wall is located at the roadway level and a
slope is located on the upper portion of the cross section. This arrangement permits effective
screening of the surrounding properties through planting. Slope maintenance may also be
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performed more safely, and noise abatement may be more effective. Both designs should be
evaluated to determine which is best suited for the particular situation.

Retaining walls should be located no closer to the roadway than the outer edge of shoulder
and preferably should be 0.6 m [2 ft] beyond the outer edge of shoulder. Where the wall is located
at or near the shoulder edge, bridge columns, light fixtures, and sign supports should not protrude
from the lower portion of the wall which should have the “safety shape” contour used on concrete
median barriers, as shown in Exhibit 10-6. To minimize the angle of potential impacts, the base
of the wall should not be placed farther than approximately 4.5 m [15 ft] from the outer edge of
the traveled way.

Where the top of the retaining wall is at the level of a frontage road, the face of the parapet
or rail should have a width equal to a normal shoulder width or be located at least 1.2 m [4 ft],
and preferably 1.8 m [6 ft], from the edge of the traveled way. Where a retaining wall is located
adjacent to an auxiliary lane or ramp, normal ramp shoulder widths should be provided.

Sight distance should be checked when designing slopes and retaining walls. On curved
alignment, the slopes, walls, and other side obstructions should be sufficiently removed from the
pavement edge to provide the design stopping sight distance for a vehicle in the traffic lane
nearest the obstruction.

Typical Cross Section

Cross sections of depressed freeways vary considerably through urban and suburban areas.
Whereas these cross sections are influenced primarily by the number of traffic lanes needed,
another important factor is availability of right-of-way, which depends on the type and value of
urban development, topography, soil and drainage conditions, and the frequency and type of
interchanges to be used. The design of a cross section should be liberal, but sometimes it is
appropriate to compromise on certain elements because of physical and economic limitations to
fit the cross section within a relatively narrow right-of-way. Exhibits 8-4 through 8-6 illustrate
depressed cross sections for various conditions.

Adjustment may be feasible in the widths of median and borders, but most adjustments must
be accomplished within the width of the outer separation.

Where the freeway is bridged by closely spaced cross streets, a continuous full-depth section
results. In outlying areas where separated crossroads are widely spaced, it usually is practical and
economical to adjust the profile to decrease the depth of cut between structures, resulting in a
combination of depressed and ground-level freeways. The benefits of this approach are that ramp
design is simplified, excavation quantities are reduced, sideslopes can be flatter, and wider
marginal areas at street level may be provided within the right-of-way. Generally, the result is a
more pleasing freeway.
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Exhibit 8-4.  Typical Cross Section for Depressed Freeways

Exhibit 8-5.  Restricted Cross Sections for Depressed Freeways
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Exhibit 8-4 shows a typical cross section for depressed freeways, providing for a 3.0- to
6.6-m [10- to 22-ft] median, 3.6-m [12-ft] traffic lanes, and 15 m [50 ft] for each frontage road
plus border. The minimum median width of 3.0 to 6.6 m [10 to 22 ft] is based on the assumption
that for depressed freeways the ultimate section is constructed initially. However, where
additional width is needed in the median for staged construction, the median should be widened
in multiples of 3.6 m [12 ft] (i.e., the width of a traffic lane). Where ramps are not needed, the
uniform-width section should be graded to provide slopes as flat as practical within the available
right-of-way.

Restricted Cross Section

Exhibit 8-5A presents a typical cross section that enables depressed sections to be
constructed with earth slopes at locations without ramps but with retaining walls at ramps. The
cross section in Exhibit 8-5A includes a 12-m [40-ft] frontage road plus border, 3.6-m [12-ft]
traffic lanes, and a 3.0- to 6.6-m [10- to 22-ft] median.

Walls may be located at various points in the cross section, such as adjacent to the freeway
shoulder, adjacent to the ramp shoulder, at the top of slopes, or at various combinations of these
locations. Some variations in wall arrangements may be needed on the left and right sides, as
shown in Exhibit 8-5B.

Walled Cross Section

Exhibit 8-6 shows walled cross sections that are appropriate for depressed freeways. In this
example, the freeway is continuously walled and the ramps are omitted. Exhibit 8-6A shows a
walled cross section with no overhang.

In special cases where even less right-of-way is obtainable, the design can be further
consolidated by using an overhanging section where part of the frontage road is cantilevered over
the freeway shoulder, as shown in Exhibit 8-6B. While the value of this alternative will vary
depending on the restrictions and design selected, a typical overhang distance will range from 3.0
to 4.2 m [10 to 14 ft]. This design type may be applicable in special instances where large
buildings or other obstructions cannot be avoided. A special feature of this design is its
effectiveness in containing highway noise within the roadway and shielding abutting areas from
such noise.
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Exhibit 8-6.  Cross Sections with Retaining Walls on Depressed Freeways Without Ramps

Although the restricted cross sections shown are acceptable, they should be used only where
additional right-of-way would be extremely costly or where this type of cross section is needed to
preserve the surrounding environment.

Examples of Depressed Freeways

Exhibit 8-7 shows an aerial view of a six-lane depressed freeway in the downtown district of
a large city. This freeway fits in well with the existing street system. In this example, there is a
four-level directional interchange in the upper center of the photograph. In the more densely
developed portion (lower right), the freeway has full-height retaining walls and frontage roads. In
the center of the photograph, sufficient right-of-way is available to use slopes in lieu of retaining
walls.

Exhibit 8-8 shows a depressed freeway flanked by major surface streets on the upper level.
The auxiliary lanes of the surface street on the right side are partially cantilevered over the
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Exhibit 8-7.  Depressed Freeway



AASHTO—Geometric Design of Highways and Streets

524

Exhibit 8-8.  Depressed Freeway

freeway shoulder. The cross streets overpass the freeway with level grades, thus facilitating
traffic operations on the structures and at adjacent intersections.

Elevated Freeways

General Characteristics

An elevated freeway may be constructed on either a viaduct or an embankment. Continuous
elevation of the freeway may be appropriate in level terrain where restricted right-of-way, high
water table, extensive underground utilities, close pattern of streets to be retained, or other
circumstances make construction of a depressed freeway undesirable and perhaps uneconomical.

Several structure types are used for viaducts carrying elevated freeways. Viaduct design is
influenced by traffic demands, right-of-way, topography, foundation conditions, character of
urban development, interchange needs, availability of materials, and economic considerations.
Because of these multiple considerations, viaducts are perhaps the most difficult of all freeway
types to fit harmoniously into the environment.
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The supporting columns for viaducts are located in such a way as to provide reasonable
clearance on each side and to leave much of the ground-level area free for other use. This design
has advantages in that (1) practically all cross streets can be left open with little or no added
expense, (2) existing utilities that cross the freeway right-of-way are minimally disturbed, and
(3) surface traffic on cross streets usually can be maintained during construction with few, if any,
detours. In addition, the space under the structure can be used for surface-street traffic, for
parking, or for a transit line. If this space is not needed for these purposes, the area under the
viaduct may have a high potential value to the community for some form of joint development or
use. Such uses may include any of a wide variety of types, ranging from playgrounds to major
buildings. Conversely, the disadvantages of the design are the high costs of maintaining the
structure and its closed drainage system, susceptibility to icing, difficulty in obtaining a pleasant
appearance, and possible need for police protection in the undeveloped space beneath the
structure.

An elevated highway on an earth embankment should be of sufficient height to permit
intersecting surface roads to pass under it. Freeways on embankments are feasible in suburban
areas where crossing streets are widely spaced and where wide right-of-way and fill material are
available. Usually, an embankment section occurs on a combination-type freeway in rolling
terrain where excavation material from depressed portions is used for the embankment. Where
appropriate, the fill may be confined by partial- or full-height walls on one or both sides. In
addition, the sloped areas are available for planting to improve the appearance of the freeway.

Medians

Where a freeway is on a continuous viaduct, the median width should generally be the
minimum width needed to accommodate the median shoulders and a barrier. Where the freeway
is on embankment and the median width is approximately 9.0 m [30 ft] or less, consideration
should be given to decking the median at intermittent structures to prevent vehicles from entering
the median and dropping down to a stream or roadway below. Where a median barrier is used,
decking also permits continuity of the barrier.

Ramps and Terminals

The design of ramps and connections for all types of freeways is covered in Chapter 10, but
details and controls pertaining specifically to elevated sections are discussed below. Freeways on
viaducts are generally located in densely developed areas where property values are high and
space is limited. However, the various forms of ramp connections, such as loops, diagonal ramps,
and semidirect connections, are as adaptable to elevated freeways as to depressed or other
freeway types.

Despite the high cost of elevated freeways, the lengths of speed-change lanes should not be
reduced. The length of acceleration and deceleration lanes should conform to the guidelines
presented in Chapter 10. Long acceleration lanes are especially needed because a ramp leading to
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an elevated structure is usually on a relatively steep upgrade. Also, trucks need a considerable
distance to accelerate to highway speed.

Gore areas at exits from an elevated structure have a higher than normal crash potential. The
design should provide as much space in the gore area as practical, not only for recovery but also
to permit the installation of an impact-attenuating device.

Frontage Roads

New frontage roads adjacent to viaduct freeways are not generally needed because the local
street network is usually not disturbed. The existing parallel and cross streets are usually adequate
to provide local circulation and access; however, frontage roads may be needed for use with
embankment freeways to provide adequate local circulation and access. Frontage roads are
discussed in Chapter 4, which presents their general features and develops their design values.

Clearance to Building Line

The minimum lateral clearance between a freeway viaduct and adjacent buildings may be a
significant cross-sectional element. Major factors where buildings are close to the roadway are
(1) working space for maintenance and repairs of structure or buildings, (2) space to prevent salt
and water spray damage, (3) protective space against possible fire damage, and (4) space for
ladders and other fire-fighting equipment to reach upper floors of buildings from the street below.
Building offsets should be sufficient to ensure adequate sight distance to signs where the
alignment is curvilinear. A clearance of 4.5 to 6.0 m [15 to 20 ft] is recommended to
accommodate these space needs. Without such clearance, the use of some fire-fighting
equipment, such as mechanically raised ladders, would be hampered. Some of these units might
be operable from the elevated freeway.

Roadways directly under the structure are usually needed to accommodate surface traffic,
but the cross section elements are not considered as controls where existing right-of-way
determines the structure section.

Typical Cross Section

The total widths of elevated freeway sections, as well as the total right-of-way widths in
which they are developed, can vary considerably. For elevated freeways on embankments, the
total width needed is about the same as the total width needed for depressed freeways. Elevated
freeways on structures may be cantilevered over parallel roadways or sidewalks.

The difference in elevation between the local street and the elevated freeway, except in the
case of the multi-level viaduct shown in Exhibit 8-9B, should be approximately 6.0 m [20 ft]. The
vertical clearance between the local street and the freeway bridge varies with the legal
requirements of the various states, but usually ranges from 4.3 to 5.0 m [14 to 16.5 ft]. Where a
railroad is overpassed, a vertical clearance of approximately 7.0 m [23 ft] is needed; thus, the
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gradeline of the elevated freeway should be about 8.4 m [28 ft] above the tracks. It is
advantageous to have the viaduct as low as practical at ramp locations to allow for moderate ramp
grades. This results in lower construction costs and greater ease of operation for vehicles using
the ramps. These combined factors may justify a rolling freeway profile where it can be
developed gracefully; however, a roller-coaster effect should be avoided. Where a viaduct would
provide a clearance of less than about 3.0 m [10 ft] from the underside of the structure to the
ground, retaining walls or fill are generally recommended unless the space underneath the
structure could be used for other purposes such as off-street parking.

Viaduct Freeways Without Ramps

Exhibit 8-9 shows typical cross sections for elevated freeways without ramps on structures.
The following dimensions are used for general illustration:

• Lane width is 3.6 m [12 ft].
• Parapet width is 0.6 m [2 ft].
• Shoulder width for four lanes is 3.0 m [10 ft] for the right shoulder and 1.2 m [4 ft] for

the left shoulder; for six and eight lanes, shoulder width is 3.0 m [10 ft] for both right
and left shoulders.

• Median width is 3.0 m [10 ft] for four lanes and 6.6 m [22 ft] for six and eight lanes.
• Minimum clearance between structure and building line is 4.5 m [15 ft]. For

Exhibit 8-9B, the minimum clearance should be 6.0 m [20 ft].

Space under the structure may be available for surface streets or other use by the
community.

In Exhibit 8-9A, the overhang enables surface roads to be provided outside the lines of
columns, and the area between the columns can be used for vehicular traffic, public transit, or
parking.

Where it is impractical to obtain the right-of-way widths needed for a conventional viaduct
freeway, it may be practical to convert the normal two-way, one-level structure to a two-level
structure. The double-deck design in Exhibit 8-9B is not a common type, but is adaptable to
narrow rights-of-way, particularly where few ramps are needed. Double-deck structures may also
be adaptable where it is not practical to continue the freeway as a single-deck structure because of
large buildings or for other reasons. Conversion to double-deck construction through such
confined areas may be the only practical solution. Double-deck structures have the disadvantage
of long ramps on structures to allow vehicles to make the necessary change in elevation from the
top roadway to the local city streets.

Sometimes an elevated freeway is constructed on two one-way structures, as shown in
Exhibits 8-9C and 8-9D. These structures may be separated by one or more city blocks. In
addition, the structure may be either a two-column section, as in Exhibit 8-9C, or a single-
column, cantilevered section, as in Exhibit 8-9D, depending on the arrangements of
understructure streets and other controls.
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Exhibit 8-9.  Typical Cross Sections for Elevated Freeways on Structures Without Ramps

Two-Way Viaduct Freeways With Ramps

Elevated freeways generally are developed as single-level, two-way structures, of which the
basic structure section is shown in Exhibit 8-9A. Cross-sectional arrangements for elevated
freeways on structure with ramps and frontage roads are illustrated in Exhibit 8-10. The following
dimensions are used for general illustration:

Median width 3.0 to 6.6 m [10 to 22 ft]
Lane width 3.6 m [12 ft]
Right shoulder width:

Four-lane 3.0 m [10 ft]
Six- and eight-lane 3.0 m [10 ft]

Left shoulder width:
Four-lane 1.2 m [4 ft]
Six- and eight-lane 3.0 m [10 ft]

Parapet width 0.6 m [2 ft]
Clearance between structure

and building line 4.5 m [15 ft]

An elevated section on structure has great flexibility in right-of-way arrangements. The most
flexible element is the outer separation. In tight locations where ramps are not provided, the
frontage roads can be located under a cantilevered section of the structure, as shown in
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Exhibit 8-10.  Typical and Restricted Cross Sections for Elevated Freeways on Structure
With Frontage Roads

Exhibit 8-10B. At these locations, the minimum building-line clearance may provide sufficient
space for frontage roads.

Where there is no need to narrow the right-of-way width before and beyond ramps, it may be
practical to obtain liberal clearance between the structure and building line. As a result, there may
be space for a green belt strip, parking space off the frontage road, or a wider border and frontage
road.

Freeways on Earth Embankment

Elevated freeways may be constructed on earth embankments provided that the embankment
is high enough to permit cross streets to pass under the freeway. Such freeways are appropriate
where the terrain is rolling and the right-of-way is sufficiently wide to allow gentle side slopes
that can be pleasingly landscaped.

Exhibit 8-11 presents typical and restricted cross sections for elevated freeways on
embankments. The left halves of these sections illustrate outer separations without ramps within
the same right-of-way width. The difference in elevation between the frontage road and the
through roadway is approximately 6.0 m [20 ft]. This section provides for median widths of 3.0 to
6.6 m [10 to 22 ft], lane widths of 3.6 m [12 ft], and right shoulder widths of 3.0 m [10 ft].



AASHTO—Geometric Design of Highways and Streets

530

Exhibit 8-11.  Typical and Restricted Cross Sections for Elevated Freeways on
Embankment

The outer separation may permit the use of earth slopes at locations without ramps, but
retaining walls are needed at ramps. In addition, embankment slopes greater than 1V:3H will
generally warrant a roadside barrier. By omitting frontage roads and using walled sections, total
widths may be reduced to widths typical of elevated structures on viaducts. Special wall treatment
or planting of trees and shrubs may make the retaining walls aesthetically pleasing.

Examples of Elevated Freeways

Exhibit 8-12 shows a four-lane viaduct freeway on curved alignment located adjacent to an
urban business district. The freeway is situated to minimize the amount of right-of-way needed.
Existing cross streets have not been disturbed. In the upper part of the photograph, the freeway
section changes from viaduct to embankment.

Exhibit 8-13 shows a two-level viaduct freeway in a densely developed area of a large city.
Continuous frontage roads are not provided along this freeway segment. Also, the freeway is
constructed on a minimum amount of right-of-way.
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Exhibit 8-12.  Viaduct Freeway

Ground-Level Freeways

General Characteristics

Many freeways have long segments that are constructed essentially at ground level. This
design is often used in flat terrain and along railroads and water courses. Ground-level freeways
are also suitable in suburban areas where cross streets are widely spaced. A major consideration
in the design of ground-level freeways is the change in profile of each crossroad as it passes over
or under the freeway. However, substantial lengths of ground-level freeways are generally not
practical in heavily developed areas because the profiles of crossroads cannot be altered without
severe impact on the community. The profile changes of cross streets are further discussed in the
section on “Combination-Type Freeways” in this chapter.

Where a ground-level freeway follows the grid of a city, it is usually desirable to provide
continuous one-way frontage roads that serve as a means of access to and from streets that are not
carried across. However, there are situations where two-way frontage roads provide the only
means to maintain local service, even though they are less desirable than one-way frontage roads.
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Exhibit 8-13.  Two-Level Viaduct Freeway

Ground-level freeways usually are employed in outlying sections of metropolitan areas where
right-of-way is not as expensive as it is in downtown areas. As a result, the variable width
elements of medians, outer separations, and borders are widened to increase the safety and
appearance of the freeway.

Typical Cross Section

Exhibit 8-14A illustrates a typical cross section for a ground-level freeway with frontage
roads, and Exhibit 8-14B shows a typical cross section without frontage roads. Where additional
right-of-way is available, the outer separations and borders should be widened to provide
aesthetically pleasing green belts and to insulate the freeway from the surrounding area. In areas
where ramp connections are made to frontage roads, the width of outer separations should be
increased to allow space for liberal design of ramp and ramp terminals.

Where only four or six lanes are provided initially, it may be desirable to provide the same
right-of-way width as proposed for six- and eight-lane construction. In these situations, the
median should be widened by multiples of 3.6 m [12 ft] in anticipation of a need for additional
lanes. This step simplifies the construction of additional lanes, with nominal cost and minimal
disruption to traffic.
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Exhibit 8-14.  Typical Cross Sections for Ground-Level Freeways

Where fill material is available and the width of cross section is sufficient to construct safely
traversable slopes, an earth berm may be desirable in the median, outer separation, or border. The
earth berm shields the freeway from view, lessens highway noises in the adjacent areas, and
minimizes headlight glare. Adequate provisions should be made for drainage to ensure that
ponding of water does not occur on the shoulder area.

Restricted Cross Section

Exhibit 8-15 illustrates restricted cross sections for ground-level freeways. Specifically,
Exhibit 8-15A shows a restricted cross section with a two-way frontage road while Exhibit 8-15B
presents a restricted cross section without frontage roads. With restricted cross sections, both the
median and outer separation should be paved. On these narrow medians, a median barrier is
warranted. With two-way frontage roads, it is also desirable to provide a barrier in the outer
separation in place of an access control fence. Preferably, this barrier should be located close to
the frontage road to allow extra recovery space outside freeway shoulders. Where there is no
fixed-source lighting, a glare screen may also be desirable in the outer separation.
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Exhibit 8-15.  Restricted Cross Sections for Ground-Level Freeways

Example of a Ground-Level Freeway

Exhibit 8-2 in the previous section on rural freeways shows an example of a typical ground-
level freeway. The curvilinear alignment creates an attractive driving environment for motorists.

Combination-Type Freeways

General Characteristics

In many cases, urban freeways incorporate some combination of depressed, elevated, or
ground-level designs. Combination-type freeways result from variations in profile or cross
section, and the following discussion is organized on the basis of these two controlling
conditions.



Freeways (Urban)

535

Profile Control

Rolling terrain. The typical plan and profile of a combination-type freeway in rolling
terrain are shown in Exhibit 8-16. The best profile is typically developed by underpassing some
cross streets and overpassing others. The facility is neither generally depressed nor elevated,
although for short lengths it embodies the design principles for fully depressed or fully elevated
highways. For instance, in Exhibit 8-16, at A and C the facility is depressed, at B it is elevated on
an earth embankment, and at each end of the illustration it approaches a ground-level section.

Exhibit 8-16.  Profile Control—Rolling Terrain Combination-Type Freeway

Between A and C, the roadway has a fixed cross section with a narrow median because of
lateral restrictions and cost of earthwork. Near each end of the illustration, the profile and cross
section are varied to fit cross sloping terrain and less rigid controls, with an independently
designed centerline and profile for each one-way roadway. This general type of design, which
approaches the character of a rural freeway, should be considered in rolling terrain wherever
sufficient right-of-way is available.

Flat terrain. A variation of a combination-type freeway in flat terrain is illustrated in
Exhibit 8-17. Between grade separation structures, the highway profile closely follows the
existing ground. The freeway also overpasses important cross streets by rolling the gradeline to
the appropriate height above the surface streets; where practical, cross streets are carried over the
freeway (as at A in Exhibit 8-17). This combination-type freeway design is suitable for flat terrain
where (1) soil and groundwater conditions or underground utilities preclude depressing the
freeway to any great extent below the existing ground, or (2) continuous viaduct construction is
too costly or is otherwise objectionable. The freeway may be carried over a cross street on an
earth embankment with a conventional grade separation structure (as at B in Exhibit 8-17) or on a
relatively long structure (as at C in Exhibit 8-17). The factors that control the profile design are
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the availability of fill material and the soil conditions. In addition, this combination-type freeway
design permits parallel or diagonal ramps to be provided between the grade separations.

Exhibit 8-17.  Profile Control—Flat Terrain Combination-Type Freeway

One of the disadvantages of this design is that a roller-coaster type of profile results where
several successive cross streets are overpassed at close intervals. This situation is more
pronounced on horizontal tangents where drivers can see two or more grade separations ahead. A
moving vehicle that is ahead of a driver may disappear into dips and reappear again as the grade
rises to a crest. Therefore, the profile should be designed to eliminate dips that would limit the
recommended sight distance. Caution should also be exercised in designing the profile to ensure
that adequate sight distance to exit ramps is provided. Where truck traffic is heavy, maximum
grades of approximately 2 percent are desirable to prevent queuing at the base of the grade.

To minimize the overall rise and fall and make the rolling profile less pronounced, the cross
streets may be depressed several feet below the ground surface and the freeway grade may be
raised several feet above the ground level between grade separation structures. The profile may
be further improved by raising some cross streets to overpass the freeway. Minimum governing
distances for grade separation design are discussed in Chapter 10.
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Cross-Section Control

The examples in Exhibit 8-18 are also considered combination-type freeways, but the
primary influence on their design is the cross section. These special designs usually apply to
relatively short lengths of roadway to meet specific conditions.

Exhibit 8-18A illustrates a design in which one roadway of the freeway is located above the
other roadway, with one roadway above the existing ground level and the other below the existing
ground. In effect, it is a one-way depressed and a one-way elevated facility separated in elevation
to permit the cross streets to pass through on the intermediate (surface) level. This arrangement
may be appropriate where the right-of-way is not sufficiently wide for either a two-way elevated
or a two-way depressed facility, and where a two-level elevated structure would be objectionable.
Wider rights-of-way are needed where ramps are provided.

A city area left underdeveloped because of extremely steep ground might serve as a practical
location for a freeway section. A special design with partly elevated and walled sections at
staggered levels can be employed, as shown in Exhibit 8-18B. A variety of other designs may
also be used, including a one-level, two-way deck structure or a one-level, two-way cut-and-fill
section retained by walls. The design selected would depend on the slope of the ground, soil
conditions, and right-of-way width. Difficulty may be encountered at cross streets that are likely
to have steep grades; however, areas of such topography usually have few cross streets.

Another variation of a combination-type freeway shown in Exhibit 8-18C consists of one
through roadway at surface level and the other on an elevated structure; this design may be
appropriate along a waterfront or a railroad where the right-of-way is relatively narrow and there
are no cross streets. Access to and from the one-way through roadway at surface level is provided
directly to streets that cross the frontage road; by contrast, access to and from the elevated
roadway is provided by lateral ramps overpassing the frontage road.

Examples of Combination-Type Freeways

Exhibit 8-19 shows an eight-lane, combination-type freeway in a densely developed
residential area of a large city. The freeway profile changes smoothly from fill to cut sections so
that the profile blends with the local street system.

Exhibit 8-20 shows a six-lane freeway within a very narrow right-of-way in a densely
developed area of a large city. The four-level cantilever structure provided is similar to
Exhibit 8-18B. The second and third levels carry the directional roadways of the freeway. The top
level is a promenade, which enhances the value of the adjacent apartment buildings and shields
traffic noise, while the ground level serves local traffic.
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Exhibit 8-18.  Cross-Section Control—Combination-Type Freeway
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Exhibit 8-19.  Combination-Type Freeway
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Exhibit 8-20.  Four-Level Cantilevered Freeway
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Special Freeway Designs

The following section discusses three special freeway designs that may be appropriate in
some urban locations: freeways with reverse-flow roadways, dual-divided freeways, and freeways
with collector-distributor roadways.

Reverse-Flow Roadways

A reverse-flow roadway is a separate roadway, usually between the main roadways of a
freeway, that serves traffic for opposite directions of travel at different times of day. Special
conditions may warrant the use of a reverse-flow roadway as a part of the freeway design. This is
usually accomplished by placing a separate reversible roadway within the normal median area, as
shown in Exhibit 8-21A. Reverse-flow roadways are advantageous in that they provide an
opportunity for better operations for motorists, but are disadvantageous in that they may have
unused capacity much of the time because of the limited numbers of access points. The costs of
construction, maintenance, and operation of a freeway with a reverse-flow roadway also may
differ considerably from those of a conventional freeway.

Exhibit 8-21.  Typical Cross Sections for Reverse-Flow Operation

A separate reverse-flow roadway may be considered when (1) the directional distribution
during peak hours is substantially unbalanced (e.g., a 65:35 percent split) and capacity analysis
indicates a need for a conventional facility more than eight lanes wide, (2) design controls and
right-of-way limitations are such that providing two or more parallel facilities on separate rights-
of-way is not feasible, and (3) a sizable portion of traffic in the predominant direction during peak
hours is destined for an area between the central portion of the city or another area of
concentrated development and the outlying area (i.e., a large percentage of peak-hour traffic
travels a long distance between principal points of origin and destination with little or no need for
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intermediate interchanges). In some large metropolitan areas, demand may be sufficiently great to
justify the use of a reversible roadway exclusively for buses or other high-occupancy vehicles.

The right-of-way width needed for a reverse-flow freeway is not substantially different from
that needed for a conventional freeway serving an equivalent traffic volume. In fact, with the
dimensions shown in Exhibit 8-21B, the right-of-way needed for a three-two-three reversible
freeway is the same as that needed for a conventional 10-lane freeway with a 7.2-m [24-ft]
median. It should be noted that the cross section in Exhibit 8-21B uses full right and left
shoulders on the reverse-flow roadway because it carries one-way traffic in different directions at
different times.

In the central business district, it may be desirable to provide a separate collection and
distribution system for the reversible roadway on radial freeways. The normal directional
roadways would serve through traffic and freeway-freeway interchanges. Only the reversible
roadway would connect directly to downtown streets. In particular, this arrangement enhances the
usefulness of the reversible roadway for express bus operation.

Entrance and exit ramps on the reverse-flow roadway should be well spaced, and the
entering traffic volume should be balanced with the capacity of the reverse-flow facility. Where
there are major connectors, the design should provide for ramps going to and from the reverse-
flow roadway and separated in grade from the outer freeway roadways. In cases to date, very few
intermediate crossover connections (slip ramps) between the inner and outer roadways have been
provided. Such connections need substantial width and length for proper design, usually in areas
where the needed space is not available. Furthermore, the resulting weaving maneuvers and left-
side exits or entrances are operationally undesirable on a freeway that warrants a reverse-flow
roadway. In reverse-flow operations, there will normally be two intervals daily during which the
central roadway is closed to change the direction of flow.

Adequate reverse-flow roadway terminals are needed to transfer traffic between the section
of freeway with reverse-flow lanes and the conventional freeway section or the local street
system. A reversible roadway section is usually terminated by transitioning the three roadways
into two normal directional roadways, as shown in Exhibit 8-22A.

As illustrated in Exhibit 8-22A, the end of the reversible roadway is Y-shaped and has the
entrance and exit connections on the median side of the normal roadways. The entrance
connection leading into the reversing roadway is relatively easy to provide, and there are usually
no operational problems at this point. However, the exit connection from the reversing roadway
needs careful consideration during the design process to prevent undesirable merging situations
and backups during peak flows. As a minimum, the connections should be designed as major
forks that are 350 to 600 m [1,200 to 1,800 ft] long. Preferably, additional lanes should be
provided on the normal roadway beyond the junction point to the next exit or for a distance of
750 to 1,000 m [2,500 to 3,000 ft]. Such lanes will provide for adequate merging.

Where there is a prominent exit from through lanes in the vicinity of the reversible
roadway’s terminal, the reversible roadway should be terminated beyond that exit. Conversely,
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Exhibit 8-22.  Typical Reverse Roadway Terminals

where there is a prominent entrance near the terminal, the reversible terminal should be located in
advance of the entrance. This arrangement minimizes congestion and weaving conflicts.

Where the reversible lanes terminate at a major fork on the freeway, the single-structure
arrangement shown in Exhibit 8-22B would involve weaving for traffic entering or exiting from
the reversible roadway. This design is not desirable if weaving movements are heavy. Such
designs may result in considerable traffic operational problems. When the single-structure
arrangement is used, the reversible lanes should be extended along one leg of the fork. This
design eliminates weaving but denies access from the reversible lanes to the other leg. Where
such an arrangement is not compatible with traffic desires, the weaving can be eliminated by
providing another structure and designing the terminal as shown in Exhibit 8-22C.

The devices used for controlling traffic at terminals of a reverse-flow roadway include
variable message signs, pavement markings, warning lights, lane-use traffic signals, and
mechanically and electronically operated barricades at each terminal of the reverse-flow roadway
and at intermediate ramp terminals. Such devices have been under development for years, and
several types of installations now in operation are being evaluated.
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Exhibit 8-23 illustrates a reverse-flow freeway in a suburban area. The facility illustrated has
a three-two-four lane configuration, with the center two lanes operating in the peak flow direction
in the morning and evening peak periods. However, the same concept can be used with a three-
two-three or a four-two-four lane configuration. The reverse-flow roadway is 7.2 m [24 ft] wide
and has 3.0-m [10-ft] shoulders on both sides. The normal directional roadway has 3.6-m [12-ft]
lanes and has a 3.0-m [10-ft] shoulder on the right and a 1.8-m [6-ft] shoulder on the left. Each
separator between the reverse-flow roadway and the normal roadway is 1.2 m [4 ft] wide. Within
each separator is a barrier 0.6 m [2 ft] wide.

Exhibit 8-23. Reverse-Flow Freeway

Dual-Divided Freeways

Where more than eight through lanes are needed and the directional distribution of traffic is
sufficiently balanced so that a reversible roadway is not applicable, a dual-divided freeway made
up of two one-way roadways in each direction of travel may provide the optimum facility. All
four roadways are within the control-of-access lines. This type of cross section is sometimes
referred to as “dual-dual.”  The outer freeway roadways usually serve all of the interchange
traffic, but they may also serve a substantial portion of the through traffic. For example, all trucks
might be required to use the outer roadways only. Various arrangements are possible, depending
on the character of traffic and crossroad conditions.

Dual-divided freeways usually function smoothly and carry extremely high volumes of
traffic efficiently. Motorists using the inner roadways are removed from the weaving movements
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at frequently spaced interchanges, and disabled vehicles in either the inner or outer roadway can
quickly be steered to a shoulder by traversing a minimum number of lanes.

Dual-divided construction may be the most practical solution to widening an existing
freeway where the present traffic volumes are so great that the disruption in traffic during
complete reconstruction cannot be tolerated. Where the future need can be anticipated and
sufficient right-of-way can be reserved, it may be practical to develop a dual-divided facility in
two stages.

Dual-divided facilities have great flexibility in their operation and maintenance. For
example, during maintenance or reconstruction operations, one of the directional roadways may
be temporarily closed during off-peak hours. Crash potential is greatly reduced by eliminating
traffic conflicts with construction or maintenance work. Another advantage of dual-divided
design is that the affected roadway can also be closed in case of a crash or other emergency, thus
facilitating clean-up operations.

Disadvantages of dual-divided facilities are the wide expanse of pavement and heavy traffic
volumes that may have a disruptive influence on an established community and tend to cut off the
continuity of the area. The dual-roadway system reduces the flexibility of traffic distribution,
resulting in uneven distribution among lanes. The costs for right-of-way, construction, and
maintenance may be greater than those on a normal divided facility with an equal number of
lanes. Snow removal from dual-divided facilities is also difficult in the inner lanes.

Roadway arrangements for a dual-divided freeway include four-four-four-four, three-three-
three-three, three-two-two-three, two-three-three-two, or other suitable combinations of lanes.
Typical cross sections are comparable to those previously described for various types of freeways
with frontage roads, except that there are four, rather than two, main roadways. Each of the outer
medians would have a median barrier and full shoulders on each side.

Exhibit 8-24 shows a typical layout for a dual-divided freeway. All interchange connections
are made to the outer roadways, and intermediate transfer connections are provided between the
inner and outer roadways so that traffic on the inner roadways can use the interchanges. The
number of such transfer connections should be kept to a minimum, with one set serving several
successive interchanges. There should be a spacing of 750 m [2,500 ft] or more between the
terminal of a transfer connection and an exit ramp. The adequacy of all weaving lengths should
be checked.

Exhibit 8-25 is an example of a dual-divided freeway with a four-three-three-four roadway
arrangement and frontage roads. Rail rapid transit is carried in the median, and pedestrians have
access to the transit station from the cross street. As explained above, all ramp connections are
made to the outer roadways.
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Exhibit 8-24.  Typical Dual-Divided Freeway

Exhibit 8-25.  Dual-Divided Freeway With a 4-3-3-4 Roadway Arrangement
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Freeways With Collector-Distributor Roads

An arrangement having cross-sectional elements similar to the dual-divided freeway is a
freeway with a collector-distributor (C-D) road system. The purpose of a C-D road is to eliminate
weaving on the mainline freeway lanes and reduce the number of entrance and exit points on the
through roadways while satisfying the demand for access to and from the freeway. C-D roads
may be provided within a single interchange (as discussed in Chapter 10), through two adjacent
interchanges, or continuously through several interchanges of a freeway segment. Continuous
C-D roads are similar to continuous frontage roads except that access to abutting property is not
permitted.

The inside high-speed through roadways are identified as core roads, and the outside slower
speed roadways are identified as C-D roads. Usually, the traffic volumes on the C-D system are
less than those encountered on the dual-divided freeway, with fewer lanes. The minimum lane
arrangement for a C-D system is two C-D, two core, two core, two C-D; however, other
combinations may be developed as capacity needs warrant. Continuous C-D roads should be
integrated into a basic lane design to develop an overall system. Capacity analysis and basic lane
determination should be performed for the overall system rather than for the separate roadways.

Connections between the core roadways and C-D roads are called “transfer roads.”  Transfer
roads may be either one or two lanes in width, and the principle of lane balance applies to the
design of transfer roads on both the core and C-D roadways. Both transfer and C-D roads should
have shoulders equal in width to those of the core roadways. The outer separation should be as
wide as practical with an appropriate barrier. Terminals of transfer roads should be designed in
accordance with guidelines for ramp terminals, as presented in Chapter 10.

The design speed of C-D roadways is usually less than that of the core roadways because
most of the turbulence caused by weaving occurs on the C-D roadways. A maximum reduction in
design speed of 20 km/h [10 mph] is preferable for continuous C-D road systems.

Accommodation of Transit and
High-Occupancy Vehicle Facilities

General Considerations

Combining mass transit or high-occupancy vehicle facilities with freeways is a means for
providing optimum transportation services in larger cities. This type of improvement can be
accomplished by the joint use of right-of-way to include rail transit or separate roadway facilities
for buses and other high-occupancy vehicles, such as car and van pools. The total right-of-way
cost not only is less than those for two separate land strips, but the combination also preserves
taxable property, reduces the displacement of businesses and persons, and lessens impact on
neighborhoods. In some cases, mass transit is incorporated into existing freeway systems.
Reverse-flow roadways in the median and reserved lanes work well for exclusive bus and high-
occupancy vehicle use during rush hours.
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When transit, either bus or rail, is located within the freeway median, access to the transit
vehicles is generally obtained from the crossroad at interchange locations. Such an arrangement
does not lend itself to intermodal transfer. Transfer to and from buses or passenger cars adds
congestion to the interchange area, and off-street parking is usually so remote from interchange
areas that it discourages some transit ridership. Reverse-flow roadways, like the one in the
median of the freeway shown in Exhibit 8-26, can also be operated as exclusive bus roadways.
Bus roadways within the median essentially restrict operations to the line-haul or express type,
because ramps that would permit collection and distribution from the median area are expensive
or operationally undesirable . Furthermore, when freeways undergo major repair or reconstruction,
it is often desirable to construct crossovers and temporarily shift all traffic onto one roadway.
Where transit is located within the median, such temporary crossovers are not possible without a
complete disruption of transit operations.

Exhibit 8-26.  Bus Roadway Located Between a Freeway and a Parallel Frontage Road

Where the transit facility is parallel to the freeway but located to one side rather than in the
median area, these objections are overcome. Exhibit 8-26 shows a bus roadway located between
the freeway and a parallel frontage road. Access to the bus roadway is obtained from the frontage
road. The station is removed from the congestion of the interchange area, adequate space is
available for auto or bus turnouts, and space for off-street parking may be more readily available .
All factors combine to enhance intermodal transfers. Slip ramps from the bus roadway to the
frontage road permit collection and distribution, in addition to line-haul or express operation,
without disruption of freeway operations. A similar arrangement can serve fixed-rail transit
except that the slip ramp would be omitted.
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Buses

True rapid transit service by bus has had only limited application because normal bus service
usually combines collection and distribution with suburb-to-city transportation, and most street or
highway facilities for such bus routes are not adaptable to high-speed operation. Many
metropolitan areas have non-stop freeway express buses that operate on the freeway system from
suburban pickup points near the freeway to locations within the central business district or to
other heavy traffic generators. The number of buses operating during peak hours, the spacing of
bus stops, and the design of bus turnouts determine the efficiency of bus operation and its effect
on highway operations. Buses operating with short headways and frequent pickup and discharge
points are likely to accumulate at stops and interfere with through traffic. On the other hand,
express bus operation with few, if any, stops along the freeway provides superior transit service
for outer urban areas and affects freeway operation the least.

Exclusive HOV lanes. In addition to express service, other operational means should be
considered to reduce the travel time of the public transportation user when demand warrants. An
exclusive HOV roadway is an entire highway facility reserved at all times solely for the use of
buses or buses and other HOVs. This facility offers buses and HOVs a high level of service and
decreases travel time for the users. HOV lanes and roadways are discussed in the AASHTO
Guide for the Design of High-Occupancy Vehicle Facilities (6). A discussion of the park-and-ride
facilities that are often provided with HOV lanes is contained in the AASHTO Guide for the
Design of Park-and-Ride Facilities (7).

Bus stops. The spacing of bus stops largely determines the overall speed of buses. Bus stops
on freeways should be spaced to permit buses to operate at or near the prevailing speed of traffic
on the highway. To achieve this goal, a spacing of at least 3.5 km [2 mi] between bus stops is
normally appropriate.

Bus stops along freeways are usually located at intersecting streets where passengers transfer
to or from other lines or passenger cars. These stops may be provided at the freeway level, which
requires stairs, ramps, or escalators, or at the street level, which requires bus access via
interchange ramps. Bus turnouts should be located where site conditions are favorable and, if
practical, where gradients on the acceleration lane are flat or downward. The design of bus
turnouts is discussed in Chapter 4.

Bus-stop arrangements. The benefit of bus stops located at the freeway level is that buses
consume little additional time other than that for stopping, loading, and starting. The disadvantage
is that turnouts, stairways, and possibly extra spans at separations may be needed. With bus stops
at street level, less special construction is needed and passengers do not need to use stairs or
ramps. However, buses have to mix with traffic on the ramps and frontage roads and generally
must cross the intersecting street at grade. Where traffic on the surface street is light, these
disadvantages are lessened; however, where the streets are operating at or near capacity, buses
crossing them will experience some delay. Generally, street-level stops are appropriate in and
near downtown districts, and either street- or freeway-level stops are appropriate in suburban and
outlying areas. Combinations of these two types may be used on any one freeway.
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Bus stops at freeway level. Bus stops logically are located at street crossings where
passengers can use the grade-separation structure for access from either side of the freeway.
Exhibit 8-27A shows an arrangement at an overcrossing street without an interchange. The
turnouts and loading platforms are under the structure, requiring greater span lengths or additional
openings. Each stairway should be located on the side of the cross street used by most passengers.
Two additional stairways can eliminate any crossings of surface streets by transferring riders.

Exhibit 8-27B shows an arrangement at an undercrossing street without an interchange. As
indicated at the top left of this exhibit, platform exits and entrances may be connected directly to
adjoining developments such as public buildings and department stores.

Sometimes transit stops are needed at locations other than at overcrossing streets, such as in
outlying areas or in built-up districts where it is neither feasible nor desirable to provide stops at
cross-street structures. Such stops preferably should be located opposite cross streets intercepted
by frontage roads or major passenger walkways. A pedestrian overpass is needed to make bus
stops usable from either side of the freeway. Exhibit 8-27C illustrates two likely layout plans. In
the lower half of the exhibit, the turnout is located at the freeway level under the pedestrian
structure. Pedestrians may reach this structure by stairs or ramps. An alternative layout, shown in
the upper half of the exhibit, features a turnout located at the level of the frontage road,
eliminating the need for passengers to climb stairs or ramps.

Exhibit 8-28 illustrates bus stops located at freeway level on a depressed section of freeway
with diamond-type interchange ramps connecting to one-way frontage roads. The bus stops are
located under the cross streets. In Exhibit 8-28A, the entrance to the turnout is located beyond the
exit ramp nose, and the exit from the turnout is located in advance of the entrance ramp nose. In
Exhibit 8-28B, buses use the freeway ramp exit to enter the turnout. In this case, the bus stop is
usually located through a separate structure opening. Such consolidation of access points
improves the efficiency of through and ramp traffic. Bus drivers readily adapt themselves to the
appropriate route to enter and exit the bus turnout.

Exhibit 8-29 shows a bus stop between the outer connection and the loop of a cloverleaf
interchange. A collector or distributor road is desirable so that the bus turnouts will not connect
directly to the through roadway. The bus turnout should preferably be located beyond the
structure to minimize conflicts. When the turnout is located in advance of the structure, buses
must merge with traffic from the entrance loop and weave with traffic destined for the exit loop.

Bus stops at street level. Street-level bus stops can be provided at interchanges. For
example, on diamond ramps, the bus stop may consist of a widened shoulder area adjacent to the
ramp roadway or may be on a separate roadway. Generally, street-level bus stops adjacent to on-
ramps are preferred.
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Exhibit 8-27.  Bus Stops at Freeway Level
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Exhibit 8-28.  Bus Stops at Freeway-Level Diamond Interchange

Exhibit 8-29.  Freeway-Level Bus Stop at Cloverleaf Interchange
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Exhibit 8-30 shows several examples of street-level bus stops on diamond interchanges.
Exhibit 8-30A illustrates two possible locations for a bus stop at a simple diamond interchange
without frontage roads. The bus stop can be provided on either the on-ramp or off-ramp by
widening the ramp. An analysis of turning conflicts should be made to determine the feasibility
and appropriateness of either option.

Exhibit 8-30B illustrates a street-level bus stop on a one-way frontage road at diamond
interchanges. Buses use the off-ramp to reach the surface level, discharge and load their
passengers at the cross street, and proceed via the on-ramp. Added travel distance is minimal, and
where traffic on the cross street is light, little time is lost. However, where cross-street traffic is
heavy and buses are numerous, operation may be difficult because buses must weave with the
frontage road traffic to reach the sidewalk, cross the cross street, and then weave again on their
way to the on-ramp.

Exhibit 8-30.  Bus Stops at Street Level on Diamond Interchange
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Street-level bus stops are difficult to provide effectively within cloverleaf or directional
interchanges. Consequently, bus stops should be omitted at such interchanges or be located on the
cross street beyond the limits of the interchange.

Stairs, ramps, and escalators. With bus stops at the freeway level, stairs, ramps, escalators,
or combinations of these are needed for passenger access between the freeway and local street
levels. Transit facilities must be accessible to persons with disabilities. Therefore, stair-only
access at transit stops is not permitted. Stairways and ramps at transit stops should be easy to
climb and present an inviting appearance. This effect is partially accomplished by providing
railings and ample lighting both day and night and by providing landings at every 1.8- to 2.4-m
[6- to 8-ft] change in elevation. A covering over the stairways, ramps, and platforms may also be
desirable. Stairways should be located where the climb will be minimal, preferably not more than
5.4 to 6.0 m [18 to 20 ft]. Where space is available, and only buses are to be served, the bus
roadway under the structure might be raised 0.6 to 1.2 m [2 to 4 ft] by reducing vertical clearance
to about 3.8 m [12.5 ft] (Most intra-city buses are less than 3.0 m [10 ft] high). When the stairs
are located a little distance from the point of loading and unloading, the connecting walkway may
be inclined at about a 4 percent grade, and another 0.3 to 0.6 m [1 to 2 ft] may be gained in
elevation. Thus, it may be practical in some instances to reduce stairway height to 4.5 m [15 ft] or
less.

Stairs and ramps are likely to be installed at bus stops in built-up districts. In addition,
pedestrian ramps are well adapted to bus stops in suburban or park-like areas. Railings are
desirable and usually necessary and combinations of ramps and stairs may be appropriate at some
locations. If the bus line serves a large percentage of older passengers, is extremely busy, or the
climb is extra long, the use of escalators should be considered. Provisions for persons with
disabilities are to be included, such as the use of ramps and elevators, the widening of
passageways and doors, and the elimination of other barriers. Chapter 4 and the Americans with
Disabilities Act Accessibility Guidelines (ADAAG) (8) provide guidance on the design of
facilities for persons with disabilities.

Rail Transit

Several metropolitan areas have incorporated, or plan to incorporate, rail transit into freeway
rights-of-way. Exhibit 8-31 illustrates various arrangements of the joint freeway-transit use of a
right-of-way.

Because rail transit installations are so unique and their design is so highly specialized,
discussion of only a few general items is appropriate in this policy. Location and design of a rail
transit facility are joint undertakings involving several specialized fields of interest. The location
and design of stations, terminals, and parking facilities should be considered from the standpoint
of serving these facilities by urban streets. Where rail is contiguous to the freeway traveled way,
the entire highway design is affected. The design should ensure the safety of both highway and
transit users.
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Exhibit 8-31.  Joint Freeway-Transit Right-of-Way

The most common arrangement is to place the transit line within the median of a depressed
or ground-level freeway, as shown in Exhibits 8-25, 8-31A, 8-32, and 8-34. When a rail transit
line is placed in the middle of a freeway, it becomes an island separated from its passengers by
lanes of rapidly moving vehicles. Access is generally provided by stairs or ramps connected to
grade-separation structures. Where a rail transit line runs down one side of the freeway,
accessibility to the transit is simplified, but the construction of interchange ramps becomes more
costly. In some situations an alternate solution may be to stack freeway lanes above the transit
line, as shown in Exhibit 8-31B, using a minimum of right-of-way. An additional level for cross
traffic of vehicles and pedestrians may be needed to complete the movements to be handled.

Exhibit 8-31C illustrates an arrangement where a topographic feature, such as the river on
the right, presents a natural deterrent to development on one side. The transit line is placed on the
inside for easier access to the community. Where the area has scenic value, this arrangement
presents motorists with an open view.

Typical sections. Exhibit 8-32 illustrates typical sections with rail transit provided in the
freeway median. The dimensions given are illustrative and should not be considered as guidelines
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Exhibit 8-32.  Typical Sections With Rail Transit in Freeway Median

or requirements. The rail transit dimensions and clearances are typical of guide dimensions that
provide for general space needs. The American Railway Engineering and Maintenance-of-Way
Association’s Manual for Railway Engineering (9) is one source of current design criteria for
railway dimensions and clearances. Exhibit 8-32A illustrates a minimum section without piers; by
contrast, Exhibit 8-32B illustrates a minimum section with one median pier. Piers should be
provided with crash walls to deflect transit cars in the event of a derailment. A fence should be
mounted on or adjacent to the barrier to prevent pedestrians from entering the rail area. A screen
or fence may also be needed to reduce the glare to motorists from the headlights of the mass
transit vehicle. If a semirigid barrier is utilized at the shoulder edge, the dynamic deflection of the
barrier should be added to the dimensions shown.

Where the rail line is placed along the outside of the freeway, reference can be made to the
section on “Horizontal Clearance to Obstructions” in this chapter for additional information on
clearances.
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Stations. The transit station location and spacing should be in keeping with the environment
and passenger flow. Frequent stations may be needed within the central business district and other
heavy traffic generators, but few stations would be needed in the outlying or suburban areas.
Downtown stations should be within easy walking distance of the business and working centers
or a feeder bus system. Outlying stations should provide ample parking and storage for vehicles
waiting to pick up passengers. Access to local buses and taxis also should be available. Two
general layouts for a rail transit station at a local cross street or pedestrian overcrossing are shown
in Exhibit 8-33 with typical control dimensions. The dimensions given are illustrative and should
not be considered as guidelines or requirements. The station shown in Exhibit 8-33B makes better
use of the available space by allowing more separation between the transit passengers and the
freeway, while still maintaining ample distance between the train and the traveled way.

Exhibit 8-33.  Example of Transit Station Layout

Example of rail transit combined with a freeway. Exhibit 8-34 presents an eight-lane
depressed freeway with rail rapid transit in a median of minimum width. A single station is
provided between two major cross streets. Pedestrian rampways connect to the cross streets, with
the shelters being at the cross-street level. The traffic density on the near cross street illustrates
why it is generally undesirable to have pedestrian access on a cross street with freeway ramps.
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Exhibit 8-34.  Depressed Freeway With Rail Rapid Transit in the Median
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CHAPTER 9
INTERSECTIONS

INTRODUCTION

An intersection is defined as the general area where two or more highways join or cross,
including the roadway and roadside facilities for traffic movements within the area. Each
highway radiating from an intersection and forming part of it is an intersection leg. The most
common intersection at which two highways cross one another has four legs. It is not
recommended that an intersection have more than four legs.

Intersections are an important part of a highway facility because, to a great extent, the
efficiency, safety, speed, cost of operation, and capacity of the facility depend on their design.
Each intersection involves through- or cross-traffic movements on one or more of the highways
and may involve turning movements between these highways. Such movements may be
facilitated by various geometric design and traffic control, depending on the type of intersection.

The three general types of highway crossings are at-grade intersections, grade separations
without ramps, and interchanges. This chapter deals primarily with the design of intersections at
grade; the latter two intersection types are discussed separately in Chapter 10. Certain intersection
design elements, primarily those concerning the accommodation of turning movements, are
common and applicable to intersections and to some parts of certain interchanges. The design
elements in the following discussions apply to intersections and their appurtenant features.

GENERAL DESIGN CONSIDERATIONS AND OBJECTIVES

The main objective of intersection design is to facilitate the convenience, ease, and comfort
of people traversing the intersection while enhancing the efficient movement of motor vehicles,
buses, trucks, bicycles, and pedestrians. Intersection design should be fitted closely to the natural
transitional paths and operating characteristics of its users.

Five basic elements should be considered in intersection design.

• Human Factors
− Driving habits
− Ability of drivers to make decisions
− Driver expectancy
− Decision and reaction time
− Conformance to natural paths of movement
− Pedestrian use and habits
− Bicycle traffic use and habits

• Traffic Considerations
− Design and actual capacities
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− Design-hour turning movements
− Size and operating characteristics of vehicle
− Variety of movements (diverging, merging, weaving, and crossing)
− Vehicle speeds
− Transit involvement
− Crash experience
− Bicycle movements
− Pedestrian movements

• Physical Elements
− Character and use of abutting property
− Vertical alignments at the intersection
− Sight distance
− Angle of the intersection
− Conflict area
− Speed-change lanes
− Geometric design features
− Traffic control devices
− Lighting equipment
− Safety features
− Bicycle traffic
− Environmental factors
− Cross walks

• Economic Factors
− Cost of improvements
− Effects of controlling or limiting rights-of-way on abutting residential or

commercial properties where channelization restricts or prohibits vehicular
movements

− Energy consumption

• Functional Intersection Area

An intersection is defined by both its functional and physical areas (1), as illustrated in
Exhibit 9-1. The functional area of an intersection extends both upstream and downstream from
the physical intersection area and includes any auxiliary lanes and their associated channelization.

The functional area on the approach to an intersection or driveway consists of three basic
elements: (1) perception-reaction distance, (2) maneuver distance, and (3) queue-storage distance.
These elements are shown in Exhibit 9-2. The distance traveled during the perception-reaction
time will depend upon vehicle speed, driver alertness, and driver familiarity with the location.
Where there is a left-or right-turn lane, the maneuver distance includes the length needed for both
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Exhibit 9-1.  Physical and Functional Intersection Area

Exhibit 9-2.  Elements of the Functional Area of an Intersection
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braking and lane changing. In the absence of turn lanes, it involves braking to a comfortable stop.
The storage length should be sufficient to accommodate the longest queue expected most of the
time.

Ideally, driveways should not be located within the functional area of an intersection, as
described above and shown in Exhibit 9-1, or in the influence area of an adjacent driveway.

TYPES AND EXAMPLES OF INTERSECTIONS

General Considerations

The basic types of intersections are the three-leg or T, the four-leg, and the multileg. At each
particular location, the intersection type is determined primarily by the number of intersecting
legs, the topography, the character of the intersecting highways, the traffic volumes, patterns, and
speeds, and the desired type of operation.

Any of the basic intersection types can vary greatly in scope, shape, and degree of
channelization. Once the intersection type is established, the design controls and criteria
discussed in Chapter 2 and the elements of intersection design presented in Chapter 3, as well as
in this chapter, should be applied to arrive at a suitable geometric plan. In this section each type
of intersection is discussed separately, and likely variations of each are shown. It is not practical
to show all possible variations, but those presented are sufficient to illustrate the general
application of intersection design. Many other variations of types and treatment may be found in
the NCHRP Report 279, Intersection Channelization Design Guide (2), which shows detailed
examples that are not included in this policy.

Although many of the intersection design examples are located in urban areas, the principles
involved apply equally to design in rural areas. Some minor design variations occur with different
kinds of traffic control, but all of the intersection types shown lend themselves to cautionary or
non-stop control, stop control for minor approaches, four-way stop control, and both fixed-time
and traffic-actuated signal control. Right turns without stop or yield control are sometimes
provided at channelized intersections. Such free-flow right turns should be used only where an
adequate merge is provided. Where motor vehicle conflicts with pedestrians or bicyclists are
anticipated, provisions for pedestrians and bicycle movements must be considered in the design.
In built-up areas, the use of free-flow right-turn lanes should be considered only where significant
traffic capacity or safety problems may occur without them and adequate pedestrian crossings can
be provided.

Simple intersections are presented first, followed by more complex types, some of which are
special adaptations. In addition, conditions for which each intersection type may be suited are
discussed below.
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Three-Leg Intersections

Basic Types of Intersections

Basic forms of three-leg or T intersections are illustrated in Exhibits 9-3 through 9-8.

The most common type of T intersection is shown in Exhibit 9-5A. The normal pavement
widths of both highways should be maintained except for the paved returns or where widening is
needed to accommodate the selected design vehicle. This type of unchannelized intersection is
generally suitable for junctions of minor or local roads and junctions of minor roads with more
important highways where the angle of intersection is not generally more than 30 degrees from

Exhibit 9-3.  Channelized High-Type ìTî Intersections

Exhibit 9-4.  Three-Leg Rural Intersection, Channelized ìTî
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Exhibit 9-5.  “T” Intersections

perpendicular (i.e., from approximately 60 to 120 degrees). In rural areas, this intersection type is
usually used in conjunction with two-lane highways carrying light traffic . In suburban or urban
areas, it may be satisfactory for higher volumes and for multilane roads.

Where speeds and turning movements are high, an additional area of surfacing or flaring
may be provided for maneuverability, as shown in Exhibit 9-5B and 9-6.
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Exhibit 9-6.  Channelized “T” Intersections

The use of auxiliary lanes, such as left- and right-turn lanes, increases capacity and creates
better operational conditions for turning vehicles. Left turns from the through highways are
particularly difficult because a vehicle must slow down and perhaps stop before completing the
turn. Intersections with separate left-turn lanes permit following-through vehicles to maneuver
around these slower turning vehicles. Existing intersections can have an auxiliary lane added with
minimal difficulties to provide the intersection types shown in Exhibits 9-5B and 9-6.
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Exhibit 9-7.  “T” Intersections

Exhibit 9-5B shows an added lane, on the side of the through highway adjacent to the
intercepted road, acting as a right-turn lane for vehicles turning right off the major highway. This
arrangement is suitable where the right-turning movement from the through highway
(movement 1) is substantial and the left-turning movement from the through highway
(movement 2) is minor.

Exhibit 9-6 shows an added lane on the side of the through highway opposite the intercepted
road. This type of added lane is commonly referred to as a “left-turn lane” or a “right-hand
passing lane.” This arrangement is suitable where the left-turning movement from the through
highway (movement 2) and the through movement (movement 5) are substantial, and the right-
turning movement (movement 1) is minor. Here the added lane affords an opportunity for a
through driver to pass to the right of a slower moving or stopped vehicle preparing to turn left. A
driver turning left from the through highway naturally moves toward the center of the roadway,
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Exhibit 9-8.  Channelized “T” Intersections

and through traffic is encouraged to pass to the right of the vehicle slowing down or stopping to
turn left.

Another flared arrangement, shown in Exhibit 9-6B, may be effected by adding auxiliary
lanes on each side of the through highway approaching the intersection. Such an arrangement
may be appropriate where the traffic demand at the intersections approaches or exceeds the
capacity of a two-lane highway and where signal control may be needed, usually in developing
areas. For such conditions in rural areas, the two-lane highway preferably would be converted to
a divided section through the intersection, as shown in Exhibit 9-3. In addition to adding auxiliary
lanes on the through highway, the road (i.e., the stem of the T intersection) may be widened on
one or both sides, as shown in Exhibit 9-6A, for better maneuverability and increased capacity on
the intercepted road.
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Channelized Three-Leg Intersections

Exhibits 9-7 and 9-8 depict channelized intersections, supported with discussion of general
application and functional characteristics. These exhibits, discussed in this section, illustrate
various geometric designs that use channelization islands at three-leg intersections. Where an
island with a convex section is appropriate, the island should have sufficient cross-sectional area
to ensure its proper function. Specifically, to channelize and separate turning movements, the
total cross-sectional area of islands should be at least 7 m2 [75 ft2]. The undesirable turning paths
described below in conjunction with some types of intersections should be given particular
attention. Unusual or sophisticated design geometrics should be avoided where practical.

Exhibit 9-7A presents an intersection with a right-turning roadway from the through
roadway. This is accomplished by increasing the return radius between the two roadways
sufficiently to permit a separate turning roadway that is separated from the normal traveled ways
of the intersecting approaches by an island. The approach roadway may include a separate right-
turn lane leading to the turning roadway for the accommodation of right-turn traffic. The need for
such a right-turning roadway depends on the number of vehicles desiring to turn right as well as
the approach speeds and the number of vehicles desiring to continue in the through direction.

Exhibit 9-7B shows an intersection with a pair of right-turning roadways, which is suitable
where above-minimum speeds or turning paths are to be provided for these movements.
However, this arrangement does not facilitate the left turn from the through highway. Usually, on
two-lane highways where right-turning roadways are justified, the flaring of the through highway
is also appropriate, as shown in Exhibit 9-8. The right-turning roadway for traffic entering the
through highway should be made as narrow as practical to discourage drivers turning left from
the through highway from entering this roadway improperly, while still providing sufficient width
for anticipated turning trucks.

Exhibit 9-8A depicts a channelized intersection incorporating one divisional island on the
intercepted road. Space for this island is made by flaring the pavement edges of the intercepted
road and by using larger-than-minimum pavement edge radii for right-turning movements. To fit
the paths of left-turning vehicles, the end of the island should generally be located about 2.4 to
3.6 m [8 to 12 ft] from the pavement edge of the through highway. This design is adaptable to
two-lane highways over a wide range of volumes, particularly where space is not available for
turning roadways and where simplicity is desired. For intermediate-to-heavy volumes (relative to
the capacity of the highways), the through highway preferably should be flared, as shown in
Exhibit 9-8B.

Exhibit 9-8B shows an intersection with a divisional island and right-turning roadways, a
desirable configuration for intersections on important two-lane highways carrying intermediate-
to-heavy traffic volumes (e.g., peak-hour volumes greater than 500 vehicles on the through
highway with substantial turning movements.) All movements through the intersection are
accommodated on separate lanes. The divisional islands shown in Exhibit 9-8 differ in location
with respect to the centerline. Either one may be used on each configuration.
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Exhibit 9-4 presents a three-leg rural intersection. The two-lane major highway has been
converted to a divided highway through the intersection. This intersection is well designed, with
liberal use of painted bars in the median. A right-turn lane in the upper right quadrant
accommodates a non-restricted exit from the major route, and a separate left-turn storage lane
serves higher turning volumes than can be accommodated by the intersection treatment shown in
Exhibit 9-6B. A stop sign or signal normally controls the traffic intersecting the through highway.

Four-Leg Intersections

Basic Types

Basic types of four-leg intersections are shown in Exhibits 9-9 through 9-13. The overall
design principles, island arrangements, use of auxiliary lanes, and many other aspects of the
previous discussion of three-leg intersection design also apply to four-leg intersections.

Exhibit 9-9A illustrates the simplest form of an unchannelized four-leg intersection suitable
for intersections of minor or local roads and often suitable for intersections of minor roads with
major highways. The angle intersection should not be more than 30 degrees from perpendicular
(i.e., from approximately 60 to 120 degrees). Approach pavements are continued through the
intersection, and the corners are rounded to accommodate turning vehicles.

Exhibit 9-9B illustrates a flared intersection with additional capacity for through and turning
movements at the intersection. Auxiliary lanes on each side of the normal pavement at the
intersection enable through vehicles to pass slow-moving and standing vehicles preparing to turn.
Depending on the relative volumes of traffic and the type of traffic control used, flaring of the
intersecting roadways can be accomplished by parallel auxiliary lanes, as on the highway shown
horizontally, or by pavement tapers, as shown on the crossroad. Flaring generally is similar on
opposite legs. Parallel auxiliary lanes are essential where traffic volume on the major highway is
near the uninterrupted-flow capacity of the highway or where through and cross traffic volumes
are sufficiently high to warrant signal control. Auxiliary lanes are also desirable for lower volume
conditions. The length of added pavement should be determined as it is for speed-change lanes,
and the length of uniform lane width, exclusive of taper, should normally be greater than 45 m
[150 ft] on the approach side of the intersection. The length of added pavement on the exit side of
the intersection should be 60 m [200 ft] as shown in Exhibit 9-12B.

Exhibit 9-9C shows a flared intersection with a marked pavement area that divides traffic
approaching the intersection. This configuration makes provision for a median lane suitable for
two-lane highways where speeds are high, intersections are infrequent, and the left-turning
movements from the highway could create a conflict. Pavement widening should be effected
gradually, preferably with pavement-edge reverse curves with radii of 1,500 m [5,000 ft] or more
or by the use of taper rates appropriate for the design speed. The marked pavement area should be
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Exhibit 9-9.  Unchannelized Four-Leg Intersections, Plain and Flared

at least 3.6 m [12 ft] wide at its widest point, and the through-traffic lane on each side of it should
be 0.5 to 1 m [2 to 3 ft] wider than the normal lane width on the approaches. Near the crossroad,
where the full widening is attained, the overall width of pavement is about 12 m [40 ft]. This
configuration affords protection for vehicles turning left from the major highway than does the
arrangement in Exhibit 9-9B, which is better suited for intersections with signal control. An
island marked on the pavement is not as positive a separator as a curbed divisional island, but it is
appropriate where sand or snow may be a maintenance problem and where any curbed island may
be an obstruction, as on high-speed rural highways.

Channelized Four-Leg Intersections

The usual configurations of four-leg intersections with simple channelization are shown in
Exhibits 9-10 and 9-11. Except at minor intersections, right-turning roadways are often provided,
as shown in Exhibit 9-10A, for the more important turning movements, where large vehicles are
to be accommodated, and at minor intersections in quadrants where the angle of turn greatly
exceeds 90 degrees.
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Exhibit 9-10.  Channelized Four-Leg Intersections
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Exhibit 9-11.  Channelized Four-Leg Intersections
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Exhibit 9-10B shows an oblique-angle intersection with a skew angle of 45 degrees or more
with separate turning roadways for two-way traffic in the acute-angle quadrants. Vehicles can
turn readily to the right or left in this configuration, and awkward maneuvers and encroachments
at the intersection proper are eliminated. The multiple points of intersection, the large skew angle,
and driver expectancy may combine to make this type of intersection undesirable. Preferably, one
or both highways should be realigned to reduce the skew angle. When realignment cannot be
obtained, extensive application of appropriate signing and signal controls is recommended.

Exhibit 9-11A shows an intersection configuration with right-turning roadways in all four
quadrants. This configuration is suitable where sufficient space is available and turning volumes
are high, particularly in suburban areas where pedestrians are present. However, this arrangement
is not common where the intersecting highways are only two lanes wide. Where one or more of
the right-turning movements need separate turning roadways, additional lanes are generally
needed for the complementary left-turning movements. In the latter case, the highway is normally
widened, as shown in Exhibits 9-9B and 9-11C.

Exhibit 9-11B illustrates an intersection with divisional islands on the crossroad. This
configuration fits a wide range of volumes, and its capacity is governed by the roadway widths
provided through the intersection. The simplicity of this configuration, in many cases, makes it
preferable to that shown in Exhibit 9-11A.

Exhibit 9-11C shows a configuration that is appropriate, except at a minor crossroad, for an
intersection on a two-lane highway operating near capacity or carrying moderate volumes at high
speeds. The two-lane approach on the major highway can be converted to a four-lane section with
a divisional island. The additional areas are used for speed changes, maneuvering, and storage of
turning vehicles. The form of channelization on the crossroad should be determined based on the
cross and turning volumes and the sizes of vehicles to be accommodated.

The simplest form of intersection on a divided highway has paved areas for right turns and a
median opening conforming to designs shown in later discussions in this chapter. Often the
speeds and volumes of through and turning traffic justify a higher type of channelization suitable
for the predominant traffic movements.

Exhibit 9-12A shows a high-type intersection on a divided highway. The approach on the
right has a heavy left-turn volume that can utilize the auxiliary lane provided in the median. The
lower leg of the intersection has a significant right-turn volume that is channelized with a
triangular island and added auxiliary lane.

Exhibit 9-12B illustrates another configuration for the intersection of a high-speed divided
highway and a major crossroad. Right-turning roadways with speed-change lanes and median
lanes for left turns afford both a high degree of efficiency in operation and high capacity and
permit through traffic on the highway to operate at reasonable speed. Traffic signal controls
should be properly used.
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Exhibit 9-12.  Four-Leg Intersections (Channelized High-type)
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Exhibit 9-13A shows an intersection configuration with dual left-turn lanes for one of the
left-turning movements. This configuration needs traffic signal control with a separate signal
phase for the dual left-turn movement and is particularly suitable for locations in urban areas
where there is a heavy turning movement in one quadrant of the intersection. The auxiliary lanes
in the median should be separated from the through lanes by either an elongated island, as shown,
or by pavement markings. Furthermore, pavement markings, contrasting pavements, and signs
should be used to discourage through drivers from entering the median lane inadvertently. Left-
turning vehicles typically leave the through lane to enter the median lane in single file but, once
within it, are stored in two lanes. On receiving the green signal indication, left-turn maneuvers are
accomplished simultaneously from both lanes. The median opening and the crossroad pavement
should be sufficiently wide to receive the two side-by-side traffic streams.

Exhibit 9-13B shows a suitable configuration for an intersection with unusually heavy
through volumes and a high left-turning volume in one quadrant. The high-volume left-turn
movement is removed from the main intersection by providing a separate diagonal roadway and
creating two additional intersections. A high degree of traffic operational efficiency can be
attained by a system of progressively synchronized traffic signals and proper signal timing based
on the distances and pavement widths between the three intersections. The three intersections
should be at least 60 m [200 ft], and preferably 90 m [300 ft] or more, apart. A median lane for
the left-turning movement onto the diagonal roadway should be two lanes wide. The right-turning
movement using the diagonal roadway may flow continuously, and an auxiliary lane along each
of the major roadways may be desirable. This design may be used where a grade separation is not
practical, as in flat terrain with traffic having a high volume of heavy trucks, or where it is desired
to defer the construction of a grade separation. Where movements in the other quadrants reach the
proportions of through movements, additional diagonal roadways might be provided, but with
major turning movements in more than one quadrant, a grade separation is generally preferred.
Before using the configuration shown in Exhibit 9-13B, careful consideration should be given to
its overall operational performance (i.e., delay to motorists) since this design, in effect, creates
two additional intersections.

Multileg Intersections

Multileg intersections—those with five or more intersection legs—should be avoided
wherever practical. At locations where multileg intersections are used, it may be satisfactory to
have all intersection legs intersect at a common paved area, where volumes are light and stop
control is used. At other than minor intersections, traffic operational efficiency can often be
improved by reconfigurations that remove some conflicting movements from the major
intersection. Such reconfigurations are accomplished by realigning one or more of the
intersecting legs and combining some of the traffic movements at adjacent subsidiary
intersections, as shown in Exhibit 9-14, or in some cases, by converting one or more legs to one-
way operation away from the intersection.

Exhibit 9-14A shows the simplest application of this principle on an intersection with five
approach legs. The diagonal leg is realigned to join the upper road at sufficient distance from the
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Exhibit 9-13.  Four-Leg Intersections (Channelized High-type)
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Exhibit 9-14.  Realigning Multileg Intersections

main intersection to form two distinct intersections, each of which can be operated simply. The
left-to-right highway is likely to be the more important route, and for this reason the diagonal leg
is realigned to locate the new intersection on the less important road.

Exhibit 9-14B illustrates an intersection with six approach legs, two of which are realigned
in adjacent quadrants to form a simple four-leg intersection at an appropriate distance to the right
of the main intersection, which is itself converted to a simple four-leg intersection. This pattern
applies where the top-to-bottom highway at the left is the more important route. If the left-to-right
highway is more important, it may be preferable to realign the diagonal legs toward the other
highway and thereby create three separate intersections along the minor highway. The
intersection configurations in Exhibit 9-14 are shown in their simplest form. For example,
separate turning lanes and divisional islands may be used, as appropriate, to fit the particular
situation.
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Modern Roundabouts

A recent synthesis of literature has summarized current practice and experience with modern
roundabouts (3). Although the United States was home to the first one-way rotary intersection in
the world (implemented at New York City’s Columbus Circle in 1904), traffic circles fell out of
favor in this country by the 1950s. Older traffic circles encountered serious operational and safety
problems, including the tendency for traffic to lock up at higher volumes. The modern
roundabout, although following different design principles from those of the old circles, has been
used less in the United States than abroad, in part because of this country’s experience with the
traffic circles and rotaries built in the first half of the 20th century.

Since 1990, however, there has been an emergence of interest in modern roundabouts in
some parts of the United States. This interest is due partially to the success of modern
roundabouts in several countries in Europe and in Australia. France, which leads the world with
an estimated 15,000 modern roundabouts, has been building roundabouts at a rate of about
1,000 per year. By comparison, the number of roundabouts in the United States, although
growing, remains small. As of mid-1997, there were fewer than 50 modern roundabouts in the
United States, in contrast with more than 35,000 in the rest of the world. Survey results from
various states and municipalities documenting their experiences with roundabouts have been
published (3).

The term “modern roundabout” is used in the United States to differentiate modern
roundabouts from the nonconforming traffic circles or rotaries that have been in use for many
years. Modern roundabouts are defined by two basic operational and design principles:

• Yield-at-Entry: Also known as off-side priority or the yield-to-left rule, yield-at-entry
requires that vehicles on the circulatory roadway of the roundabout have the right-of-
way and all entering vehicles on the approaches have to wait for a gap in the circulating
flow. To maintain free flow and high capacity, yield signs are used as the entry control.
As opposed to nonconforming traffic circles, modern roundabouts are not designed for
weaving maneuvers, thus permitting smaller diameters. Even for multilane roundabouts,
weaving maneuvers are not considered a design or capacity criterion.

• Deflection of Entering Traffic: Entrance roadways that intersect the roundabout along a
tangent to the circulatory roadway are not permitted. Instead, entering traffic is
deflected to the right by the central island of the roundabout and by channelization at
the entrance into an appropriate curved path along the circulating roadway. Thus, no
traffic is permitted to follow a straight path through the roundabout.

To provide for increased capacity, modern roundabouts often incorporate flares at the entry
by adding lanes before the yield line and have wide circulatory roadways.
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Modern roundabouts range in size from mini-roundabouts with inscribed circle diameters as
small as 15 m [50 ft], to compact roundabouts with inscribed circle diameters between 30 and
35 m [98 to 115 ft], to large roundabouts, often with multilane circulating roadways and more
than four entries up to 150 m [492 ft] in diameter.  The greater speeds permitted by larger
roundabouts, with inscribed circle diameters greater than 75 m [246 ft], may reduce their safety
benefits to some degree.

Exhibit 9-15 shows the typical geometric elements of a single-lane modern roundabout and
Exhibit 9-16 shows a pictorial roundabout example. Designing the geometry of a roundabout
involves choosing the best operational and capacity performance while retaining the best safety
enhancements. Roundabouts operate most safely when their geometry forces traffic to enter and
circulate at slow speeds. Horizontal curvature and narrow pavement widths are used to produce
this reduced-speed environment. However, the capacity of roundabouts is negatively affected by
these low-speed design elements. As the widths and radii of the entry and circulatory roadways
are reduced, the capacity of the roundabout is also reduced. Furthermore, many of the geometric
criteria used in design of roundabouts are governed by the maneuvering needs of the largest

Exhibit 9-15.  Geometric Elements of a Single-Lane Modern Roundabout
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vehicles expected to travel through the intersection. Thus, designing a roundabout is a process of
determining the optimal balance between safety provisions, operational performance, and
accommodation of over-sized vehicles (4).

Achieving appropriate vehicular speeds through a roundabout is the most critical design
objective. A well-designed roundabout reduces the relative speeds between conflicting traffic
streams by requiring vehicles to negotiate the roundabout along a curved path. Increasing the
curvature of the vehicle path decreases the relative speed between the entering and circulating
vehicles. To determine the speed of a roundabout, the fastest path allowed by the geometry
should be drawn. This is the smoothest, least-curved path that can be followed by a single
vehicle, in the absence of other traffic and ignoring all lane markings, traversing the entry, around
the central island, and out the exit. Usually the fastest path is the through movement, but in some
cases it may be a right-turn movement (4).

Exhibit 9-16.  Typical Modern Roundabout

Entry width is the largest determinant of a roundabout’s capacity. The capacity of an
approach is not only dependent on the number of entering lanes but also on the total width of the
entry. In other words, the entry capacity increases with increasing entry width. Therefore, entries
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and circulatory roadways are generally described in terms of width, not number of lanes. Entries
that are of sufficient width to accommodate multiple traffic streams are striped to designate
separate lanes. However, the circulatory roadway is usually not striped, even when more than one
lane of traffic is expected to circulate. The circulatory roadway should be at least as wide as the
widest entry and should maintain a constant width throughout (4). For some single-lane
roundabouts, the use of a mountable apron around the perimeter of the central island to provide
the additional width needed to accommodate off tracking by combination trucks may be
appropriate. At double-lane roundabouts, large vehicles may track across the whole width of the
circulatory roadway to negotiate the roundabout. In some cases, roundabouts have been designed
with aprons or gated roadways through the central island to accommodate over-sized trucks,
emergency vehicles, or trains.

To maximize a roundabout’s safe and efficient operation, entry widths should be kept to a
minimum. Capacity needs and performance objectives should be considered in determining the
width and number of lanes for each entry. In addition, the turning needs of the design vehicle may
make an even wider entry appropriate. Therefore, determining the entry width and circulatory
roadway width involves achieving an optimal capacity and operational balance. When the
capacity needs can only be met by increasing the entry width, this can be accomplished in two
ways: (1) by adding a full lane upstream of the roundabout and maintaining parallel lanes through
the entire entry, or (2) by widening the approach gradually (flaring) through the entire entry. An
example of entry flaring in two quadrants of a roundabout is shown in Exhibit 9-17 (4).

The installation of a roundabout for traffic-calming purposes should be supported by a
demonstrated need for traffic calming along the intersecting roadways. Roundabouts installed for
traffic-calming purposes are usually used on local roads. In such cases, capacity is not a
consideration since traffic volumes are typically well below congestion levels.

Pedestrian crossing locations at roundabouts should achieve a balance among pedestrian
convenience, pedestrian safety, and roundabout operations. Pedestrians generally want crossing
locations as close as practical to the roundabout to minimize out-of-direction travel. The further
the crossing is from the roundabout, the more likely it is that pedestrians will choose a shorter
route that may present unintended conflicts. Both crossing location and crossing distance are
important considerations. Crossing distance should be minimized to reduce exposure to
pedestrian-vehicle conflicts. Pedestrian movements may be compromised at a yield-line
crosswalk because driver attention is directed to the left looking for gaps in the circulating traffic
stream. Therefore, the location of pedestrian crosswalks at the yield-line is discouraged.
Crosswalks should be located to take advantage of the splitter island. The pedestrian refuge
within the splitter island should be designed at street grade, rather than elevated to the height of
the splitter island, provided that drainage can be accommodated. This arrangement eliminates the
need for ramps within the refuge area. Crossings should also be located at a distance from the
yield line that is approximately an even increment of a vehicle length to reduce the likelihood that
vehicles will be queued across the crosswalk. Curb-cut ramps should be provided at each end of
the crosswalk to connect the crosswalk to the sidewalk network and, thus, to other crosswalks
around the roundabout (4).



AASHTO—Geometric Design of Highways and Streets

582

Exhibit 9-17.  Roundabout with Entry Flaring in Two Quadrants

The designer should attempt, where practical, to provide bicyclists the choice of proceeding
through the roundabout as either a vehicle or a pedestrian. In general, bicyclists are better served
by operating as vehicles. Provisions for both options may allow bicyclists with varying degrees of
skill to choose the method of navigating the roundabout with which they are most comfortable .
To accommodate bicyclists traveling as vehicles, bicycle lanes should be terminated in advance
of the roundabout to encourage bicyclists to mix with vehicle traffic . This method will generally
be most successful at smaller roundabouts where bicycle speeds can most closely match vehicle
speeds. It may be difficult for bicyclists to traverse double-lane roundabouts. In such cases,
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consideration of an alternative route along another street or bicycle path may be appropriate. To
accommodate bicyclists traveling as pedestrians, a bicycle path or a shared bicycle/pedestrian
path, physically separated from the circulatory roadway, should be provided. Refer to the
AASHTO Guide for the Development of Bicycle Facilities (5) for more discussion of bicycle and
shared-use path design.

Roundabouts offer the opportunity to provide attractive entries or centerpieces to
communities. However, rigid objects such as monuments in the central island of a roundabout
directly facing the entries may pose a safety concern. Aesthetic landscaping of the center island
and, to a lesser degree, the splitter islands is frequently used. When placement of any landscaping
treatment is provided, consideration should be given to motorist’s sight distance needs. Pavement
textures and aesthetic paving treatments are also frequently utilized at roundabouts.

CAPACITY ANALYSIS

Capacity and level-of-service analysis is one of the most important considerations in the
design of intersections. This subject is discussed at length in Chapter 2 and is discussed
throughout this chapter as it relates to the various elements of intersection design. Optimum
capacities and levels of service can be obtained when intersections include auxiliary lanes,
appropriate channelization, and traffic control devices. For more complete discussion of capacity
and level-of-service analysis for intersections, including operational analysis procedures, refer to
the Highway Capacity Manual (HCM) (6) and to Chapter 2 for guidance for its use.

ALIGNMENT AND PROFILE

General Considerations

Intersections are points of conflict between vehicles, pedestrians, and bicycles. The
alignment and grade of the intersecting roads, therefore, should permit users to recognize the
intersection and the other vehicles using it, and readily perform the maneuvers needed to pass
through the intersection with minimum interference. To these ends, the alignment should be as
straight and the gradients as flat as practical. The sight distance should be equal to or greater than
the minimum values for specific intersection conditions, as derived and discussed later in this
chapter. If design objectives are not met, users may have difficulty in discerning the actions of
other users, in reading and discerning the messages of traffic control devices, and in controlling
their operations.

Site conditions generally establish definite alignment and grade constraints on the
intersecting roads. It may be practical to modify the alignment and grades, however, thereby
improving traffic operations.
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Alignment

Regardless of the type of intersection, for safety and economy, intersecting roads should
generally meet at or nearly at right angles. Roads intersecting at acute angles need extensive
turning roadway areas and tend to limit visibility, particularly for drivers of trucks. When a truck
turns on an obtuse angle, the driver has blind areas on the right side of the vehicle . Acute-angle
intersections increase the exposure time for the vehicles crossing the main traffic flow. The
practice of realigning roads intersecting at acute angles in the manner shown in
Exhibits 9-18A and 9-18B has proved to be beneficial. The greatest benefit is obtained when the
curves used to realign the roads allow operating speeds nearly equivalent to the major-highway
approach speeds.

Exhibit 9-18.  Realignment Variations at Intersections

The practice of constructing short-radius horizontal curves on side road approaches to
achieve right-angle intersections should be avoided whenever practical. Such curves result in
increased lane encroachments because drivers tend to reduce their path radius using a portion of
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the opposing lane. Also, the traffic control devices at the intersection may be located outside the
driver’s line of sight, resulting in the need to install advanced signing.

Another method of realigning a road that originally intersected another road at an acute
angle is to make an offset intersection, as shown in Exhibits 9-18C and 9-18D. Only a single
curve is introduced on each crossroad leg, but crossing vehicles must turn onto the major road
and then reenter the minor road. (The terms “major road” and “minor road” are used here to
indicate the relative importance of the roads that pass through the intersection rather than their
functional classification.)

Realignment of the minor road, as shown in Exhibit 9-18C, provides poor access continuity
because a crossing vehicle must reenter the minor road by making a left turn off the major
highway. This design arrangement should only be used where traffic on the minor road is
moderate, the anticipated minor road destinations are local, and the through traffic on the minor
road is low.

Where the alignment of the minor road is as shown in Exhibit 9-18D, access continuity is
better because a crossing vehicle first turns left onto the major road (e.g., a maneuver that can be
done by waiting for an opening in the through-traffic stream) and then turns right to reenter the
minor road, thus interfering little with through traffic on the major road.

Once a decision has been made to realign a minor road that intersects a major road at an
acute angle, the angle of the realigned intersection should be as close to 90 degrees as practical.
Although a right-angle crossing is normally desired, some deviation from a 90-degree angle is
permissible. Reconstructing an intersection to provide an angle of at least 60 degrees provides
most of the benefits of a 90-degree intersection angle while reducing the right-of-way takings and
construction costs often associated with providing a right-angle intersection. The width of the
roadway on the approach curves should be consistent with Exhibit 9-31 in order to reduce the
potential for encroachment on adjacent lanes.

Where a large portion of the traffic from the minor road turns onto the major road, rather
than continuing across the major road, the offset-intersection design may be advantageous
regardless of the right or left entry. A road alignment that intersects two other roads at their
junction to form an intersection with five or more legs should also be avoided.

Intersections on sharp curves should be avoided wherever practical because the
superelevation and widening of pavements on curves complicate the intersection design and may
reduce sight distance.

Where the major road curves and a minor road is located along a tangent to that curve, it is
desirable to realign the minor road, as shown in Exhibit 9-18E, to guide traffic onto the main
highway and improve the visibility at the point of intersection. This practice may have the
disadvantage of adverse superelevation for turning vehicles and may need further study where
curves have high superelevation rates and where the minor-road approach has adverse grades and
a sight distance restriction due to the grade line.
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Profile

Combinations of grade lines that make vehicle control difficult should be avoided at
intersections. Substantial grade changes should be avoided at intersections, but it is not always
practical to do so. Adequate sight distance should be provided along both intersecting roads and
across their included corners, as discussed below, even where one or both intersecting roads are
on vertical curves.

The gradients of intersecting roads should be as flat as practical on those sections that are to
be used for storage of stopped vehicles, sometimes referred to as “storage platforms.”

The calculated stopping and accelerating distances for passenger cars on grades of 3 percent
or less differ little from the corresponding distances on the level. Grades steeper than 3 percent
may need changes in several design elements to sustain operations equivalent to those on level
roads. Most drivers are unable to judge the effect of steep grades on stopping or accelerating
distances. Their normal deductions and reactions may thus be in error at a critical time.
Accordingly, grades in excess of 3 percent should be avoided on the intersecting roads in the
vicinity of the intersection. Where conditions make such designs too expensive, grades should not
exceed about 6 percent, with a corresponding adjustment in specific geometric design elements.

The profile gradelines and cross sections on the legs of an intersection should be adjusted for
a distance back from the intersection proper to provide a smooth junction and proper drainage.
Normally, the gradeline of the major road should be carried through the intersection and that of
the minor road should be adjusted to it. This design involves a transition in the crown of the
minor road to an inclined cross section at its junction with the major road. For simple
unchannelized intersections involving low design speeds and stop or signal control, it may be
desirable to warp the crowns of both roads into a plane at the intersection; the appropriate plane
depends on the direction of drainage and other conditions. Changes from one cross slope to
another should be gradual. Intersections at which a minor road crosses a multilane divided
highway with a narrow median on a superelevated curve should be avoided whenever practical
because of the difficulty in adjusting grades to provide a suitable crossing. Gradelines of separate
turning roadways should be designed to fit the cross slopes and longitudinal grades of the
intersection legs.

The alignment and grades are subject to greater constraints at or near intersections than on
the open road. At or near intersections, the combination of horizontal and vertical alignment
should provide traffic lanes that are clearly visible to drivers at all times, clearly understandable
for any desired direction of travel, free from the potential for conflicts to appear suddenly, and
consistent in design with the portions of the highway just traveled.

The combination of vertical and horizontal curvature should allow adequate sight distance at
an intersection. As discussed in Chapter 3, “Combinations of Horizontal and Vertical
Alignment,” a sharp horizontal curve following a crest vertical curve is undesirable, particularly
on intersection approaches.
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TYPES OF TURNING ROADWAYS

General

The widths of turning roadways for intersections are governed by the volumes of turning
traffic and the types of vehicles to be accommodated. In almost all cases, turning roadways are
designed for use by right-turning traffic. The widths for right-turning roadways may also be
applied to other roadways within an intersection. There are three typical types of right-turning
roadways at intersections: (1) a minimum edge-of-traveled-way design, (2) a design with a corner
triangular island, and (3) a free-flow design using a simple radius or compound radii. The turning
radii and the pavement cross slopes for free-flow right turns are functions of design speed and
type of vehicles. For an in-depth discussion of the appropriate design criteria, see Chapter 3.

Minimum Edge-of-Traveled-Way Designs

Where it is appropriate to provide for turning vehicles within minimum space, as at
unchannelized intersections, the corner radii should be based on minimum turning path of the
selected design vehicles. The sharpest turn that can be made by each design vehicle is shown in
Chapter 2, and the paths of the inner rear wheel and the front overhang are illustrated. The swept
path widths indicated in Chapter 2, which are slightly greater than the minimum paths of nearly
all vehicles in the class represented by each design vehicle, are the minimum paths attainable at
speeds equal to or less than 15 km/h [10 mph] and consequently offer some leeway in driver
behavior. These turning paths of the design vehicles shown in Exhibits 2-3 through 2-23 are
considered satisfactory as minimum designs. Exhibits 9-19 and 9-20 summarize minimum-edge-
of-traveled-way designs for various design vehicles.

The dimensions and turning radii of each design vehicle are identified in Chapter 2. In that
chapter, the following design vehicles are presented: passenger car (P), single-unit truck (SU),
city transit bus (CITY-BUS) intermediate semitrailer combination (WB-12 [WD-40]), semitrailer
combination (WB-15 [WB-50]), interstate semitrailers (WB-19 and WB-20 [WB-62 and
WB-65]), triple semitrailer/trailers combination (WB-30T [WB-100T]), turnpike-double
combination (WB-33D [WB-109D]), and the conventional school bus (S-BUS11 [S-BUS36]).

The remaining design vehicles, including WB-20D [WB-67D] trucks, articulated buses,
motor homes, motor coaches, and passenger cars pulling trailers or boats, are not addressed in this
chapter. Should any of these vehicles be selected as the design vehicle for an intersection, refer to
Chapter 2. Additional information on design characteristics of large trucks can be found in
published sources (7, 8).
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(ft)
Taper
H:V

30 P 18 – – – 30 P 60 – – –
SU 30 – – – SU 100 – – –
WB-12 45 – – – WB-40 150 – – –
WB-15 60 – – – WB-50 200 – – –
WB-19 110 67 1.0 15:1 WB-62 360 220 3.0 15:1
WB-20 116 67 1.0 15:1 WB-67 380 220 3.0 15:1
WB-30T 77 37 1.0 15:1 WB-100T 260 125 3.0 15:1
WB-33D 145 77 1.1 20:1 WB-109D 475 260 3.5 20:1

45 P 15 – – – 45 P 50 – – –
SU 23 – – – SU 75 – – –
WB-12 36 – – – WB-40 120 – – –
WB-15 53 36 0.6 15:1 WB-50 175 120 2.0 15:1
WB-19 70 43 1.2 15:1 WB-62 230 145 4.0 15:1
WB-20 76 43 1.3 15:1 WB-67 250 145 4.5 15:1
WB-30T 60 35 0.8 15:1 WB-100T 200 115 2.5 15:1
WB-33D – 60 1.3 20:1 WB-109D – 200 4.5 20:1

60 P 12 – – – 60 P 40 – – –
SU 18 – – – SU 60 – – –
WB-12 28 – – – WB-40 90 – – –
WB-15 45 29 1.0 15:1 WB-50 150 120 3.0 15:1
WB-19 50 43 1.2 15:1 WB-62 170 140 4.0 15:1
WB-20 60 43 1.3 15:1 WB-67 200 140 4.5 15:1
WB-30T 46 29 0.8 15:1 WB-100T 150 95 2.5 15:1
WB-33D – 54 1.3 20:1 WB-109D – 180 4.5 20:1

Exhibit 9-19.  Edge-of-Traveled-Way Designs for Turns at Intersections
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Metric US Customary

Simple curve radius with taper Simple curve radius with taperAngle of
turn

(degrees)
Design
vehicle
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curve
radius

(m)
Radius
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Taper
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turn
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curve
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(ft)
Radius

(ft)
Offset

(ft)
Taper
H:V

75 P 11 8 0.6 10:1 75 P 35 25 2.0 10:1
SU 17 14 0.6 10:1 SU 55 45 2.0 10:1
WB-12 – 18 0.6 15:1 WB-40 – 60 2.0 15:1
WB-15 – 20 1.0 15:1 WB-50 – 65 3.0 15:1
WB-19 – 43 1.2 20:1 WB-62 – 145 4.0 20:1
WB-20 – 43 1.3 20:1 WB-67 – 145 4.5 20:1
WB-30T – 26 1.0 15:1 WB-100T – 85 3.0 15:1
WB-33D – 42 1.7 20:1 WB-109D – 140 5.5 20:1

90 P 9 6 0.8 10:1 90 P 30 20 2.5 10:1
SU 15 12 0.6 10:1 SU 50 40 2.0 10:1
WB-12 – 14 1.2 10:1 WB-40 – 45 4.0 10:1
WB-15 – 18 1.2 15:1 WB-50 – 60 4.0 15:1
WB-19 – 36 1.3 30:1 WB-62 – 120 4.5 30:1
WB-20 – 37 1.3 30:1 WB-67 – 125 4.5 30:1
WB-30T – 25 0.8 15:1 WB-100T – 85 2.5 15:1
WB-33D – 35 0.9 15:1 WB-109D – 115 2.9 15:1

105 P – 6 0.8 – 105 P – 20 2.5 –
SU – 11 1.0 – SU – 35 3.0 –
WB-12 – 12 1.2 – WB-40 – 40 4.0 –
WB-15 – 17 1.2 15:1 WB-50 – 55 4.0 15:1
WB-19 – 35 1.0 15:1 WB-62 – 115 3.0 15:1
WB-20 – 35 1.0 15:1 WB-67 – 115 3.0 15:1
WB-30T – 22 1.0 15:1 WB-100T – 75 3.0 15:1
WB-33D – 28 2.8 20:1 WB-109D – 90 9.2 20:1

Exhibit 9–19.  Edge-of-Traveled-Way Designs for Turns at Intersections (Continued)
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(ft)
Offset

(ft)
Taper
H:V

120 P – 6 0.6 – 120 P – 20 2.0 –
SU – 9 1.0 – SU – 30 3.0 –
WB-12 – 11 1.5 – WB-40 – 35 5.0 –
WB-15 – 14 1.2 15:1 WB-50 – 45 4.0 15:1
WB-19 – 30 1.5 15:1 WB-62 – 100 5.0 15:1
WB-20 – 31 1.6 15:1 WB-67 – 105 5.2 15:1
WB-30T – 20 1.1 15:1 WB-100T – 65 3.5 15:1
WB-33D – 26 2.8 20:1 WB-109D – 85 9.2 20:1

135 P – 6 0.5 10:1 135 P – 20 1.5 10:1
SU – 9 1.2 10:1 SU – 30 4.0 10:1
WB-12 – 9 2.5 15:1 WB-40 – 30 8.0 15:1
WB-15 – 12 2.0 15:1 WB-50 – 40 6.0 15:1
WB-19 – 24 1.5 20:1 WB-62 – 80 5.0 20:1
WB-20 – 25 1.6 20:1 WB-67 – 85 5.2 20:1
WB-30T – 19 1.7 15:1 WB-100T – 65 5.5 15:1
WB-33D – 25 2.6 20:1 WB-109D – 85 8.5 20:1

150 P – 6 0.6 10:1 150 P – 18 2.0 10:1
SU – 9 1.2 8:1 SU – 30 4.0 8:1
WB-12 – 9 2.0 8:1 WB-40 – 30 6.0 8:1
WB-15 – 11 2.1 6:1 WB-50 – 35 7.0 6:1
WB-19 – 18 3.0 10:1 WB-62 – 60 10.0 10:1
WB-20 – 19 3.1 10:1 WB-67 – 65 10.2 10:1
WB-30T – 19 2.2 10:1 WB-100T – 65 7.3 10:1
WB-33D – 20 4.6 10:1 WB-109D – 65 15.1 10:1

Exhibit 9–19.  Edge-of-Traveled-Way Designs for Turns at Intersections (Continued)
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Simple curve radius with
taper

Simple curve radius with
taperAngle of

turn
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curve
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turn
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Simple
curve
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(ft)
Radius

(ft)
Offset

(ft)
Taper
H:V

180 P – 5 0.2 20:1 180 P – 15 0.5 20:1
SU – 9 0.5 10:1 SU – 30 1.5 10:1
WB-12 – 6 3.0 5:1 WB-40 – 20 9.5 5:1
WB-15 – 8 3.0 5:1 WB-50 – 25 9.5 5:1
WB-19 – 17 3.0 15:1 WB-62 – 55 10.0 15:1
WB-20 – 16 4.2 10:1 WB-67 – 55 13.8 10:1
WB-30T – 17 3.1 10:1 WB-100T – 55 10.2 10:1
WB-33D – 17 6.1 10:1 WB-109D – 55 20.0 10:1

Exhibit 9–19.  Edge-of-Traveled-Way Designs for Turns at Intersections (Continued)
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3-centered compound 3-centered compound 3-centered compound 3-centered compoundAngle of

turn
(degrees)

Design
vehicle

Curve radii
(m)

Symmetric
offset (m)

Curve radii
(m)

Asymmetric
(m)

Angle of
turn

(degrees)
Design
vehicle

Curve radii
(ft)

Symmetric
offset (ft)

Curve radii
(ft)

Asymmetric
(ft)

30 P – – – – 30 P – – – –
SU – – – – SU – – – –
WB-12 – – – – WB-40 – – – –
WB-15 – – – – WB-50 – – – –
WB-19 – – – – WB-62 – – – –
WB-20 140-53-140 1.2 91-53-168 0.6–1.4 WB-67 460-175-460 4.0 300-175-550 2.0–4.5
WB-30T 67-24-67 1.4 61-24-91 0.8–1.5 WB-100T 220-80-220 4.5 200-80-300 2.5–5.0
WB-33D 168-76-168 1.5 76-61-198 0.5–2.1 WB-109D 550-250-550 5.0 250-200-650 1.5–7.0

45 P – – – – 45 P – – – –
SU – – – – SU – – – –
WB-12 – – – – WB-40 – – – –
WB-15 60-30-60 1.0 – – WB-50 200-100-200 3.0 – –
WB-19 140-72-140 0.6 36-43-150 1.0–2.6 WB-62 460-240-460 2.0 120-140-500 3.0–8.5
WB-20 140-53-140 1.2 76-38-183 0.3–1.8 WB-67 460-175-460 4.0 250-125-600 1.0–6.0
WB-30T 76-24-76 1.4 61-24-91 0.8–1.7 WB-100T 250-80-250 4.5 200-80-300 2.5–5.5
WB-33D 168-61-168 1.5 61-52-198 0.5–2.1 WB-109D 550-200-550 5.0 200-170-650 1.5–7.0

60 P – – – – 60 P – – – –
SU – – – – SU – – – –
WB-12 – – – – WB-40 – – – –
WB-15 60-23-60 1.7 60-23-84 .06–2.0 WB-50 200-75-200 5.5 200-75-275 2.0–7.0
WB-19 120-30-120 4.5 34-30-67 3.0–3.7 WB-62 400-100-400 15.0 110-100-220 10.0–12.5
WB-20 122-30-122 2.4 76-38-183 0.3–1.8 WB-67 400-100-400 8.0 250-125-600 1.0–6.0
WB-30T 76-24-76 1.4 61-24-91 0.6–1.7 WB-100T 250-80-250 4.5 200-80-300 2.0–5.5
WB-33D 198-46-198 1.7 61-43-183 0.5–2.4 WB-109D 650-150-650 5.5 200-140-600 1.5–8.0

Exhibit 9-20.  Edge of Traveled Way for Turns at Intersections
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Metric US Customary
3-centered compound 3-centered compound 3-centered compound 3-centered compoundAngle of

turn
(degrees)

Design
vehicle

Curve radii
(m)

Symmetric
offset (m)

Curve radii
(m)

Asymmetric
(m)

Angle of
turn

(degrees)
Design
vehicle

Curve radii
(ft)

Symmetric
offset (ft)

Curve radii
(ft)

Asymmetric
(ft)

75 P 30-8-30 0.6 – – 75 P 100-75-100 2.0 – –
SU 36-14-36 0.6 – – SU 120-45-120 2.0 – –
WB-12 36-14-36 1.5 36-14-60 0.6–2.0 WB-40 120-45-120 5.0 120-45-195 2.0–6.5
WB-15 45-15-45 2.0 45-15-69 0.6–3.0 WB-50 150-50-150 6.5 150-50-225 2.0–10.0
WB-19 134-23-134 4.5 43-30-165 1.5–3.6 WB-62 440-75-440 15.0 140-100-540 5.0–12.0
WB-20 128-23-128 3.0 61-24-183 0.3–3.0 WB-67 420-75-420 10.0 200-80-600 1.0–10.0
WB-30T 76-24-76 1.4 30-24-91 0.5–1.5 WB-100T 250-80-250 4.5 100-80-300 1.5–5.0
WB-33D 213-38-213 2.0 46-34-168 0.5–3.5 WB-109D 700-125-700 6.5 150-110-550 1.5-11.5

90 P 30-6-30 0.8 – – 90 P 100-20-100 2.5 – –
SU 36-12-36 0.6 – – SU 120-40-120 2.0 – –
WB-12 36-12-36 1.5 36-12-60 0.6–2.0 WB-40 120-40-120 5.0 120-40-200 2.0–6.5
WB-15 55-18-55 2.0 36-12-60 0.6–3.0 WB-50 180-60-180 6.5 120-40-200 2.0–10.0
WB-19 120-21-120 3.0 48-21-110 2.0–3.0 WB-62 400-70-400 10.0 160-70-360 6.0–10.0
WB-20 134-20-134 3.0 61-21-183 0.3–3.4 WB-67 440-65-440 10.0 200-70-600 1.0–11.0
WB-30T 76-21-76 1.4 61-21-91 0.3–1.5 WB-100T 250-70-250 4.5 200-70-300 1.0–5.0
WB-33D 213-34-213 2.0 30-29-168 0.6–3.5 WB-109D 700-110-700 6.5 100-95-550 2.0–11.5

105 P 30-6-30 0.8 – – 105 P 100-20-100 2.5 – –
SU 30-11-30 1.0 – – SU 100-35-100 3.0 – –
WB-12 30-11-30 1.5 30-17-60 0.6–2.5 WB-40 100-35-100 5.0 100-55-200 2.0–8.0
WB-15 55-14-55 2.5 45-12-64 0.6–3.0 WB-50 180-45-180 8.0 150-40-210 2.0–10.0
WB-19 160-15-160 4.5 110-23-

180
1.2–3.2 WB-62 520-50-520 15.0 360-75-600 4.0–10.5

WB-20 152-15-152 4.0 61-20-183 0.3–3.4 WB-67 500-50-500 13.0 200-65-600 1.0–11.0
WB-30T 76-18-76 1.5 30-18-91 0.5–1.8 WB-100T 250-60-250 5.0 100-60-300 1.5–6.0
WB-33D 213-29-213 2.4 46-24-152 0.9–4.6 WB-109D 700-95-700 8.0 150-80-500 3.0–15.0

Exhibit 9-20.  Edge of Traveled Way for Turns at Intersections (Continued)
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3-centered compound 3-centered compound 3-centered compound 3-centered compoundAngle of

turn
(degrees)

Design
vehicle

Curve radii
(m)

Symmetric
offset (m)

Curve radii
(m)

Asymmetric
(m)

Angle of
turn

(degrees)
Design
vehicle

Curve radii
(ft)

Symmetric
offset (ft)

Curve radii
(ft)

Asymmetric
(ft)

120 P 30-60-30 0.6 – – 120 P 100-20-100 2.0 – –
SU 30-9-30 1.0 – – SU 100-30-100 3.0 – –
WB-12 36-9-36 2.0 30-9-55 0.6–2.7 WB-40 120-30-120 6.0 100-30-180 2.0–9.0
WB-15 55-12-55 2.6 45-11-67 0.6–3.6 WB-50 180-40-180 8.5 150-35-220 2.0–12.0
WB-19 160-21-160 3.0 24-17-160 5.2–7.3 WB-62 520-70-520 10.0 80-55-520 24.0–17.0
WB-20 168-14-168 4.6 61-18-183 0.6–3.8 WB-67 550-45-550 15.0 200-60-600 2.0–12.5
WB-30T 76-18-76 1.5 30-18-91 0.5–1.8 WB-100T 250-60-250 5.0 100-60-300 1.5–6.0
WB-33D 213-26-213 2.7 46-21-152 2.0–5.3 WB-109D 700-85-700 9.0 150-70-500 7.0–17.4

135 P 30-6-30 0.5 – – 135 P 100-20-100 1.5 – –
SU 30-9-30 1.2 – – SU 100-30-100 4.0 – –
WB-12 36-9-36 2.0 30-8-55 1.0–4.0 WB-40 120-30-120 6.5 100-25-180 3.0–13.0
WB-15 48-11-48 2.7 40-9-56 1.0–4.3 WB-50 160-35-160 9.0 130-30-185 3.0–14.0
WB-19 180-18-180 3.6 30-18-195 2.1–4.3 WB-62 600-60-600 12.0 100-60-640 14.0–7.0
WB-20 168-14-168 5.0 61-18-183 0.6–3.8 WB-67 550-45-550 16.0 200-60-600 2.0–12.5
WB-30T 76-18-76 1.7 30-18-91 0.8–2.0 WB-100T 250-60-250 5.5 100-60-300 2.5–7.0
WB-33D 213-21-213 3.8 46-20-152 2.1–5.6 WB-109D 700-70-700 12.5 150-65-500 14.0–18.4

150 P 23-6-23 0.6 – – 150 P 75-20-75 2.0 – –
SU 30-9-30 1.2 – – SU 100-30-100 4.0 – –
WB-12 30-9-30 2.0 28-8-48 0.3–3.6 WB-40 100-30-100 6.0 90-25-160 1.0–12.0
WB-15 48-11-48 2.1 36-9-55 1.0–4.3 WB-50 160-35-160 7.0 120-30-180 3.0–14.0
WB-19 145-17-145 4.5 43-18-170 2.4–3.0 WB-62 480-55-480 15.0 140-60-560 8.0–10.0
WB-20 168-14-168 5.8 61-17-183 2.0–5.0 WB-67 550-45-550 19.0 200-55-600 7.0–16.4
WB-30T 76-18-76 2.1 30-18-91 1.5–2.4 WB-100T 250-60-250 7.0 100-60-300 5.0–8.0
WB-33D 213-20-213 4.6 61-20-152 2.7–5.6 WB-109D 700-65-700 15.0 200-65-500 9.0–18.4

Exhibit 9-20.  Edge of Traveled Way for Turns at Intersections (Continued)
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Metric US Customary
3-centered compound 3-centered compound 3-centered compound 3-centered compoundAngle of

turn
(degrees)

Design
vehicle

Curve radii
(m)

Symmetric
offset (m)

Curve radii
(m)

Asymmetric
(m)

Angle of
turn

(degrees)
Design
vehicle

Curve radii
(ft)

Symmetric
offset (ft)

Curve radii
(ft)

Asymmetric
(ft)

180 P 15-5-15 0.2 – – 180 P 50-15-50 0.5 – –
SU 30-9-30 0.5 – – SU 100-30-100 1.5 – –
WB-12 30-6-30 3.0 26-6-45 2.0–4.0 WB-40 100-20-100 9.5 85-20-150 6.0–13.0
WB-15 40-8-40 3.0 30-8-55 2.0–4.0 WB-50 130-25-130 9.5 100-25-180 6.0–13.0
WB-19 245-14-245 6.0 30-17-275 4.5–4.5 WB-62 800-45-800 20.0 100-55-900 15.0–15.0
WB-20 183-14-183 6.2 30-17-122 1.8–4.6 WB-67 600-45-600 20.5 100-55-400 6.0–15.0
WB-30T 76-17-76 2.9 30-17-91 2.6–3.2 WB-100T 250-55-250 9.5 100-55-300 8.5–10.5
WB-33D 213-17-213 6.1 61-18-152 3.0–6.4 WB-109D 700-55-700 20.0 200-60-500 10.0–21.0

Exhibit 9-20.  Edge of Traveled Way for Turns at Intersections (Continued)
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In the design of the edge of the traveled way based on the path of a given design vehicle, it
is assumed that the vehicle is properly positioned within the traffic lane at the beginning and end
of the turn (i.e., 0.6 m [2 ft] from the edge of traveled way on the tangents approaching and
leaving the intersection curve). Curve designs for edge of traveled way conforming to this
assumption are shown in Exhibits 9-21 through 9-28. Such designs follow closely the inner wheel
path of the selected design vehicle, with a clearance of 0.6 m [2 ft] or more throughout most of
the turn, and with a clearance at no point less than 0.2 m [9 in]. Differences in the inner paths of
vehicles turning left and right are not sufficient to be significant in design. Although not shown
explicitly in the figures, the edge designs illustrated also apply to left-turn maneuvers, such as a
left turn by a vehicle leaving a divided highway at a very low speed.

Where the alignment includes a horizontal curve at the beginning or end of a return radius,
the design should be modified accordingly. The most expeditious way to customize a design for
such special conditions is to use the appropriate design vehicle as an overlay on a plan of the
intersection.

At an intersection with a low right-turn volume, the designer may determine that a
deceleration and right-turn lane is not warranted. In this instance, the composition of the shoulder
may be improved for greater load capacities to permit right-turning vehicles to utilize the
shoulder. In turn, where right-turning volumes are high, consideration should be given to
providing a right-turn lane along with appropriate provisions for vehicle deceleration. In rural
areas, the appropriate shoulder width should be considered in conjunction with the design of
right-turn lanes.

Design for Specific Conditions (Right-Angle Turns)

The designs illustrated in Exhibits 9-21 through 9-28 are those that accommodate the
sharpest turns for specific design vehicles. Combinations of curves with radii other than those
shown may also provide satisfactory operations. The choice of design for a specific intersection
or turning movement where pedestrians are present is a particular concern, and it is desirable to
keep the intersection area to a minimum. The selection of any specific design depends on the type
and size of vehicles that will be turning and the extent to which they should be accommodated. In
addition, the appropriate design may depend on other factors such as the type, character, and
location of the intersecting roads, the vehicular and pedestrian traffic volumes, the number and
frequency of the larger vehicles involved in turning movements, and the effect of these larger
vehicles on other traffic. For example, if turning traffic is nearly all passenger vehicles, it may not
be cost-effective or pedestrian friendly to design for large trucks. However, the design should
allow for an occasional large truck to turn by swinging wide and encroaching on other traffic
lanes without disrupting traffic significantly. Therefore, the designer should analyze the likely
paths and encroachments that will result when a turn is made by a larger vehicle.

From the analysis of these maneuvers and corresponding paths, together with other pertinent
data, the appropriate type of minimum design can be selected. Applications of minimum designs
for turning movements are common, even in rural areas. Minimum designs are appropriate for
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locations with low turning speeds, low turning volumes, and high property values. The selection
of a design vehicle for minimum edge-of-traveled-way designs, illustrated in Exhibits 9-21
through 9-28, depends on the designer’s judgment upon consideration of the site conditions and
analyzes the operational needs of larger vehicles.

As a summary, three minimum edge-of-traveled-way designs for turns may be considered at
an intersection based on the turning paths of the design vehicles identified below:

• P design vehicle (Exhibit 9-21). This design vehicle is used at intersections in
conjunction with parkways where minimum turns are appropriate, at local road
intersections with major roads where turns are made only occasionally, and at
intersections of two minor roads carrying low volumes. However, if conditions permit,
the SU vehicle (Exhibit 9-22) is the preferred design vehicle.

• SU design vehicle (Exhibit 9-22). Generally, this design vehicle provides the
recommended minimum edge-of-traveled-way design for rural highways other than
those described above. Turning movements for urban conditions are discussed in a
separate section of this chapter. Important turning movements on major highways,
particularly those involving a large percentage of trucks, should be designed with larger
radii, speed-change lanes, or both.

• Semitrailer combination design vehicles (Exhibits 9-23 through 9-28). These design
vehicles should be used where truck combinations will turn repeatedly. Where designs
for such vehicles are warranted, the simpler symmetrical arrangements of three-centered
compound curves (shown in Exhibits 9-23 and 9-25) are generally preferred if these
smaller truck combinations make up a sizable percentage of the turning volume.
Because designs for semitrailer combination vehicles, particularly when used in two or
more quadrants of an intersection, produce large paved areas, it may be desirable to
provide somewhat larger radii and use a corner triangular island.

A more detailed discussion of the minimum edge-of-traveled-way design for each of these
design vehicle types is presented below.

Passenger Vehicles

Three minimum designs for the inner edge of the traveled way for a 90-degree right turn to
accommodate the P design vehicle are shown in Exhibit 9-21. A 7.5-m [25-ft] radius for the inner
edge of the traveled way (the solid line in Exhibit 9-21A) is the sharpest simple arc that clears the
inner wheel path by about 0.2 m [8 in] near the end of the arc. A simple circular curve with a
radius of 9 m [30 ft], shown as a dotted line in the same exhibit, provides a 0.4-m [16-in]
clearance at the ends of the curve, but has a clearance of about 1.6 m [5.4 ft] at the middle of the
curve. With a radius of more than 9 m [30 ft], most passenger car drivers will naturally use a
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Exhibit 9-21.  Minimum Traveled Way (Passenger Vehicles)
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Exhibit 9–21.  Minimum Traveled Way (Passenger Vehicles) (Continued)
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Exhibit 9-22.  Minimum Traveled Way Designs (Single-Unit Trucks and City Transit Buses)



Intersections

601

Exhibit 9–22.  Minimum Traveled Way Designs (Single-Unit Trucks and City Transit
Buses) (Continued)
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Exhibit 9-23.  Minimum Edge-of-Traveled-Way Designs (WB-12 [WB-40]
Design Vehicle Path)
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Exhibit 9–23.  Minimum Edge-of-Traveled-Way Designs (WB-12 [WB-40]
Design Vehicle Path) (Continued)
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Exhibit 9-24.  Minimum Edge-of-Traveled-Way Designs (WB-15 [WB-50]
Design Vehicle Path)



Intersections

605

Exhibit 9-25.  Minimum Edge-of-Traveled-Way Designs (WB-15 [WB-50]
Design Vehicle Path)
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Exhibit 9–25.  Minimum Edge-of-Traveled-Way Designs (WB-15 [WB-50]
Design Vehicle Path) (Continued)
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Exhibit 9-26.  Minimum Edge-of-Traveled-Way Designs (WB-19 [WB-62]
Design Vehicle Path)
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Exhibit 9-26.  Minimum Edge-of-Traveled-Way Designs (WB-19 [WB-62]
Design Vehicle Path) (Continued)
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Exhibit 9-27.  Minimum Edge-of-Traveled-Way Designs (WB-30T [WB-100T] Design
Vehicle Path)
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Exhibit 9-27.  Minimum Edge-of-Traveled-Way Designs (WB-30T [WB-100T] Design
Vehicle Path) (Continued)
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Exhibit 9-28.  Minimum Edge-of-Traveled-Way Designs (WB-33D [WB-109D]
Design Vehicle Path)
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Exhibit 9-28.  Minimum Edge-of-Traveled-Way Designs (WB-33D [WB-109D]
Design Vehicle Path) (Continued)
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turning radius flatter than the minimum vehicles and will more or less follow the edge of the
traveled way.

The edge design shown in Exhibit 9-21C is a practical equivalent to a circular curve. This
design consists of a three-centered curve with radii of 30, 6, and 30 m [100, 20, and 100 ft], with
the center of the middle curve being located 7 m [22.5 ft] from the extension of the tangent edges
(measurement includes a 0.8-m [2.5-ft] offset). This design creates little extra pavement in
contrast to the simple curve of 9 m [30 ft]; specifically, the paved area in a single quadrant
between the extended tangent edges is only 20 m2 [225 ft2] in comparison to 18 m2 [200 ft2] for
the simple circular curve. However, a minimum edge design is preferred because it more closely
fits the design vehicle path. A layout consisting of a simple curve offset and connecting tapers
that closely approximates the three-centered design is shown in Exhibit 9-21B.

Single-Unit Trucks and City Transit Buses

Minimum designs for the inner edge of the traveled way for a 90-degree right turn to
accommodate the SU design vehicle are shown in Exhibit 9-22. The minimum travel way designs
for the SU design vehicle will accommodate both the single-unit truck and the city transit bus. A
15-m [50-ft] radius for the inner edge of the traveled way (the solid line shown in Exhibit 9-22A)
is the sharpest simple arc that accommodates the SU vehicle without encroachment on adjacent
lanes. Toward the end of the turn, however, the inner wheel path closely approaches the edge of
the traveled way. A simple circular curve of 17-m [55-ft] radius, shown as a dotted line in Exhibit
9-22A, allows for slightly more clearance at the far end of the intersection curve. Inner-edge radii
of 18 m [60 ft] or more permit the SU vehicle to turn on a radius greater than the minimum.

The edge design shown in Exhibit 9-22C is a practical equivalent to a circular curve. It
consists of a three-centered compound curve with radii of 36, 12, and 36 m [120, 40, and 120 ft],
with the center of the middle curve located 13 m [42 ft] from the extension of the tangent edges
(with a 0.6-m [2.0-ft] offset). In an operational sense, this design is much preferred over the
simple circular curve because it better fits the minimum path of the inner rear wheel of the design
vehicle. Because the resulting areas between the edges of the traveled way are 44 m2 [475 ft2] for
the compound-curve design and 50 m2 [550 ft2] for the circular-curve with a 15-m [50-ft] radius,
the former design needs less pavement. A simpler tapered layout that closely follows the three-
centered design is shown in Exhibit 9-22B.

In any design that permits the SU design vehicle to turn on its minimum path without
swinging wide, the front overhang will swing out 3.6 m [12 ft] from the edge of tangent traveled
way at the far end of the turn, and the design vehicle thereby occupies the full width of a 3.6-m
[12-ft] lane on the crossroad. With 3.0- or 3.3-m [10- or 11-ft] lanes, the turning vehicle would
encroach on adjacent lanes. To preclude encroachment with lane widths less than 3.6 m [12 ft],
edge-of-traveled-way radii larger than the minimum would need to be used.
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Semitrailer Combination Trucks

It is not practical to fit simple circular arcs to the minimum design paths for semitrailer
combination design vehicles. However, where traffic lanes are 3.6 m [12 ft] in width, such
vehicles can turn without encroachment on adjacent lanes if the radius of a simple circular curve
for the inner edge of traveled way is approximately 23 m [75 ft] for the WB-12 [WB-40] and
29 m [95 ft] for the WB-15 [WB-50] design vehicle. Such turns would be made with a turning
radius of the outer front wheel greater than the minimums shown of these vehicles. To fit the edge
of traveled way more closely to the minimum path of these design vehicles, an asymmetrical
arrangement of three-centered compound curves should be used. For the WB-12 [WB-40] design
vehicle, the curves should have radii of 36, 12, and 60 m [120, 40, and 200 ft] with the arc of the
middle curve being offset 0.6 and 2.0 m [2.0 and 6.5 ft] from the extension of the tangent edges
on the approach and exit sides, respectively. A simple curve with tapers is shown in Exhibit 9-24
for the WB-15 [WB-50] vehicle. Although not as efficient in the use of pavement area as the
asymmetrical curve layout, it may be a preferred design because of its ease of construction.

Oblique-Angle Turns

For oblique-angle turns, minimum designs for the edge of the traveled way are developed in
the same manner as those for right-angle intersections by plotting the paths of the design vehicles
on the sharpest turns and fitting curves or combinations of curves to the paths of inner rear
wheels. Suggested minimum designs in which three-centered compound curves are used for each
design vehicle are given in Exhibit 9-20 for various angles of turn.

For convenience, the intersection angle condition is indicated by the angle of turn, which is
the angle through which a vehicle travels in making a turn. It is measured from the extension of
the tangent on which a vehicle approaches to the corresponding tangent on the intersecting road
onto which the vehicle turns. This angle is the same as that commonly called the delta or central
angle in surveying terminology. With angles of turn less than 90 degrees, the radii needed to fit
the minimum paths of vehicles are longer than those suggested for right-angle turns. With angles
of turn more than 90 degrees, the radii are decreased and larger offsets of the central arc should
be provided.

The designs shown in Exhibit 9-20 are those suggested to fit the sharpest turns of the
different design vehicles. Some other combinations of curves may also be used with satisfactory
results. The use of tapers with simple curves is another method for design of the edge of the
traveled way for turns at intersections, and dimensions for such combinations are shown in
Exhibit 9-19. Tapers are needed to keep the intersection area to a minimum, and any of the
designs shown in Exhibits 9-19 or 9-20 may be chosen, depending on the type and size of
vehicles that will be turning and the extent to which those vehicles should be accommodated.

At 90-degree intersections with inner edges of traveled way designed for passenger vehicles,
all trucks can turn by making a wide swing onto adjacent traffic lanes, which on two-lane roads
are opposing traffic lanes. For angles of turn less than 90 degrees, trucks also can turn on an inner
edge of traveled way designed for passenger vehicles with even less encroachment than for
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90-degree turns. For turning angles more than 90 degrees, the minimum design for the P design
vehicle should be adjusted to ensure that all turning trucks can remain within two lanes of
traveled way on each of the intersecting roads. In this regard, for turning angles of 120 degrees or
more, the same dimensions of three-centered curves, as needed for the P design vehicle (30, 6 and
30 m [90, 20, and 90 ft]) may be used, but the offset of the middle curve should be increased from
1 m [3 ft] to as much as 3 m [10 ft] for a 180-degree turn. Where space is available, even for
minor roads, a design based on the SU design vehicle would be preferred. With edge design
developed for the SU design vehicle, the WB-12 [WB-40] design vehicle will encroach only
slightly, if at all, on adjacent traffic lanes, and the WB-15 [WB-50] design vehicle will encroach
only partially on other lanes.

Design for angles of turn more than 90 degrees usually results in intersections with large
paved areas, of which portions are often unused. This situation may lead to confusion among
drivers and may create longer crossing paths for pedestrians. These conditions may be alleviated
to a considerable extent by using three-centered asymmetric compound curves, two-centered
curves, or larger radius circular curves together with corner triangular islands. On major
highways intersecting at oblique angles, separate turning roadways with a corner island for right-
turning traffic should be provided in quadrants where vehicles turn more than about 120 degrees.

Effect of Curb Radii on Turning Paths

The effect of curb radii on the right-turning paths of various design vehicles turning through
an angle of 90 degrees (on streets without parking lanes) is shown in Exhibits 9-29 and 9-30.

Exhibit 9-29 shows the effects of a 4.5-m [15-ft] radius. With 3.6-m [12-ft] lanes, the design
passenger vehicle can turn with no encroachment on an adjacent lane at the end of the turn, but
the SU and BUS design vehicles will swing wide on both streets and will occupy two lanes at the
end of the turn. To turn into two lanes on the cross street, the WB-15 [WB-50] design vehicle will
occupy an area wider than those two lanes (i.e., the design vehicle would encroach on a shoulder
or curb area, as well). The WB-33D [WB-109D] design vehicle would occupy an area as wide as
four lanes on a cross street.

Exhibit 9-30 shows vehicle operation at a 12-m [40-ft] curb radius. The P vehicle can easily
make the turn around this radius. The SU and BUS design vehicles can turn around the radius into
one lane on the cross street by beginning its turn adjacent to the centerline of the major street. The
WB-15 [WB-50] design vehicle needs the entire two-lane width of the cross street to complete
the turn. This type of maneuver is practical for turns from an arterial street where the cross street
is normally free of traffic because of signal or stop-sign control on the cross street. Turns from the
cross street to the arterial about such radii can also be accommodated where signal control is
used, but without signal control, drivers of vehicles turning from the cross street must wait for an
appropriate gap in traffic to turn into the second lane of the arterial street. The WB-33D
[WB-109D] design vehicle needs most of a third lane on the cross street to complete a turn.
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Exhibit 9-29.  Effect of Curb Radii on Right Turning Paths of Various Design Vehicles
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Exhibit 9-30.  Effect of Curb Radii on Right Turning Paths of Various Design Vehicles
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Exhibit 9-31 shows the effect of the angle of intersection on turning paths of various design
vehicles on streets without parking lanes. The dimensions d1 and d2 are the widths occupied by
the turning vehicle on the major street and cross street, respectively, while negotiating turns
through various angles. Both dimensions are measured from the right-hand curb to the point of
maximum overhang. These widths, shown for various angles of turn and curb radii, and for two
types of maneuvers, generally increase with the angle of turn.

Exhibit 9-31 also shows that a very large radius should be used or the streets should be very
wide to accommodate the longer vehicles, particularly where the central angle is greater than
90 degrees. For this reason three-centered curves (or offset, simple curves in combination with
tapers to fit the paths of vehicles properly) are much preferred. Exhibits 9-19 and 9-20 show
curve radii suitable for accommodating the several classes of design vehicles for a wide range of
angles of turn. Data are shown for simple curves and for two types of three-centered curves. The
radii for simple curves have been omitted for angles of turn greater than 90 degrees for the
reasons given above. However, they may be used for right-turn designs where sufficient right-of-
way are available and where there is little pedestrian traffic.

With parking allowed along a curbed street, vehicles (except for WB-19 [WB-62] and larger
vehicles) are able to turn without encroachment onto adjacent lanes, even where curb radii are
relatively small. As shown in Exhibit 9-32, the SU and WB-12 [WB-40] design vehicles are able
to turn at a 4.5-m [15-ft] curb radius with little, if any, encroachment on adjacent lanes. However,
parking should be restricted for a distance of at least 4.5 m [15 ft] in advance of the right-turning
radius and at least 9 m [30 ft] beyond the radius on the exit.

The BUS and WB-15 [WB-50] design vehicles will encroach onto the opposing lanes in
making a turn unless the turning radius is at least 7.5 m [25 ft] and parking is restricted at the far
end of the turn for at least 12 m [40 ft] beyond the radius. Because traffic volumes may increase
to the point where all parking is prohibited either during rush hours or throughout the day, caution
is advised in the use of radii of 4.5 or 7.5 m [15 or 25 ft] where parking is permitted. If parking is
prohibited, the same turning conditions prevail as shown in Exhibits 9-29, 9-30, and 9-31.

Effect of Curb Radii on Pedestrians

For arterial street design, adequate radii for vehicle operation should be balanced against the
needs of pedestrians and the difficulty of acquiring additional right-of-way or corner setbacks.
Because the corner radius is often a compromise, its effect on both pedestrians and vehicular
movements should be examined.
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d2 for cases A and B where: d2 for cases A and B where:
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30° SU 4.3 4.0 4.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 30° SU 14 13 14 13 13 13 13 13 13 13
BUS 6.7 5.2 5.8 5.2 5.8 5.2 5.8 5.2 5.5 5.2 BUS 22 17 19 17 19 17 19 17 18 17
WB-12 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 WB-40 14 14 14 14 14 14 14 14 14 14
WB-15 6.1 5.2 6.1 5.2 6.1 5.2 5.8 4.9 5.5 4.9 WB-50 20 17 20 17 20 17 19 16 18 16
WB-19 – – – – – – – – 8.2 5.2 WB-62 – – – – – – – – 27 17
WB-20 – – – – – – – – 8.5 5.5 WB-67 – – – – – – – – 28 18

60° SU 5.8 4.9 5.8 4.9 5.2 4.6 4.9 4.6 4.3 4.3 60° SU 19 16 19 16 17 15 16 15 14 14
BUS 8.5 6.4 7.9 6.1 7.3 6.1 7.0 5.8 6.7 5.5 BUS 28 21 26 20 24 20 23 19 22 18
WB-12 7.3 5.8 6.7 5.8 6.4 5.8 5.8 5.5 5.2 4.9 WB-40 24 19 22 19 21 19 19 18 17 16
WB-15 9.4 6.7 8.2 6.4 8.5 6.1 7.6 5.8 6.7 5.5 WB-50 31 22 27 21 28 20 25 19 22 18
WB-19 – – – – – – – – 9.1 6.7 WB-62 – – – – – – – – 30 22
WB-20 – – – – – – – – 11.3 7.3 WB-67 – – – – – – – – 37 24

90° SU 7.9 6.1 7.0 5.5 5.8 4.9 5.2 4.6 4.0 4.0 90° SU 26 20 23 18 19 16 17 15 13 13
BUS 11.6 7.010.0 6.7 9.1 6.7 7.6 6.4 6.7 5.5 BUS 38 23 33 22 30 22 25 21 22 18
WB-12 9.4 6.7 8.2 6.4 7.0 6.4 5.8 5.5 5.2 4.9 WB-40 31 22 27 21 23 21 19 18 17 16
WB-15 12.8 6.711.3 7.3 9.8 6.7 8.8 6.4 6.7 5.5 WB-50 42 22 37 24 32 22 29 21 22 18
WB-19 – – – – – – – – 11.9 7.0 WB-62 – – – – – – – – 39 23
WB-20 – – – – – – – – 11.9 7.6 WB-67 – – – – – – – – 39 25

Exhibit 9-31.  Cross Street Width Occupied by Turning Vehicle for Various Angles of Intersection and Curb Radii
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d2 for cases A and B where: d2 for cases A and B where:

R=4.5 m R=6 m R=7.5 m R=9 m R=12 m R=15 ft R=20 ft R=25 ft R=30 ft R=40 ft
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120° SU 10.4 6.7 8.2 5.8 6.4 5.5 5.2 4.9 4.0 4.0 120° SU 34 22 27 19 21 18 17 16 13 13
BUS 14.0 8.5 12.2 7.6 9.8 7.0 7.9 5.8 5.8 5.5 BUS 46 28 40 25 32 23 26 19 19 18
WB-12 11.3 7.0 8.8 6.7 7.3 6.7 5.8 5.5 5.2 4.9 WB-40 37 23 29 22 24 22 19 18 17 16
WB-15 15.2 8.8 13.1 8.5 11.0 8.2 9.1 7.9 6.7 5.5 WB-50 50 29 43 28 36 27 30 26 22 18
WB-19 – – – – – – – – 7.9 6.7 WB-62 – – – – – – – – 26 22
WB-20 – – – – – – – – 9.1 7.0 WB-67 – – – – – – – – 30 23

150° SU 12.2 7.6 9.8 6.4 6.7 5.8 5.2 4.9 3.6 3.6 150° SU 40 25 32 21 22 19 17 16 12 12
BUS 14.6 8.5 12.2 7.6 9.8 7.0 6.7 5.5 5.2 4.9 BUS 48 28 12.2 25 32 23 22 18 17 16
WB-12 11.9 7.3 8.8 6.7 7.0 6.7 5.8 5.5 5.2 4.9 WB-40 39 24 29 22 23 22 19 18 17 16
WB-15 16.2 9.4 14.0 8.5 11.0 8.2 8.5 7.9 6.7 5.5 WB-50 53 31 46 28 36 27 28 26 22 18
WB-19 – – – – – – – – 6.1 5.5 WB-62 – – – – – – – – 20 18
WB-20 – – – – – – – – 8.2 5.5 WB-67 – – – – – – – – 27 18

Note:  P design vehicle turns within 3.6 m [12 ft] where R=4.5 m [15 ft] or more.  No parking on either street.

Exhibit 9-31.  Cross Street Width Occupied by Turning Vehicle for Various Angles of Intersection and Curb Radii
(Continued)

A
A

SH
TO

—
G

eom
etric D

esign of H
ighw

ays and Streets

620



Intersections

621

Metric

Exhibit 9-32.  Effect of Curb Radii and Parking on Right Turning Paths
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Exhibit 9–32.  Effect of Curb Radii and Parking on Right Turning Paths (Continued)
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Crosswalk distances and right-of-way or corner setback needs increase with the curb return
radius. The added crosswalk distances between curbs as compared with the normal curb-to-curb
street widths are shown in Exhibit 9-33 based on the assumptions that the sidewalk centerline at a
right-angle intersection is in line with the middle of a border and that the same curb radius is used
on all four corners.

The additional right-of-way or corner setback resulting from various curb radii for border
widths of 3 and 6 m [10 and 20 ft] is shown in Exhibit 9-34. The dimensions shown in
Exhibits 9-33 and 9-34 vary somewhat with intersection angles that differ from 90 degrees.

The dimensions presented in Exhibits 9-33 and 9-34 demonstrate why curb radii of only 3 to
4.5 m [10 to 15 ft] have been used in most cities. Where larger radii are used, an intermediate
refuge or median island is desirable or crosswalks may need to be offset so that crosswalk
distances are not objectionable. In summary, the corner radii proposed at an intersection on urban
arterial streets should satisfy the needs of the drivers using them, the amount of right-of-way
available, the angle of turn between the intersection legs, the number of pedestrians using the
crosswalk, the width and number of lanes on the intersecting street, and the posted speeds on each
street. The following is offered as a guide:

• Radii of 4.5 to 7.5 m [15 to 25 ft] are adequate for passenger vehicles. These radii may
be provided at minor cross streets where there is little occasion for trucks to turn or at
major intersections where there are parking lanes. Where the street has sufficient
capacity to retain the curb lane as a parking lane for the foreseeable future, parking
should be restricted for appropriate distances from the crossing as shown in
Exhibit 9-32.

• Radii of 7.5 m [25 ft] or more should be provided at minor cross streets, on new
construction and on reconstruction projects where space permits.

• Radii of 9 m [30 ft] or more should be provided at minor cross streets where practical
so that an occasional truck can turn without too much encroachment.

• Radii of 12 m [40 ft] or more, or preferably three-centered curves, or simple curves
with tapers to fit the paths of large truck combinations, should be provided where such
combinations or buses turn frequently. Where speed reductions would cause problems,
longer radii should be considered.

• Curb radii should be coordinated with crosswalk distances or special designs should be
used to make crosswalks efficient for all pedestrians (see Chapter 4).

Curb radii at corners on two-way streets have little effect on left-turning movements. Where
the width of an arterial street is equivalent to four or more lanes, generally there is no problem of
encroachment by left-turning vehicles.
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Exhibit 9-33.  Variations in Length of Crosswalk With Different Curb Radii and Width
of Borders

Exhibit 9-34.  Corner Setbacks with Different Curb Radii and Width of Borders
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Corner Radii Into Local Urban Streets

Because of space limitations, presence of pedestrians, and generally lower operating speed in
urban areas, curve radii for turning movements may be smaller than those normally used in rural
areas. Corner radii to accommodate right-turning movements depend largely on the number and
type of turning vehicles and the volume of pedestrians. Minimum turning paths for passenger
vehicles and all other design vehicles are included in Chapter 2.

Guidelines for right-turning radii into minor side streets in urban areas usually range from
1.5 to 9 m [5 to 30 ft] and most are between 3 and 4.5 m [10 to 15 ft]. Where a substantial number
of pedestrians are present, the lower end of the ranges described below may be appropriate. Most
passenger cars operating at very low speed on lanes 3 m [10 ft] or more in width are able to make
a right turn with a curb radius of about 4.5 m [15 ft] with little encroachment on other lanes.
However, operation of these vehicles at increased speeds or of larger vehicles even at a very low
speed generally results in substantial encroachment on adjacent lanes at either the beginning or
the end of the turn, or both.

Where there are curb parking lanes on both of the intersecting streets and parking is
restricted for some distance from the corner, the extra width provided by the restriction serves to
increase the usable radius. On most streets, curb radii of 3 to 4.5 m [10 to 15 ft] are reasonable
because streets and sidewalks are generally confined within the public right-of-way, and larger
radii can be obtained only by narrowing sidewalks at corners and increasing the length of
pedestrian crosswalks. However, to ensure efficient traffic operation on arterial streets carrying
heavy traffic volumes, it is desirable to provide corner radii of 4.5 to 7.5 m [15 to 25 ft] for
passenger vehicles and 9 to 15 m [30 to 50 ft] for most trucks and buses, provided there are no
significant pedestrian conflicts. Where large truck combinations turn frequently, somewhat larger
radii should be provided for turns.

The WB-19 [WB-62] and larger trucks generally are not engaged in local travel destinations
but are used principally for “over-the-road” transportation between trucking terminals or
industrial or commercial areas. Ideally, such destinations are located near major highway
facilities that are designed to accommodate the larger combination units.

If trucks are routed over local streets to reach their destinations, careful consideration should
be given to the network to be used. Generally, this network should not include narrow streets,
streets with relatively small right-turning radii at intersections, or streets with parking and
significant pedestrian crossing volumes.

ISLANDS

General Characteristics

An island is a defined area between traffic lanes used for control of vehicle movements.
Islands also provide an area for pedestrian refuge and traffic control devices. Within an
intersection, a median or an outer separation is also considered an island. This definition makes
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evident that an island is no single physical type. It may range from an area delineated by a raised
curb to a pavement area marked out by paint or thermoplastic markings. Where traffic entering an
intersection is directed into definite paths by islands, this design feature is termed a channelized
intersection.

Channelizing islands generally are included in intersection design for one or more of the
following purposes:

• Separation of conflicts
• Control of angle of conflict
• Reduction in excessive pavement areas
• Regulation of traffic and indication of proper use of intersection
• Arrangements to favor a predominant turning movement
• Protection of pedestrians
• Protection and storage of turning and crossing vehicles
• Location of traffic control devices

Islands serve three primary functions: (1) channelization—to control and direct traffic
movement, usually turning; (2) division—to divide opposing or same direction traffic streams,
usually through movements; and (3) refuge—to provide refuge for pedestrians. Most islands
combine two or all of these functions.

Islands generally are either elongated or triangular in shape and are normally situated in
areas unused for vehicle paths. Islands should be located and designed to offer little obstruction to
vehicles, be relatively inexpensive to build and maintain, and occupy a minimum of roadway
space; however, they should be commanding enough that motorists will not drive over them. The
dimensions and details depend on the particular intersection design and should conform to the
general principles that follow.

Curbed islands are sometimes difficult to see at night because of the glare from oncoming
headlights or from distant luminaires or roadside businesses. Accordingly, where curbed islands
are used, the intersection should have fixed-source lighting or appropriate delineation such as
curb-top reflectors.

Where various intersections are involved along a route and the warrants are sufficiently
similar to enhance driver expectancy, it is desirable to provide a common geometric design for
each intersection. Reference can also be made to the Manual on Uniform Traffic Control Devices
(MUTCD) (9) for design guidance.

Under certain conditions, painted, flush medians and islands or traversable type medians
may be preferable to the raised curb type islands. Such conditions are: in lightly developed areas
that will not be considered for access management, at intersections where approach speeds are
relatively high; where there is little pedestrian traffic; where fixed-source lighting is not provided;
where signals, signs, or luminaire supports are not needed in the median or corner islands; in
areas of significant snow plowing; and where extensive development exists along a street and
there is a need for left-turn areas into many entrances.
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Painted islands may be used at the traveled way edge. At some intersections, both curbed
and painted islands may be desirable. All pavement markings should be reflectorized. The use of
thermoplastic striping, raised dots, spaced and raised retroreflective markers, and other forms of
long-life markings also may be desirable. This subject is discussed in the MUTCD (9).

Channelizing Islands

Channelizing islands that control and direct traffic movements into the proper paths for their
intended use are an important part of intersection design. Confusing traffic movements resulting
from spacious areas may be eliminated by the conversion of unused areas into islands that leave
little to driver discretion. Channelizing islands may be of many shapes and sizes, depending on
the conditions and dimensions of the intersection. Some of those conditions are illustrated in
Exhibit 9-35. A common form is the corner triangular shape that separates right-turning traffic
from through traffic. Central islands may serve as a guide around which turning vehicles operate.

Channelizing islands should be placed so that the proper course of travel is immediately
obvious, easy to follow, and of unquestionable continuity. When designing an island, attention
should be given to the fact that the driver’s eye view is different from the plan view. Particular
care should be taken where the channelization is on or beyond a crest of a vertical curve, however
slight, or where there is substantial horizontal curvature on the approach to or through the
channelized area. The outlines of islands should be easily flowing curved or straight lines nearly
parallel to the line of travel.

Where islands separate turning traffic from through traffic, the radii of curved portions
should equal or exceed the minimum for the turning speeds expected. Drivers should not be
confronted suddenly with an unusable area in the normal vehicle path. Islands first approached by
traffic should be indicated by a gradually widening and marking or a conspicuously rumble strip
that directs traffic to each side.

Intersections with multiple turning lanes may need three or more islands to channelize the
various movements. There is a practical limitation to the use of multiple islands for channelizing
traffic. A group of islands outlining several one-way lanes may cause confusion and result in
wrong-way movements into opposing traffic lanes. Such layouts may be confusing to drivers
using them for the first time, and with additional trips, the same drivers may use them as desired.

However, with the possibility of confusion, this suggests that a few large islands are
preferable to a greater number of smaller islands. At intersections where the area for multiple-
lane channelization is restricted, it may be advisable to try temporary layouts of movable
stanchions or sandbags and observe traffic flow with several variations of sizes or shapes of
islands before designing and constructing the permanent islands.
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Exhibit 9-35.  General Types and Shapes of Islands and Medians

Properly placed islands are advantageous where through and turning movements are heavy.
However, at minor intersections on two-lane highways, channelization may be of questionable
value, especially in rural areas where small curbed islands were provided. The use of curbed
islands generally should be reserved for multilane highways or streets and for the more important
intersections on two-lane highways. In or near urban areas where speeds are low and drivers are
accustomed to confined facilities, channelization can be expected to work well. Curbed islands
generally should not be used in rural areas and at isolated locations unless the intersection is
lighted and curbs are delineated.
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Marked channelization (painting or striping) can be made to increase efficiency and has the
advantage of easy modification when warranted by driver behavior. If a more positive barrier is
needed, curbed islands may be constructed, but the marked channelization may well serve
initially to establish the best layout arrangement before permanent construction is established.
However, it should be noted that inclement weather decreases the effectiveness of flush
channelization.

Divisional Islands

Divisional islands often are introduced on undivided highways at intersections. They alert
the drivers to the crossroad ahead and regulate traffic through the intersection. These islands are
particularly advantageous in controlling left turns at skewed intersections and at locations where
separate channels are provided for right-turning traffic. A variety of divisional islands that
separate opposing traffic are illustrated in Exhibit 9-36.

Where an island is introduced at an intersection to separate opposing traffic on a four-lane
road or on a major two-lane highway carrying high volumes, particularly where future conversion
to a wider highway is likely, two full lanes should be provided on each side of the dividing island.
In other instances, narrower roadways may be used. For moderate volumes, roadway widths
shown under Case II (one-lane, one-way operation with provision for passing a stalled vehicle) in
Exhibit 3-43 are appropriate. For light volumes and where small islands are needed, widths on
each side of the island corresponding to Case I in Exhibit 3-55 may be used.

Widening a roadway to include a divisional island (Exhibit 9-36) should be done in such a
manner that the proper paths to follow are unmistakably evident to drivers. The alignment should
require no appreciable conscious effort in vehicle steering. Often the highway is on a tangent, and
to introduce dividing islands, reverse curve alignment would be needed. Tapers can be used, but
should be consistent with lane shifts at the design speed. In rural areas, where speeds are
generally high, reversals in curvature should preferably be with radii of 1,165 m [3,825 ft] or
greater. Sharper curves may be used on intermediate-speed roads (up to 70 km/h [45 mph]) with
radii of 620 m [2,035 ft] or greater. Usually, the roadway in each direction of travel is bowed out,
more or less symmetrically about the centerline as shown in Exhibit 9-36. Widening may also be
affected on one side only with one of the roadways continuing through the intersection on a
straight course. When this arrangement is used for a two-lane road that is planned for future
conversion to a divided highway, the traveled way on tangent alignment will become a permanent
part of the ultimate development.

Widening on tangent alignment, even with flat curves, may produce some appearance of
distorted alignment. Where the road is on a curve or on widening alignment, advantage should be
taken of the curvature in spreading the traffic lanes without using reverse curves, as illustrated in
number C and D in Exhibit 9-36.
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Exhibit 9-36.  Alignment for Addition of Divisional Islands at Intersections

Refuge Islands

A refuge island for pedestrians is one at or near a crosswalk or bicycle path that aids and
protects pedestrians and bicyclists who cross the roadway. Raised-curb corner islands and center
channelizing or divisional islands can be used as refuge areas. Refuge islands for pedestrians and
bicyclists crossing a wide street, for loading or unloading transit riders, or for wheelchair ramps
are used primarily in urban areas.

The location and width of crosswalks, the location and size of transit loading zones, and the
provision of wheelchair ramps influence the size and location of refuge islands. Refuge islands
should be a minimum of 1.8 m [6 ft] wide when they will be used by bicyclists. Pedestrians and
bicyclists should have a clear path through the island and should not be obstructed by poles, sign
posts, utility boxes, etc. Chapter 4 contains details of wheelchair ramp design that affect the
minimum size of the small islands.

In rural, as well as in urban, areas many of the islands designed for the function of
channelization are also of the type and location to serve as refuge for pedestrians. The islands in
Exhibit 9-35 are examples. The general principles for island design also apply directly to
providing refuge islands.
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Island Size and Designation

Island sizes and shapes vary materially from one intersection to another, as shown in
Exhibit 9-35. Further variations, not illustrated, occur at multiple and acute-angle intersections.
Islands should be sufficiently large to command attention. The smallest curbed corner island
normally should have an area of approximately 5 m2 [50 ft2] for urban and 7 m2 [75 ft2] for rural
intersections. However, 9 m2 [100 ft2] is preferable for both. Accordingly, corner triangular
islands should not be less than about 3.5 m [12 ft], and preferably 4.5 m [15 ft], on a side after the
rounding of corners.

Elongated or divisional islands should be not less than 1 m [4 ft] wide and 6 to 8 m [20 to
25 ft] long. In special cases where space is limited, elongated islands may be reduced to a
minimum width of 0.5 m [2 ft]. In general, introducing curbed divisional islands at isolated
intersections on high-speed highways is undesirable unless special attention is directed to
providing high visibility for the islands. Curbed divisional islands introduced at isolated
intersections on high-speed highways should be 30 m [100 ft] or more in length. When situated in
the vicinity of a high point in the roadway profile or at or near the beginning of a horizontal
curve, the approach end of the curbed island should be extended to be clearly visible to
approaching drivers.

Islands should be delineated or outlined by a variety of treatments, depending on their size,
location, and function. The type of area in which the intersection is located, rural versus urban,
also governs the design. In a physical sense, islands can be divided into three groups: (1) raised-
curb islands, (2) islands delineated by pavement markings or reflectorized markers placed on
paved areas, and (3) islands formed by the pavement edges and possibly supplemented by
delineators on posts or other guideposts, or mounded-earth treatment beyond and adjacent to the
pavement edges.

The curbed island treatment is universal and provides the greatest positive guidance. In rural
areas where curbs are uncommon, this treatment often is limited to corner islands of small to
intermediate size. Conversely, in urban areas, the use of this type of island is common.

Island delineation of unused paved areas, by pavement markings, is common in urban
districts where speeds are low and space is limited. In rural areas, this type may be used to
minimize maintenance problems on high approach speeds or where snow removal is more
difficult with curbed islands. Group 2 islands also are applicable on low-volume highways where
the added expense of curbs may not be warranted and where the islands are not large enough for
delineation by pavement edges alone.

The Group 3 treatment by its nature applies to other than small channelizing islands and is
primarily used at rural intersections where there is space for large-radius intersection curves and
wide medians.

The central area of large channelizing islands in most cases has a turf or other vegetative
cover. As space and the overall character of the highway determine, low plant material may be
included, but it should not obstruct sight distance. Ground cover or plant growth, such as turf,
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vines, and shrubs, can be used for channelizing island and provides excellent contrast with the
paved areas, assuming that the ground cover is cost-effective and can be properly maintained.
Small curbed islands may be mounded, but where pavement cross slopes are outward, large
islands should be depressed to avoid draining water and snow melt across the pavement. This
feature is especially desirable where alternate freezing and thawing occurs. For small curbed
islands and in areas where growing conditions are not favorable, some type of paved surface is
used on the island. In many respects, the curbed-island cross-section design is similar to that
discussed in the section on “Medians” in Chapter 4.

Island Delineation and Approach Treatment

Delineation of small islands is effected primarily by curbs and curb-top reflectors. Large
curbed islands may be sufficiently delineated by color and texture contrast of vegetative cover,
mounded earth, shrubs, reflector posts, signs, or any combination of these. In rural areas, island
curbs should usually be a sloping type.

Chapter 4 indicates different curb types. The most commonly used height of curb is 150 mm
[6 in]. Vertical or sloping curbs could be appropriate in urban areas, depending on the conditions.
In addition, high-visibility sloping curbs may be advantageous at critical locations.

The outline of a curbed island is determined by the edge of through-traffic lanes or turning
roadways. Lateral clearance is provided to the face of the curbed island. The points of intersection
of the sides of a curbed island are rounded or beveled for visibility and construction simplicity.
The amount that a curbed island is offset from the through-traffic lane is influenced by the type of
edge treatment and other factors such as island contrast, length of taper, or auxiliary pavement
preceding the curbed island. Since curbs influence the lateral placement of a vehicle in a lane,
they should be offset from the edge of through-traffic lanes even if they are sloping. Curbs need
not be offset from the edge of a turning roadway, except to reduce their vulnerability to turning
trucks.

Details of curbed corner island designs used in conjunction with turning roadways are shown
in Exhibits 9-37 and 9-38. The approach corner of each curbed island is designed with an
approach nose treatment. Three curbed triangular island sizes, small, intermediate, and large, are
shown for two general cases of through-traffic lanes edges: (1) The curbed corner island is
located along an urban street with curb and gutter, or (2) the curbed corner island is located on a
highway with shoulders.

Small curbed corner islands are those of minimum or near-minimum size, as previously
discussed. Large curbed corner islands are those with side dimensions of at least 30 m [100 ft].
All curbed islands in Exhibits 9-37 and 9-38 are shown with approach noses and merging ends
rounded with appropriate radii of 0.6 to 1 m [2 to 3 ft]. The approach corner is rounded with a
radius of 0.6 to 1.5 m [2 to 5 ft].
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Exhibit 9-37 shows curbed corner islands adjacent to through-traffic lanes on an urban
street. Where the approach roadway has a curb and gutter, the curbed island may be located at the
edge of the through lane with a gradual taper to the nose offset. Where the large-size island is
uncurbed, the indicated offsets of the curbed island are desirable but not essential. However, any
fixed objects within the island areas should be offset an appropriate distance from the through
lanes.

The approach nose of a curbed island should be conspicuous to approaching drivers and
should be definitely clear of vehicle paths, physically and visually, so that drivers will not shy
away from the island. Reflectorized markers may be used on the approach nose of the curbed
island. The offset from the travel lane to the approach nose should be greater than that to the face
of the curbed island, normally about 0.6 m [2 ft]. For curbed median islands, the face of curb at
the approach island nose should be offset at least 0.6 m [2 ft] and preferably 1.0 m [3 ft] from the
normal median edge of the traveled way. The island should then be gradually widened to its full
width. For other curbed islands, the total nose offset should be 1 to 2 m [3 to 6 ft] from the
normal edge of through lanes and 0.6 to 1 m [2 to 3 ft] edge of the traveled way of a turning
roadway. Large offsets should be provided where the curbed corner island is preceded by a right-
turn deceleration lane.

Where a curbed corner island is proposed on an approach roadway with shoulders, the face
of curb on the corner island should be offset by an amount equal to the shoulder width. If the
corner island is preceded by a right-turn deceleration lane, the shoulder offset should be at least
2.4 m [8 ft].

Curbed corner islands and median noses should be ramped down as shown in Exhibit 9-39
and provided with devices to give advance warning to approaching drivers and especially for
nighttime driving. Pavement markings in front of the approach nose are particularly advantageous
on the areas shown as stippled in Exhibit 9-37. To the extent practical, other high-visibility
indications should be used, such as reflectorized curb-top markers mounted on the curb or median
surface. The curbs of all islands located in the line of traffic flow should be marked in accordance
with the MUTCD (9).

Delineation is especially pertinent at the approach nose of a divisional island. In rural areas,
the approach should consist of a gradually widening of the divisional island as indicated in
Exhibit 9-40. Although not as frequently obtainable, this same design also should be striven for in
urban areas. Preferably, the approach should gradually change to a raised surface with texture or
to jiggle bars that may be crossed readily even at considerable speed. This transition section
should be as long as practical. The cross sections in Exhibit 9-40 demonstrate the transition. The
face of curb at the approach island nose should be offset at least 0.5 m [2 ft] and preferably 1 m
[3 ft] from the normal edge of traveled way, and the widened pavement gradually should be
transitioned to the normal width toward the crossroad.
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Exhibit 9-37.  Details of Corner Island Designs for Turning Roadways (Urban Location)
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Exhibit 9-38.  Details of Corner Island Designs for Turning Roadways  (Rural Cross Section
on Approach)
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Exhibit 9-39.  Nose Ramping at Approach End of Median or Corner Island
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Exhibit 9-40.  Details of Divisional Island Design

The end of the curbed island at the crossroad is designed as a median end. The delineation
and approach nose treatment described for the curbed triangular and median islands generally
apply to other locations of curbed islands. The approach nose treatment is especially pertinent to
curbed islands first approached by traffic entering an intersection.
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TURNING ROADWAYS WITH CORNER ISLANDS

Where the inner edges of the traveled way for right turns are designed to accommodate
semitrailer combinations or where the design permits passenger vehicles to turn at speeds of
15 km/h [10 mph] or more, the pavement area within the intersection may become excessively
large and consequently does not provide for the proper control of traffic. To avoid this condition,
a corner island can be provided to form a separate turning roadway between the two intersection
legs.

Intersections that have large paved areas, such as those with large corner radii or those with
oblique angle crossings, permit and encourage uncontrolled vehicle movements, involve long
pedestrian crossings, and have unused pavement areas. Even at a simple intersection, appreciable
areas may exist on which some motorists can wander from their natural and expected paths.
Therefore, conflicts may be reduced by use of corner triangular islands.

Right-Angle Turns With Corner Islands

The principal controls for the design of turning roadways are the alignment of the traveled
way edge and the turning roadway width. These design features ensure that a vehicle can be
accommodated while turning at the selected turning roadway speed. With radii greater than the
minimum edge of traveled way, controls result in an area large enough for a triangular island to
be designed between the left edge of the turning roadway and the traveled way edges of the two
through highways. Such an island is desirable for delineating the path of through and turning
traffic, for the placement of signs, and for providing a refuge for pedestrians and bicycles. Larger
islands may be needed to locate signs and to facilitate snow-removal operations.

A turning roadway should be designed to provide at least the minimum size island and the
minimum width of roadway. The turning roadway should be wide enough to permit the right and
left wheel tracks of a selected vehicle to be within the edges of the traveled way by about 0.6 m
[2 ft] on each side. Generally, the turning roadway width should not be less than 4.2 m [14 ft].
When the turning roadway is designed for a semitrailer combination, a much wider roadway is
needed. To discourage passenger vehicles from using this wider roadway as two lanes, the
roadway may be reduced in size by marking out part of the roadway with paint or thermoplastic
markings.

Exhibit 9-41 shows minimum turning roadway designs for a 90-degree right turn. A design
based on a minimum size island and a minimum turning roadway width of 4.2 m [14 ft] (Exhibit
9-41A) results in a circular arc of 18-m [60-ft] radius (not shown) for the right edge of the
traveled way for the turning roadway or in a three-centered curve (as shown) with radii of 45, 15,
and 45 m [150, 50, and 150 ft] with the middle curve being offset 1 m [3 ft] from the tangent
edges extended. This design not only permits passenger vehicles to turn at a speed of about
25 km/h [15 mph] but also enables SU design vehicles to turn on a radius (right front wheel) of
approximately 20 m [65 ft] and still clear the turning roadway by about 0.3 m [1 ft] on each side.
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Metric

Exhibit 9-41.  Minimum Turning Roadway Designs With Corner Islands at Urban
Locations
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US Customary

Exhibit 9-41.  Minimum Turning Roadway Designs With Corner Islands at Urban
Locations (Continued)
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By increasing the turning roadway width to 5.4 m [18 ft] and using the same combination of
curves but with the middles curve being offset 1.5 m [5 ft] from the tangent edges extended, a
more desirable arrangement results as shown in Exhibit 9-40B. This design enables the SU design
vehicle to use a 21-m [70-ft] turning radius with adequate clearances and makes it possible for the
WB-15 [WB-50] vehicle to negotiate the turn with only slight encroachment on adjacent through-
traffic lanes.

At locations where a significant number of semitrailer combinations, particularly the longer
units, will be turning, the arrangement shown in Exhibit 9-41C should be used. This design,
consisting of a minimum curve of 20 m [65 ft] radius, offset 2 m [6 ft], and terminal curves of
55 m [180 ft] radii, generally provides for a WB-15 [WB-50] design vehicle passing through a
6-m [20-ft] turning roadway width and greatly benefits the operation of smaller vehicles.

However, the designer should be aware of larger semitrailer combinations on designated
roadways and the effects these vehicles will have on turning roadway designs. The designer
should reference the truck turning templates in Chapter 2 to meet his or her design needs. As
previously stated, turning roadway widths can be reduced with paint or thermoplastic markings to
channelize passenger cars and discourage the usage of the wider roadway as two turning lanes.

In urban areas, the island in all instances should be located about 0.6 m [2 ft] outside the
traveled way edges extended, as shown in Exhibit 9-41C. For high-speed highways, the offset
from the through lanes to the face of curb normally should be shoulder width. In rural areas, the
use of painted corner islands may be considered. When raised corner islands are used in rural
locations, they should have a sloping curb face. For more information, reference can be made to
Exhibits 9-36 and 9-37 and the accompanying discussion on island types.

For each minimum design shown in Exhibit 9-41, a three-centered compound curve is
recommended; however, asymmetric compound or two-centered curves could also be used,
particularly where the design provides for the turning of trucks. Although an equivalent simple
curve of a given radius is noted in each exhibit, its use in the two latter designs may result in
design vehicle encroachments on the shoulder or island.

Oblique-Angle Turns With Corner Islands

The minimum design dimensions for oblique-angle turns are determined on a basis similar to
that for right-angle turns, and values are given in Exhibit 9-42. Curve design for the inner edge of
the traveled way, turning roadway width, and the approximate island size are indicated for the
three chosen design classifications described at the bottom of the table. For a particular
intersection, the designer may choose from the three minimum designs shown in accordance with
vehicle size, the volume of traffic anticipated, and the physical controls at the site.

In Exhibit 9-42, no design values are given for angles of turn less than 75 degrees. If
practical, angles of intersection less than 75 degrees should not be used. For flat angles of turn,
the design of turning roadways involve relatively large radii and are not considered in the



Metric US Customary
Three-centered

compound curve
Three-centered

compound curve
Angle of

turn
(degrees)

Design
classification Radii (m) Offset (m)

Width of
lane
(m)

Approx.
island size

(m2)

Angle of
turn

(degrees)
Design

classification Radii (ft) Offset (ft)

Width of
lane
(ft)

Approx.
island size

(ft2)
75 A 45-23-45 1.0 4.2 5.5 75 A 150-75-150 3.5 14 60

B 45-23-45 1.5 5.4 5.0 B 150-75-150 5.0 18 50
C 55-28-55 1.0 6.0 5.0 C 180-90-180 3.5 20 50

90a A 45-15-45 1.0 4.2 5.0 90a A 150-50-150 3.0 14 50
B 45-15-45 1.5 5.4 7.5 B 150-50-150 5.0 18 80
C 55-20-55 2.0 6.0 11.5 C 180-65-180 6.0 20 125

105 A 36-12-36 0.6 4.5 6.5 105 A 120-40-120 2.0 15 70
B 30-11-30 1.5 6.6 5.0 B 100-35-100 5.0 22 50
C 55-14-55 2.4 9.0 5.5 C 180-45-180 8.0 30 60

120 A 30-9-30 0.8 4.8 11.0 120 A 100-30-100 2.5 16 120
B 30-9-30 1.5 7.2 8.5 B 100-30-100 5.0 24 90
C 55-12-55 2.5 10.2 20.0 C 180-40-180 8.5 34 220

135 A 30-9-30 0.8 4.8 43.0 135 A 100-30-100 2.5 16 460
B 30-9-30 1.5 7.8 35.0 B 100-30-100 5.0 26 370
C 48-11-48 2.7 10.5 60.0 C 160-35-160 9.0 35 640

150 A 30-9-30 0.8 4.8 130.0 150 A 100-30-100 2.5 16 1400
B 30-9-30 2.0 9.0 110.0 B 100-30-100 6.0 30 1170
C 48-11-48 2.1 11.4 160.0 C 160-35-160 7.1 38 1720

a  Illustrated in Exhibit 9-41.

Notes:  Asymmetric three-centered compound curve and straight tapers with a simple curve can also be used without significantly altering the
width of roadway or corner island size.  Painted island delineation is recommended for islands less than 7 m2 [75 ft2] in size.

Design classification:
A—Primarily passenger vehicles; permits occasional design single-unit truck to turn with restricted clearances.
B—Provides adequately for SU; permits occasional WB-15 [WB-50] to turn with slight encroachment on adjacent traffic lanes.
C—Provides fully for WB-15 [WB-50].

Exhibit 9-42.  Typical Designs for Turning Roadways
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minimum class. Such turning angles should have individual designs to fit site controls and traffic
conditions.

For angles of turn between 75 and 120 degrees, the designs are governed by a minimum
island size, which provides for larger turns than minimum turning radii. For angles of turn
120 degrees or more, the sharpest turning path of a design vehicle is selected and the curves on
the inner edge of traveled way generally control the design, which results in an island size greater
than the minimum. In Exhibit 9-42, the inner edge of traveled way arrangement for designs B and
C for turning angles between 120 and 150 degrees are the same as those given in Exhibit 9-20 for
single-unit trucks and semitrailer combinations, respectively. The size of islands for the larger
turning angles given in the last column of Exhibit 9-42 indicate the areas of unused pavement that
are eliminated by the use of islands.

FREE-FLOW TURNING ROADWAYS AT INTERSECTIONS

An important part of the design on some intersections is the design of a free-flow alignment
for right turns. Ease and smoothness of operation can result when the free-flow turning roadway
is designed with compound curves preceded by a right-turn deceleration lane, as indicated in
Exhibit 9-43. The shape and length of these curves should be such that they: (1) allow drivers to
avoid abrupt deceleration, (2) permit development of some superelevation in advance of the
maximum curvature, and (3) enable vehicles to follow natural turning paths. The design speed of
a free-flow turning roadway for right turns may vary between the end of the right-turn
deceleration lanes and the central section. The design speed of the turning roadway may be equal
to, or possibly within 20 to 30 km/h [10 to 20 mph] less, than the through roadway design speed.
Refer to Exhibit 9-19 for minimum radii for right-turning traffic. Turning roadways at
intersections should use the “upper-range” design speeds whenever practical although the
“middle-range” speeds may be used in constrained situations.

SUPERELEVATION FOR TURNING ROADWAYS AT
INTERSECTIONS

General Design Guidelines

The general factors that control the maximum rates of superelevation for open highway
conditions as discussed in Chapter 3 also apply to turning roadways at intersections. Maximum
superelevation rates up to 10 percent may be used where climatic conditions are favorable.
However, maximum rates up to 8 percent generally should be used where snow and icing
conditions prevail.

In intersection design, the free flow of turning roadways is often of limited radii and length.
When speed is not affected by other vehicles, drivers on turning roadways anticipate the sharp
curves and accept operation with higher side friction than they accept on open highway curves of
the same radii. This behavior stems from their desire to maintain their speed through the curve;
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Exhibit 9-43.  Use of Simple and Compound Curves at Free Flow Turning Roadways
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Exhibit 9-43.  Use of Simple and Compound Curves at Free Flow Turning Roadways
(Continued)
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although some speed reduction typically occurs. When other traffic is present, drivers will travel
more slowly on turning roadways than on open highway curves of the same radii because they
must diverge from and merge with through traffic. Therefore, in designing for safe operation,
periods of light traffic volumes and corresponding speeds will generally control.

Designs with gradually changing curvature, effected by the use of compound curves, spirals,
or both, permit desirable development of superelevation. For these designs, the design
superelevation rates and corresponding radii listed in Exhibits 3-21 through 3-25 are desirable.

The practical difficulty of attaining superelevation without abrupt cross-slope change at
turning roadway terminals, primarily because of sharp curvature and short lengths of turning
roadway, most often prevents the development of a generous rate of superelevation. Abrupt
changes in cross slope can adversely affect the stability of trucks and other vehicles with high
centers of gravity. The design superelevation rates and corresponding radii listed in Exhibit 3-26
can be used when conditions justify the conservative use of superelevation.

Superelevation Runoff

The principles of superelevation runoff design discussed in Chapter 3 generally apply to free
flow turning roadways at intersections. In general, the rate of change in cross slope in the runoff
section should be based on the maximum relative gradients ) listed in Exhibit 3-27. The values
listed in this table are applicable to a single lane of rotation. The adjustment factors bw listed in
Exhibit 3-28 allow for slight increases in the effective gradient for wider rotated widths. The
effective maximum relative gradients (equal to ))bw) that can be used for a range of turning
roadway widths are listed in Exhibit 9-44.

Usually, the profile of one edge of the traveled way is established first, and the profile on the
other edge is developed by stepping up or down from the first edge by the amount of desired
superelevation at that location. This step is done by plotting a few control points on the second
edge by using the maximum relative gradients in Exhibit 9-44 and then plotting a smooth profile
for the second edge of traveled way. Drainage may be an additional control, particularly for
curbed roadways.

Development of Superelevation at Turning Roadway Terminals

Superelevation commensurate with curvature and speed seldom is practical at terminals
where: (1) a flat intersection curve results in little more than a widening of the traveled way, (2) it
is desirable to retain the cross slope of the traveled way, and (3) there is a practical limit to the
difference between the cross slope on the traveled way and that on the intersection curve. Too
great a difference in cross slope may cause vehicles traveling over the cross-over crown line to
sway sideways. When vehicles, particularly high-bodied trucks, cross the crown line at other than
low speed and at an angle of about 10 to 40 degrees, the body throw may make vehicle control
difficult.
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Metric US Customary
Effective maximum relative

gradient (%)
Effective maximum relative

gradient (%)
Rotated width (m) Rotated width (ft)

Design
speed
(km/h) 3.6 m 5.4 m 7.2 m

Design
speed
(mph) 12 ft 18 ft 24 ft

20 0.80 0.96 1.00 15 0.78 0.94 1.00
30 0.75 0.90 1.00 20 0.74 0.89 0.99
40 0.70 0.84 0.93 25 0.70 0.84 0.93
50 0.65 0.78 0.87 30 0.66 0.80 0.88
60 0.60 0.72 0.80 35 0.62 0.75 0.83
70 0.55 0.66 0.73 40 0.58 0.70 0.77
80 0.50 0.60 0.67 45 0.54 0.65 0.72
90 0.47 0.57 0.63 50 0.50 0.60 0.67

100 0.44 0.53 0.59 55 0.47 0.57 0.63
110 0.41 0.49 0.55 60 0.45 0.54 0.60
120 0.38 0.46 0.51 65 0.43 0.52 0.57
130 0.35 0.42 0.47 70 0.40 0.48 0.53

75 0.38 0.46 0.51
80 0.35 0.42 0.47

Note: Based on maximum relative gradients listed in Exhibit 3-27 and the adjustment factors
in Exhibit 3-28.  One lane is assumed to equal 3.6 m [12 ft].  Gradients for speeds of
80 km/h [50 mph] and above are applicable to turning roadways at interchanges
(i.e., ramps).

Exhibit 9-44.  Effective Maximum Relative Gradients

General Procedure

For design of a highway, the through traffic lanes may be considered fixed in profile and
cross slope. As the exit curve diverges from the through traveled way, the curved (or tangent)
edge of the widening section can only gradually vary in elevation from the edge of through lane.
Shortly beyond the point where the full width of the turning roadway is attained, an approach
nose separates the two pavements. Where the exit curve is relatively sharp and without taper or
transition, little superelevation in advance of the nose can be developed in the short distance
available. Beyond the nose substantial superelevation usually can be attained, the amount
depending on the length of the turning roadway curve. Where this curve deviates gradually from a
traveled way, a desirable treatment of superelevation may be effected.

The method of developing superelevation at turning roadway terminals is illustrated
diagrammatically in Exhibits 9-45 through 9-48. Exhibit 9-45 illustrates the variation in cross
slope where a turning roadway leaves a through road that is on tangent. From point A to B, the
normal cross slope on the through-traffic lane is extended to the outer edge of auxiliary lane. The
additional width at B is nominal, less than 1 m [3 ft], and projecting the cross slope across this
width simplifies construction. Beyond point B, the width is sufficient that the cross slope on the
auxiliary lane can be the same or begin to be steeper than the cross slope on the adjacent through-
traffic lane, as at C. At D where the full width of the turning roadway is attained, a still greater
slope can be used. Superelevation is further increased adjacent to the nose at E and is facilitated
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Exhibit 9-45.  Development of Superelevation at Turning Roadway Terminals

somewhat by sloping downward the pavement wedge formed between the right edge of the travel
way and the extended left traveled way edge of the turning roadway. Beyond the nose, as at E, the
traveled way is transitioned as rapidly as conditions permit until the full desired superelevation is
attained.

Exhibit 9-46 is a similar illustration for the condition where the through lanes and the
turning roadway curve in the same direction. The desired superelevation on the exit roadway,
which generally is steeper than that on the through lanes, can be attained in a relatively short
distance. At C the cross slope of the through lane is extended over the widened traveled way. At
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Exhibit 9-46.  Development of Superelevation at Turning Roadway Terminals

D somewhat variable cross sections are introduced, the full superelevation being reached in the
vicinity of E.

A less favorable situation occurs when the joining facilities curve in opposite directions, as
in Exhibit 9-47. Because of the rate of superelevation on the through roadway, it may be
impractical to slope the auxiliary lane in a direction opposite to that of the through lanes for
reasons of appearance and riding quality. In a typical treatment for a moderate rate of
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Exhibit 9-47.  Development of Superelevation at Turning Roadway Terminals

superelevation, the rate of cross slope on the through roadway is extended onto the auxiliary lane,
as at B. At C it may still continue upward, but at a lesser rate. The break between the two slopes
becomes more pronounced at D, the added pavement being nearly horizontal. Some
superelevation is introduced at the nose, either by a single crown line centering on the nose or by
a double break in the cross slope over the pavement wedge in front of the nose. Most of the
superelevation should be gained beyond the nose.

On designs with a parallel speed-change lane, as in Exhibit 9-48, part of the cross slope
change may be made over the length of this lane. Usually, more than half of the total
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Exhibit 9-48.  Development of Superelevation at Turning Roadway Terminals

superelevation rate can be attained at D, and  the full desired superelevation can be reached at or
just beyond the  nose.

The discussion and arrangements illustrated in Exhibits 9-45 through 9-48 for exit terminals
are also directly applicable to entrance terminals, except that the details at the merging end are
different from those of an approach nose. The merging end of an entrance terminal would be
located in proximity of D.
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Turn-Lane Cross-Slope Rollover

The design control at the crossover line (not to be confused with the crown line normally
provided at the centerline of a roadway) is the algebraic difference in cross slope rates of the two
adjacent lanes. Where both roadways slope down and away from the crossover crown line, the
algebraic difference is the sum of their cross slope rates; where they slope in the same direction, it
is the difference of their cross slope rates. A desirable maximum algebraic difference at a
crossover crown line is 4 or 5 percent, but it may be as high as 8 percent at low speeds and where
there are few trucks. The suggested maximum differences in cross slope rates at a crown line,
related to the speed of turning traffic, are given in Exhibit 9-49.

Metric US Customary

Design speed of exit
or entrance curve

(km/h)

Maximum algebraic
difference in cross

slope at crossover line
(%)

Design speed of exit
or entrance curve

(mph)

Maximum algebraic
difference in cross

slope at crossover line
(%)

30 and under 5.0 to 8.0 20 and under 5.0 to 8.0
40 and 50 5.0 to 6.0 25 and 30 5.0 to 6.0

60 and over 4.0 to 5.0 35 and over 4.0 to 5.0

Exhibit 9-49.  Maximum Algebraic Difference in Cross Slope at Turning Roadway
Terminals

Superelevation Transition and Gradeline Control

The attainment of superelevation over the gradually widening auxiliary lane and over the
whole of the turning roadway terminals should not be abrupt. The design should be in keeping
with the cross-slope controls, given in Exhibit 9-49.

As an example, consider an arrangement as in Exhibit 9-45, in which the limiting curve of
the turning roadway has a radius of 70 m [230 ft], corresponding to a design speed of 50 km/h
[30 mph]. From Exhibit 3-31, the limiting superelevation rate would be 11 percent or less.
Because the roadway width is variable, the transition of cross-slope change should be developed
by using the method of traveled way edge change in grade with respect to the point of rotation for
a full-width auxiliary lane. Elevations developed by this method should then be converted to a
change in elevation between the edge of the traveled way of the through lane and the edge of the
full-width pavement of the auxiliary lane. They then should be prorated for the actual partial
widths of the auxiliary lane. In this example, the traveled way edge change in grade should be no
greater than 0.65 percent [0.66 percent].   

An alternate method, which has been noted with respect to rideability, comfort, and
appearance of the roadway in cross-slope transition areas, is to establish a rate of change in the
roadway cross slope. The rate of cross slope is a function of traveled way width and the change in
grade of the edge of traveled way with respect to the point of roadway rotation. This method
results in the edge grade being equal to the roadway width, which is rotated, times the rate of
change in cross slope. Thus, if the edge of traveled way grade change is 0.65 percent
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[0.66 percent] and the width of roadway being rotated (the assumption being that the full width of
the auxiliary lane is applied for calculating the grade change of the edge of traveled way) is 3.6 m
[12 ft], the rate of change in cross slope is 5.41 percent [5.58 percent] per 30 m [100 ft] length.

In Exhibit 9-45, if the cross slope on the through roadway is 1 percent and the distance from
A to B, and also from B to C, is 15 m [50 ft], trial cross-slope rates would be 1 percent [1 percent]
at A, 3.71 percent [3.79 percent] at B, and 6.41 percent [6.58 percent] at C. Here the cross-over
crown line control (Exhibit 9-48) is barely satisfied, because at the critical section C, the
algebraic difference in cross-slope rates is 5.41 percent. If the remaining lengths of C to D and D
to E are 7 m [25 ft] apart, the cross-slope rate would be 7.67 percent [7.97 percent] at D and
8.93 percent [9.35 percent] at E.

The cross slope of the edge of traveled way in front of the nose at E could be some
intermediate rate, such as 4 percent. On the second trial a better adjustment of superelevation
transition results by using a lower change in the cross slope rate for the turning roadway, such as
4 percent per 30 m [100 ft] length.

This procedure of establishing superelevation cross slopes at given points is a preliminary
step in design. Elevations on the roadway edges resolved from these cross slopes serve as control
points for drawing the edge of traveled way profiles on the turning roadway. Excellent practical
results are obtained by plotting to large vertical scale the profiles for both edges of the turning
roadway and the edge and centerline of the through roadway in juxtaposition on a single profile
drawing. Important points such as approach noses or merging ends also are located. Only one
profile, either the stationed centerline or edge of traveled way, is depicted in true length, but the
inaccuracy in length of the other profiles is small and it is easy to locate points thereon in the field
by radial measurement from the stationed line. The three-dimensional condition can be readily
visualized.

Mathematically derived vertical curves, as used for open highways, are not always practical
at intersections, but the profile curves can be developed readily with a spline or irregular curve
templates. All needed elevations can be read directly from the profiles when they are drawn to
large enough vertical scale. The final profile may not precisely produce the selected cross slope at
all of the control points, but this problem is not serious as long as the cross-slope change is
progressive and within the design control limits. The principal criterion is the development of
smooth-edge profiles that do not appear distorted to the driver. Another method of obtaining a
three-dimensional presentation is to plot contour lines on a layout of the intersection area. A scale
drawing will provide an accurate picture with the additional advantage of showing drainage
patterns, sumps, and irregular slope conditions.

TRAFFIC CONTROL DEVICES

Traffic control devices are used to regulate, warn, and guide traffic and are a primary
determinant in the efficient operation of intersections. It is essential that intersection design be
accomplished simultaneously with the development of signal, signing, and pavement marking
plans to ensure that sufficient space is provided for proper installation of traffic control devices.
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Geometric design should not be considered complete nor should it be implemented until it has
been determined that needed traffic devices will have the desired effect in controlling traffic.

Most of the intersection types illustrated and described in the following discussions are
adaptable to either signing control, signal control, or a combination of both. At intersections that
do not need signal control, the normal roadway widths of the approach highways are carried
through the intersection with the possible addition of speed-change lanes, median lanes, auxiliary
lanes, or pavement tapers. Where volumes are sufficient to indicate signal control, the number of
lanes for through movements may also need to be increased. Where the volume approaches the
uninterrupted flow capacity of the intersection leg, the number of lanes in each direction may
have to be doubled at the intersection to accommodate the volume under stop-and-go control.
Other geometric features that may be affected by signalization are length and width of storage
areas, location and position of turning roadways, spacing of other subsidiary intersections, access
connections, and the possible location and size of islands to accommodate signal posts or
supports.

At high-volume intersections at grade, the design of the signals should be sophisticated
enough to respond to the varying traffic demands, the objective being to keep the vehicles moving
through the intersection. Factors affecting capacity and computation procedures for signalized
intersections are covered in the HCM (6).

An intersection that needs traffic signal control is best designed by considering jointly the
geometric design, capacity, analysis, design hour volumes, and physical controls. Details on the
design and location of most forms of traffic control signals, including the general warrants, are
given in the MUTCD (9).

INTERSECTION SIGHT DISTANCE

General Considerations

Each intersection has the potential for several different types of vehicular conflicts. The
possibility of these conflicts actually occurring can be greatly reduced through the provision of
proper sight distances and appropriate traffic controls. The avoidance of conflicts and the
efficiency of traffic operations still depend on the judgment, capabilities, and response of each
individual driver.

Stopping sight distance is provided continuously along each highway or street so that drivers
have a view of the roadway ahead that is sufficient to allow drivers to stop. The provision of
stopping sight distance at all locations along each highway or street, including intersection
approaches, is fundamental to intersection operation.

Vehicles are assigned the right-of-way at intersections by traffic-control devices or, where
no traffic-control devices are present, by the rules of the road. A basic rule of the road, at an
intersection where no traffic-control devices are present, requires the vehicle on the left to yield to
the vehicle on the right if they arrive at approximately the same time. Sight distance is provided at



Intersections

655

intersections to allow drivers to perceive the presence of potentially conflicting vehicles. This
should occur in sufficient time for a motorist to stop or adjust their speed, as appropriate, to avoid
colliding in the intersection. The methods for determining the sight distances needed by drivers
approaching intersections are based on the same principles as stopping sight distance, but
incorporate modified assumptions based on observed driver behavior at intersections.

The driver of a vehicle approaching an intersection should have an unobstructed view of the
entire intersection, including any traffic-control devices, and sufficient lengths along the
intersecting highway to permit the driver to anticipate and avoid potential collisions. The sight
distance needed under various assumptions of physical conditions and driver behavior is directly
related to vehicle speeds and to the resultant distances traversed during perception-reaction time
and braking.

Sight distance is also provided at intersections to allow the drivers of stopped vehicles a
sufficient view of the intersecting highway to decide when to enter the intersecting highway or to
cross it. If the available sight distance for an entering or crossing vehicle is at least equal to the
appropriate stopping sight distance for the major road, then drivers have sufficient sight distance
to anticipate and avoid collisions. However, in some cases, this may require a major-road vehicle
to stop or slow to accommodate the maneuver by a minor-road vehicle. To enhance traffic
operations, intersection sight distances that exceed stopping sight distances are desirable along
the major road.

Sight Triangles

Specified areas along intersection approach legs and across their included corners should be
clear of obstructions that might block a driver’s view of potentially conflicting vehicles. These
specified areas are known as clear sight triangles. The dimensions of the legs of the sight triangles
depend on the design speeds of the intersecting roadways and the type of traffic control used at
the intersection. These dimensions are based on observed driver behavior and are documented by
space-time profiles and speed choices of drivers on intersection approaches (10). Two types of
clear sight triangles are considered in intersection design, approach sight triangles, and departure
sight triangles.

Approach Sight Triangles

Each quadrant of an intersection should contain a triangular area free of obstructions that
might block an approaching driver’s view of potentially conflicting vehicles. The length of the
legs of this triangular area, along both intersecting roadways, should be such that the drivers can
see any potentially conflicting vehicles in sufficient time to slow or stop before colliding within
the intersection. Exhibit 9-50A shows typical clear sight triangles to the left and to the right for a
vehicle approaching an uncontrolled or yield-controlled intersection.
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Exhibit 9-50.  Intersection Sight Triangles

The vertex of the sight triangle on a minor-road approach (or an uncontrolled approach)
represents the decision point for the minor-road driver (see Exhibit 9-50A). This decision point is
the location at which the minor-road driver should begin to brake to a stop if another vehicle is
present on an intersecting approach. The distance from the major road, along the minor road, is
illustrated by the dimension “a” in Exhibit 9-50A.

The geometry of a clear sight triangle is such that when the driver of a vehicle without the
right of way sees a vehicle that has the right of way on an intersecting approach, the driver of that
potentially conflicting vehicle can also see the first vehicle . Dimension “B” illustrates the length
of this leg of the sight triangle . Thus, the provision of a clear sight triangle for vehicles without
the right-of-way also permits the drivers of vehicles with the right-of-way to slow, stop, or avoid
other vehicles, should it become necessary.

Although desirable at higher volume intersections, approach sight triangles like those shown
in Exhibit 9-50A are not needed for intersection approaches controlled by stop signs or traffic
signals. In that case, the need for approaching vehicles to stop at the intersection is determined by
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the traffic control devices and not by the presence or absence of vehicles on the intersecting
approaches.

Departure Sight Triangles

A second type of clear sight triangle provides sight distance sufficient for a stopped driver on
a minor-road approach to depart from the intersection and enter or cross the major road.
Exhibit 9-50B shows typical departure sight triangles to the left and to the right of the location of
a stopped vehicle on the minor road. Departure sight triangles should be provided in each
quadrant of each intersection approach controlled by stop or yield signs. Departure sight triangles
should also be provided for some signalized intersection approaches (see Case D in the section on
“Intersection Control”).

The recommended dimensions of the clear sight triangle for desirable traffic operations
where stopped vehicles enter or cross a major road are based on assumptions derived from field
observations of driver gap-acceptance behavior (10). The provision of clear sight triangles like
those shown in Exhibit 9-50B also allows the drivers of vehicles on the major road to see any
vehicles stopped on the minor-road approach and to be prepared to slow or stop, if necessary.

Identification of Sight Obstructions Within Sight Triangles

The profiles of the intersecting roadways should be designed to provide the recommended
sight distances for drivers on the intersection approaches. Within a sight triangle, any object at a
height above the elevation of the adjacent roadways that would obstruct the driver’s view should
be removed or lowered, if practical. Such objects may include: buildings, parked vehicles,
highway structures, roadside hardware, hedges, trees, bushes, unmowed grass, tall crops, walls,
fences, and the terrain itself. Particular attention should be given to the evaluation of clear sight
triangles at interchange ramp/crossroad intersections where features such as bridge railings, piers,
and abutments are potential sight obstructions.

The determination of whether an object constitutes a sight obstruction should consider both
the horizontal and vertical alignment of both intersecting roadways, as well as the height and
position of the object. In making this determination, it should be assumed that the driver’s eye is
1,080 mm [3.5 ft] above the roadway surface and that the object to be seen is 1,080 mm [3.5 ft]
above the surface of the intersecting road.

This object height is based on a vehicle height of 1,330 mm [4.35 ft], which represents the
15th percentile of vehicle heights in the current passenger car population less an allowance of
250 mm [10 in]. This allowance represents a near-maximum value for the portion of a passenger
car height that needs to be visible for another driver to recognize it as the object. The use of an
object height equal to the driver eye height makes intersection sight distances reciprocal (i.e., if
one driver can see another vehicle, then the driver of that vehicle can also see the first vehicle).
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Where the sight-distance value used in design is based on a single-unit or combination truck
as the design vehicle, it is also appropriate to use the eye height of a truck driver in checking sight
obstructions. The recommended value of a truck driver’s eye height is 2,330 mm [7.6 ft] above
the roadway surface.

Intersection Control

The recommended dimensions of the sight triangles vary with the type of traffic control used
at an intersection because different types of control impose different legal constraints on drivers
and, therefore, result in different driver behavior. Procedures to determine sight distances at
intersections are presented below according to different types of traffic control, as follows:

Case A—Intersections with no control
Case B—Intersections with stop control on the minor road

Case B1—Left turn from the minor road
Case B2—Right turn from the minor road
Case B3—Crossing maneuver from the minor road

Case C—Intersections with yield control on the minor road
Case C1—Crossing maneuver from the minor road
Case C2—Left or right turn from the minor road

Case D—Intersections with traffic signal control
Case E—Intersections with all-way stop control
Case F—Left turns from the major road

Case A—Intersections With No Control

For intersections not controlled by yield signs, stop signs, or traffic signals, the driver of a
vehicle approaching an intersection should be able to see potentially conflicting vehicles in
sufficient time to stop before reaching the intersection. The location of the decision point
(driver’s eye) of the sight triangles on each approach is determined from a model that is
analogous to the stopping sight distance model, with slightly different assumptions.

While some perceptual tasks at intersections may need substantially less time, the detection
and recognition of a vehicle that is a substantial distance away on an intersecting approach, and is
near the limits of the driver’s peripheral vision, may take up to 2.5 s. The distance to brake to a
stop can be determined from the same braking coefficients used to determine stopping sight
distance in Exhibit 3-1.

Field observations indicate that vehicles approaching uncontrolled intersections typically
slow to approximately 50 percent of their midblock running speed. This occurs even when no
potentially conflicting vehicles are present (10). This initial slowing typically occurs at
deceleration rates up to 1.5 m/s2 [5 ft/s2]. Deceleration at this gradual rate has been observed to
begin even before a potentially conflicting vehicle comes into view. Braking at greater
deceleration rates, which can approach those assumed in stopping sight distance, can begin up to
2.5 s after a vehicle on the intersecting approach comes into view. Thus, approaching vehicles
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may be traveling at less than their midblock running speed during all or part of the perception-
reaction time and can, therefore, where necessary, brake to a stop from a speed less than the
midblock running speed.

Exhibit 9-51 shows the distance traveled by an approaching vehicle during perception-
reaction and braking time as a function of the design speed of the roadway on which the
intersection approach is located. These distances should be used as the legs of the sight triangles
shown in Exhibit 9-50A. Referring to Exhibit 9-50A, highway A with an assumed design speed
of 80 km/h [50 mph] and highway B with an assumed design speed of 50 km/h [30 mph] require
a clear sight triangle with legs extending at least 75 m and 45 m [245 and 140 ft] along highways
A and B, respectively. Exhibit 9-52 indicates the length of the legs of the sight triangle from
Exhibit 9-51.

Metric US Customary
Design speed

(km/h)
Length of leg

(m)
Design speed

(mph)
Length of leg

(ft)
20 20 15 70
30 25 20 90
40 35 25 115
50 45 30 140
60 55 35 165
70 65 40 195
80 75 45 220
90 90 50 245

100 105 55 285
110 120 60 325
120 135 65 365
130 150 70 405

75 445
80 485

Note:  For approach grades greater than 3%, multiply the sight distance values in this exhibit by
the appropriate adjustment factor from Exhibit 9-53.

Exhibit 9-51. Length of Sight Triangle Leg—Case A—No Traffic Control

This clear triangular area will permit the vehicles on either road to stop, if necessary, before
reaching the intersection. If the design speed of any approach is not known, it can be estimated by
using the 85th percentile of the midblock running speeds for that approach.

The distances shown in Exhibit 9-51 are generally less than the corresponding values of
stopping sight distance for the same design speed. This relationship is illustrated in Exhibit 9-52.
Where a clear sight triangle has legs that correspond to the stopping sight distances on their
respective approaches, an even greater margin of efficient operation is provided. However, since
field observations show that motorists slow down to some extent on approaches to uncontrolled
intersections, the provision of a clear sight triangle with legs equal to the full stopping sight
distance is not essential.
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Where the grade along an intersection approach exceeds 3 percent, the leg of the clear sight
triangle along that approach should be adjusted by multiplying the appropriate sight distance from
Exhibit 9-51 by the appropriate adjustment factor from Exhibit 9-53.

If the sight distances given in Exhibit 9-51, as adjusted for grades, cannot be provided,
consideration should be given to installing regulatory speed signing to reduce speeds or installing
stop signs on one or more approaches.

No departure sight triangle like that shown in Exhibit 9-50B is needed at an uncontrolled
intersection because such intersections typically have very low traffic volumes. If a motorist finds
it necessary to stop at an uncontrolled intersection because of the presence of a conflicting vehicle
on an intersecting approach, it is very unlikely another potentially conflicting vehicle will be
encountered as the first vehicle departs the intersection.

Case B—Intersections With Stop Control on the Minor Road

Departure sight triangles for intersections with stop control on the minor road should be
considered for three situations:

Case B1—Left turns from the minor road;
Case B2—Right turns from the minor road; and
Case B3—Crossing the major road from a minor-road approach.

Intersection sight distance criteria for stop-controlled intersections are longer than stopping
sight distance to ensure that the intersection operates smoothly. Minor-road vehicle operators can
wait until they can proceed safely without forcing a major-road vehicle to stop.

Case B1—Left Turn From the Minor Road

Departure sight triangles for traffic approaching from either the right or the left, like those
shown in Exhibit 9-50B, should be provided for left turns from the minor road onto the major
road for all stop-controlled approaches. The length of the leg of the departure sight triangle along
the major road in both directions is the recommended intersection sight distance for Case B1.

The vertex (decision point) of the departure sight triangle on the minor road should be 4.4 m
[14.4 ft] from the edge of the major-road traveled way. This represents the typical position of the
minor-road driver’s eye when a vehicle is stopped relatively close to the major road. Field
observations of vehicle stopping positions found that, where necessary, drivers will stop with the
front of their vehicle 2.0 m [6.5 ft] or less from the edge of the major-road traveled way.
Measurements of passenger cars indicate that the distance from the front of the vehicle to the
driver’s eye for the current U.S. passenger car population is nearly always 2.4 m [8 ft] or less
(10). Where practical, it is desirable to increase the distance from the edge of the major-road
traveled way to the vertex of the clear sight triangle from 4.4 m to 5.4 m [14.4 to 17.8 ft]. This
increase allows 3.0 m [10 ft] from the edge of the major-road traveled way to the front of the
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Exhibit 9-52.  Length of Sight Triangle Leg—Case A—No Traffic Control



Metric US Customary

Design speed (km/h) Design speed (mph)
Approach

grade
(%) 20 30 40 50 60 70 80 90 100 110 120 130

Approach
grade
(%) 15 20 25 30 35 40 45 50 55 60 65 70 75 80

–6 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 –6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2
–5 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 –5 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2
–4 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 –4 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

–3 to +3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 –3 to +3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
+4 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 +4 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
+5 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 +5 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
+6 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 +6 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Note:  Based on ratio of stopping sight distance on specified approach grade to stopping sight distance on level terrain.

Exhibit 9-53.  Adjustment Factors for Sight Distance Based on Approach Grade
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stopped vehicle, providing a larger sight triangle. The length of the sight triangle along the minor
road (distance a in Exhibit 9-50B) is the sum of the distance from the major road plus 1/2 lane
width for vehicles approaching from the left, or 1-1/2 lane width for vehicles approaching from
the right.

Field observations of the gaps in major-road traffic actually accepted by drivers turning onto
the major road have shown that the values in Exhibit 9-54 provide sufficient time for the minor-
road vehicle to accelerate from a stop and complete a left turn without unduly interfering with
major-road traffic operations. The time gap acceptance time does not vary with approach speed
on the major road. Studies have indicated that a constant value of time gap, independent of
approach speed, can be used as a basis for intersection sight distance determinations.
Observations have also shown that major-road drivers will reduce their speed to some extent
when minor-road vehicles turn onto the major road. Where the time gap acceptance values in
Exhibit 9-54 are used to determine the length of the leg of the departure sight triangle, most
major-road drivers should not need to reduce speed to less than 70 percent of their initial speed
(10).

The intersection sight distance in both directions should be equal to the distance traveled at
the design speed of the major road during a period of time equal to the time gap. In applying
Exhibit 9-54, it can usually be assumed that the minor-road vehicle is a passenger car. However,
where substantial volumes of heavy vehicles enter the major road, such as from a ramp terminal,
the use of tabulated values for single-unit or combination trucks should be considered.

Exhibit 9-54 includes appropriate adjustments to the gap times for the number of lanes on
the major road and for the approach grade of the minor road. The adjustment for the grade of the
minor-road approach is needed only if the rear wheels of the design vehicle would be on an
upgrade that exceeds 3 percent when the vehicle is at the stop line of the minor-road approach.

The intersection sight distance along the major road (dimension b in Exhibit 9-49B) is
determined by:

Metric US Customary

gmajor tVISD 278.0= gmajor tVISD 47.1= ( 9-1 )

where:

ISD = intersection sight distance
(length of the leg of sight
triangle along the major
road) (m)

Vmajor = design speed of major
road (km/h)

tg = time gap for minor road
vehicle to enter the major
road (s)

where:

ISD = intersection sight distance
(length of the leg of sight
triangle along the major
road) (ft)

Vmajor = design speed of major
road (mph)

tg = time gap for minor road
vehicle to enter the major
road (s)
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Design vehicle
Time gap (s) at design speed

of major road (tg)
Passenger car 7.5
Single-unit truck 9.5
Combination truck 11.5

Note: Time gaps are for a stopped vehicle to turn right or left onto a two-lane highway with
no median and grades 3 percent or less.  The table values require adjustment as
follows:

For multilane highways:
For left turns onto two-way highways with more than two lanes, add 0.5
seconds for passenger cars or 0.7 seconds for trucks for each additional lane,
from the left, in excess of one, to be crossed by the turning vehicle.

For minor road approach grades:
If the approach grade is an upgrade that exceeds 3 percent; add 0.2 seconds
for each percent grade for left turns

Exhibit 9-54.  Time Gap for Case B1—Left Turn from Stop

For example, a passenger car turning left onto a two-lane major road should be provided
sight distance equivalent to a time gap of 7.5 s in major-road traffic. If the design speed of the
major road is 90 km/h [60 mph], this corresponds to a sight distance of 0.278(90)(7.5) = 187.7 or
190 m [1.47(60)(7.5) = 661.5 or 665 ft], rounded for design.

A passenger car turning left onto a four-lane undivided roadway will need to cross two near
lanes, rather than one. This increases the recommended gap in major-road traffic from 7.5 to
8.0 s. The corresponding value of sight distance for this example would be 200 m [704 ft]. If the
minor-road approach to such an intersection is located on a 4 percent upgrade, then the time gap
selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s,
equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in
Exhibit 9-55. Exhibit 9-56 includes design values, based on the time gaps for the design vehicles
included in Exhibit 9-54.

No adjustment of the recommended sight distance values for the major-road grade is
generally needed because both the major- and minor-road vehicle will be on the same grade when
departing from the intersection. However, if the minor-road design vehicle is a heavy truck and
the intersection is located near a sag vertical curve with grades over 3 percent, then an adjustment
to extend the recommended sight distance based on the major-road grade should be considered.
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Metric US Customary
Intersection sight

distance for
passenger cars

Intersection sight
distance for

passenger carsDesign
speed
(km/h)

Stopping
sight

distance
(m)

Calculated
(m)

Design
(m)

Design
speed
(mph)

Stopping
sight

distance
(ft)

Calculated
(ft)

Design
(ft)

20 20 41.7 45 15 80 165.4 170
30 35 62.6 65 20 115 220.5 225
40 50 83.4 85 25 155 275.6 280
50 65 104.3 105 30 200 330.8 335
60 85 125.1 130 35 250 385.9 390
70 105 146.0 150 40 305 441.0 445
80 130 166.8 170 45 360 496.1 500
90 160 187.7 190 50 425 551.3 555

100 185 208.5 210 55 495 606.4 610
110 220 229.4 230 60 570 661.5 665
120 250 250.2 255 65 645 716.6 720
130 285 271.1 275 70 730 771.8 775

75 820 826.9 830
80 910 882.0 885

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a
two-lane highway with no median and grades 3 percent or less.  For other
conditions, the time gap must be adjusted and required sight distance recalculated.

Exhibit 9-55.  Design Intersection Sight Distance—Case B1—Left Turn From Stop

Sight distance design for left turns at divided-highway intersections should consider multiple
design vehicles and median width. If the design vehicle used to determine sight distance for a
divided-highway intersection is larger than a passenger car, then sight distance for left turns will
need to be checked for that selected design vehicle and for smaller design vehicles as well. If the
divided-highway median is wide enough to store the design vehicle with a clearance to the
through lanes of approximately 1 m [3 ft] at both ends of the vehicle, no separate analysis for the
departure sight triangle for left turns is needed on the minor-road approach for the near roadway
to the left. In most cases, the departure sight triangle for right turns (Case B2) will provide
sufficient sight distance for a passenger car to cross the near roadway to reach the median.
Possible exceptions are addressed in the discussion of Case B3.

If the design vehicle can be stored in the median with adequate clearance to the through
lanes, a departure sight triangle to the right for left turns should be provided for that design
vehicle turning left from the median roadway. Where the median is not wide enough to store the
design vehicle, a departure sight triangle should be provided for that design vehicle to turn left
from the minor-road approach.

The median width should be considered in determining the number of lanes to be crossed.
The median width should be converted to equivalent lanes. For example, a 7.2-m [24-ft] median
should be considered as two additional lanes to be crossed in applying the multilane highway
adjustment for time gaps in Exhibit 9-54. Furthermore, a departure sight triangle for left turns
from the median roadway should be provided for the largest design vehicle that can be stored on
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Exhibit 9-56.  Intersection Sight Distance—Case B1—Left Turn from Stop
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the median roadway with adequate clearance to the through lanes. If a divided highway
intersection has a 12-m [40-ft] median width and the design vehicle for sight distance is a 22-m
[74-ft] combination truck, departure sight triangles should be provided for the combination truck
turning left from the minor-road approach and through the median. In addition, a departure sight
triangle should also be provided to the right for a 9-m [30-ft] single unit truck turning left from a
stopped position in the median.

If the sight distance along the major road shown in Exhibit 9-55, including any appropriate
adjustments, cannot be provided, then consideration should be given to installing regulatory speed
signing on the major-road approaches.

Case B2—Right Turn from the Minor Road

A departure sight triangle for traffic approaching from the left like that shown in
Exhibit 9-50B should be provided for right turns from the minor road onto the major road. The
intersection sight distance for right turns is determined in the same manner as for Case B1, except
that the time gaps (tg) in Exhibit 9-54 should be adjusted. Field observations indicate that, in
making right turns, drivers generally accept gaps that are slightly shorter than those accepted in
making left turns (10). The time gaps in Exhibit 9-54 can be decreased by 1.0 s for right-turn
maneuvers without undue interference with major-road traffic. These adjusted time gaps for the
right turn from the minor road are shown in Exhibit 9-57. Design values based on these adjusted
time gaps are shown in Exhibit 9-58 for passenger cars. Exhibit 9-59 includes the design values
for the design vehicles for each of the time gaps in Exhibit 9-57. When the minimum
recommended sight distance for a right-turn maneuver cannot be provided, even with the
reduction of 1.0 s from the values in Exhibit 9-54, consideration should be given to installing
regulatory speed signing or other traffic control devices on the major-road approaches.

Case B3—Crossing Maneuver from the Minor Road

In most cases, the departure sight triangles for left and right turns onto the major road, as
described for Cases B1 and B2, will also provide more than adequate sight distance for minor-
road vehicles to cross the major road. However, in the following situations, it is advisable to
check the availability of sight distance for crossing maneuvers:

• where left and/or right turns are not permitted from a particular approach and the
crossing maneuver is the only legal maneuver;

• where the crossing vehicle would cross the equivalent width of more than six lanes; or
• where substantial volumes of heavy vehicles cross the highway and steep grades that

might slow the vehicle while its back portion is still in the intersection are present on
the departure roadway on the far side of the intersection.
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Design vehicle

Time gap (s) at
design speed of
major road (tg)

Passenger car 6.5
Single-unit truck 8.5
Combination truck 10.5

Note: Time gaps are for a stopped vehicle to turn right
onto or cross a two-lane highway with no median
and grades 3 percent or less.  The table values
require adjustment as follows:

For multilane highways:
For crossing a major road with more than two
lanes, add 0.5 seconds for passenger cars and
0.7 seconds for trucks for each additional lane to
be crossed and for narrow medians that cannot
store the design vehicle.

For minor road approach grades:
If the approach grade is an upgrade that exceeds
3 percent, add 0.1 seconds for each percent
grade.

Exhibit 9-57.  Time Gap for Case B2—Right Turn from
Stop and Case B3—Crossing Maneuver

Metric US Customary
Intersection sight

distance for
passenger cars

Intersection sight
distance for

passenger carsDesign
speed
(km/h)

Stopping
sight

distance
(m)

Calculated
(m)

Design
(m)

Design
speed
(mph)

Stopping
sight

distance
(ft)

Calculated
(ft)

Design
(ft)

20 20 36.1 40 15 80 143.3 145
30 35 54.2 55 20 115 191.1 195
40 50 72.3 75 25 155 238.9 240
50 65 90.4 95 30 200 286.7 290
60 85 108.4 110 35 250 334.4 335
70 105 126.5 130 40 305 382.2 385
80 130 144.6 145 45 360 430.0 430
90 160 162.6 165 50 425 477.8 480

100 185 180.7 185 55 495 525.5 530
110 220 198.8 200 60 570 573.3 575
120 250 216.8 220 65 645 621.1 625
130 285 234.9 235 70 730 668.9 670

75 820 716.6 720
80 910 764.4 765

Note:  Intersection sight distance shown is for a stopped passenger car to turn right onto or cross a
two-lane highway with no median and grades 3 percent or less.  For other conditions, the time
gap must be adjusted and required sight distance recalculated.

Exhibit 9-58.  Design Intersection Sight Distance—Case B2—Right Turn from Stop and
Case B3—Crossing Maneuver
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Exhibit 9-59.  Intersection Sight Distance—Case B2—Right Turn from Stop and Case B3—
Crossing Maneuver
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The formula for intersection sight distance in Case B1 is used again for the crossing
maneuver except that time gaps (tg) are obtained from Exhibit 9-57. Exhibit 9-57 presents time
gaps and appropriate adjustment factors to determine the intersection sight distance along the
major road to accommodate crossing maneuvers. At divided highway intersections, depending on
the relative magnitudes of the median width and the length of the design vehicle, intersection
sight distance may need to be considered for crossing both roadways of the divided highway or
for crossing the near lanes only and stopping in the median before proceeding. The application of
adjustment factors for median width and grade are discussed under Case B1.

Exhibit 9-58 shows the design values for passenger cars for the crossing maneuver based on
the unadjusted time gaps in Exhibit 9-57. Exhibit 9-59 includes the design values based on the
time gaps for the design vehicles in Exhibit 9-57.

Case C—Intersections With Yield Control on the Minor Road

Drivers approaching yield signs are permitted to enter or cross the major road without
stopping, if there are no potentially conflicting vehicles on the major road. The sight distances
needed by drivers on yield-controlled approaches exceed those for stop-controlled approaches.

For four-leg intersections with yield control on the minor road, two separate pairs of
approach sight triangles like those shown in Exhibit 9-50A should be provided. One set of
approach sight triangles is needed to accommodate crossing the major road and a separate set of
sight triangles is needed to accommodate left and right turns onto the major road. Both sets of
sight triangles should be checked for potential sight obstructions.

For three-leg intersections with yield control on the minor road, only the approach sight
triangles to accommodate left- and right-turn maneuvers need be considered, because the crossing
maneuver does not exist.

Case C1—Crossing Maneuver From the Minor Road

The length of the leg of the approach sight triangle along the minor road to accommodate the
crossing maneuver from a yield-controlled approach (distance a in Exhibit 9-50A) is given in
Exhibit 9-60. The distances in Exhibit 9-60 are based on the same assumptions as those for Case
A except that, based on field observations, minor-road vehicles that do not stop are assumed to
decelerate to 60 percent of the minor-road design speed, rather than 50 percent.

Sufficient travel time for the major road vehicle should be provided to allow the minor-road
vehicle: (1) to travel from the decision point to the intersection, while decelerating at the rate of
1.5 m/s2 [5 ft/s2] to 60 percent of the minor-road design speed; and then (2) to cross and clear the
intersection at that same speed. The intersection sight distance along the major road to
accommodate the crossing maneuver (distance b in Exhibit 9-50A) should be computed with the
following equations:
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Metric US Customary

minor167.0 V
Lw

tt a
ag

+
+=

gmajor tV278.0b =
minor88.0 V
Lw

tt a
ag

+
+=

gmajor tV47.1b =
( 9-1 )

where:
tg = travel time to reach and

clear the major road (s)
b = length of leg of sight

triangle along the major
road (m)

ta = travel time to reach the
major road from the
decision point for a
vehicle that does not
stop (s) (use
appropriate value for
the minor-road design
speed from Exhibit 9-60
adjusted for approach
grade, where
appropriate)

w = width of intersection to
be crossed (m)

La = length of design vehicle
(m)

Vminor = design speed of minor
road (km/h)

V
major = design speed of major

road (km/h)

where:
tg = travel time to reach and

clear the major road (s)
b = length of leg of sight

triangle along the major
road (ft)

ta = travel time to reach the
major road from the
decision point for a
vehicle that does not
stop (s) (use
appropriate value for the
minor-road design speed
from Exhibit 9-60
adjusted for approach
grade, where
appropriate)

w = width of intersection to
be crossed (ft)

La = length of design vehicle
(ft)

Vminor = design speed of minor
road (mph)

V
major = design speed of major

road (mph)

The value of tg should equal or exceed the appropriate travel time for crossing the major road
from a stop-controlled approach, as shown in Exhibit 9-57. The design values for the time gap (tg)
shown in Exhibit 9-60 incorporate these crossing times for two-lane highways and are used to
develop the length of the leg of the sight triangle along the major road in Exhibit 9-61. These
basic unadjusted lengths are illustrated in Exhibit 9-62 for passenger cars and should be
calculated separately for other design vehicle types.

The distances and times in Exhibit 9-60 should be adjusted for the grade of the minor-road
approach using the factors in Exhibit 9-53. If the major road is a divided highway with a median
wide enough to store the design vehicle for the crossing maneuver, then only crossing of the near
lanes needs to be considered and a departure sight triangle for accelerating from a stopped
position in the median should be provided based on Case B3. For median widths not wide enough
to store the design vehicle, the crossing width should be adjusted as discussed in Case B1.
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Minor-road approach
Travel time (tg)

(seconds) Minor-road approach Travel time (tg) (seconds)
Design
speed
(km/h)

Length of
leg1

(m)

Travel time
ta

1,2

(seconds)
Calculated

value
Design
value3,4

Design
speed
(mph)

Length of
leg1

(ft)

Travel time
ta

1,2

(seconds)
Calculated

value
Design
value3,4

20 20 3.2 7.1 7.1 15 75 3.4 6.7 6.7
30 30 3.6 6.2 6.5 20 100 3.7 6.1 6.5
40 40 4.0 6.0 6.5 25 130 4.0 6.0 6.5
50 55 4.4 6.0 6.5 30 160 4.3 5.9 6.5
60 65 4.8 6.1 6.5 35 195 4.6 6.0 6.5
70 80 5.1 6.2 6.5 40 235 4.9 6.1 6.5
80 100 5.5 6.5 6.5 45 275 5.2 6.3 6.5
90 115 5.9 6.8 6.8 50 320 5.5 6.5 6.5

100 135 6.3 7.1 7.1 55 370 5.8 6.7 6.7
110 155 6.7 7.4 7.4 60 420 6.1 6.9 6.9
120 180 7.0 7.7 7.7 65 470 6.4 7.2 7.2
130 205 7.4 8.0 8.0 70 530 6.7 7.4 7.4

75 590 7.0 7.7 7.7
80 660 7.3 7.9 7.9

1 For minor-road approach grades that exceed 3 percent, multiply the distance or the time in this table by the appropriate
adjustment factor from Exhibit 9-53.

2 Travel time applies to a vehicle that slows before crossing the intersection but does not stop.
3 The value of tg should equal or exceed the appropriate time gap for crossing the major road from a stop-controlled

approach.
4 Values shown are for a passenger car crossing a two-lane highway with no median and grades 3 percent or less.

Exhibit 9-60. Case C1—Crossing Maneuvers From Yield-Controlled Approaches—Length of Minor Road Leg
and Travel Times
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Minor-road design speed (km/h) Minor-road design speed (mph)
20 30-80 90 100 110 120 130 15 20-50 55 60 65 70 75 80

Major
road

design
speed
(km/h)

Stopping
sight

distance
(m) Design values (m)

Major
road

design
speed
(mph)

Stopping
sight

distance
(ft) Design values (ft)

20 20 40 40 40 40 45 45 45 15 80 150 145 150 155 160 165 170 175
30 35 60 55 60 60 65 65 70 20 115 200 195 200 205 215 220 230 235
40 50 80 75 80 80 85 90 90 25 155 250 240 250 255 265 275 285 295
50 65 100 95 95 100 105 110 115 30 200 300 290 300 305 320 330 340 350
60 85 120 110 115 120 125 130 135 35 250 345 335 345 360 375 385 400 410
70 105 140 130 135 140 145 150 160 40 305 395 385 395 410 425 440 455 465
80 130 160 145 155 160 165 175 180 45 360 445 430 445 460 480 490 510 525
90 160 180 165 175 180 190 195 205 50 425 495 480 495 510 530 545 570 585

100 185 200 185 190 200 210 215 225 55 495 545 530 545 560 585 600 625 640
110 220 220 200 210 220 230 240 245 60 570 595 575 595 610 640 655 680 700
120 250 240 220 230 240 250 260 270 65 645 645 625 645 660 690 710 740 755
130 285 260 235 250 260 270 280 290 70 730 690 670 690 715 745 765 795 815

75 820 740 720 740 765 795 820 850 875
80 910 790 765 790 815 850 875 910 930

Note:  Values in the table are for passenger cars and are based on the unadjusted distances and times in
Exhibit 9-60.  The distances and times in Exhibit 9-60 need to be adjusted using the factors in Exhibit 9-53.

Exhibit 9-61. Length of Sight Triangle Leg Along Major Road—Case C1—Crossing Maneuver at Yield
Controlled Intersections
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Exhibit 9-62.  Length of Sight Triangle Leg Along Major Road for Passenger Cars—
Case C1—Crossing Maneuver
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Case C2—Left- and Right-Turn Maneuvers

The length of the leg of the approach sight triangle along the minor road to accommodate
left and right turns without stopping (distance a in Exhibit 9-50A should be 25 m [82 ft]). This
distance is based on the assumption that drivers making left and right turns without stopping will
slow to a turning speed of 16 km/h [10 mph].

The leg of the approach sight triangle along the major road (distance b in Exhibit 9-50A) is
similar to the major-road leg of the departure sight triangle for a stop-controlled intersections in
Cases B1 and B2. However, the time gaps in Exhibit 9-54 should be increased by 0.5 s to the
values shown in Exhibit 9-63. The appropriate lengths of the sight triangle leg are shown in
Exhibit 9-64 for passenger cars and in Exhibit 9-65 for the general design vehicle categories. The
minor-road vehicle needs 3.5 s to travel from the decision point to the intersection. This
represents additional travel time that is needed at a yield-controlled intersection, but is not needed
at a stop-controlled intersection (Case B). However, the acceleration time after entering the major
road is 3.0 s less for a yield sign than for a stop sign because the turning vehicle accelerates from
16 km/h [10 mph] rather than from a stop condition. The net 0.5-s increase in travel time for a
vehicle turning from a yield-controlled approach is the difference between the 3.5-s increase in
travel time and the 3.0-s reduction in travel time.

Departure sight triangles like those provided for stop-controlled approaches (see Cases B1,
B2, and B3) should also be provided for yield-controlled approaches to accommodate minor-road
vehicles that stop at the yield sign to avoid conflicts with major-road vehicles. However, since
approach sight triangles for turning maneuvers at yield-controlled approaches are larger than the
departure sight triangles used at stop-controlled intersections, no specific check of departure sight
triangles at yield-controlled intersection should be needed.

Yield-controlled approaches generally need greater sight distance than stop-controlled
approaches, especially at four-leg yield-controlled intersections where the sight distance needs of
the crossing maneuver should be considered. If sight distance sufficient for yield control is not
available, use of a stop sign instead of a yield sign should be considered. In addition, at locations
where the recommended sight distance cannot be provided, consideration should be given to
installing regulatory speed signing or other traffic control devices at the intersection on the major
road to reduce the speeds of approaching vehicles.

Case D—Intersections With Traffic Signal Control

At signalized intersections, the first vehicle stopped on one approach should be visible to the
driver of the first vehicle stopped on each of the other approaches. Left-turning vehicles should
have sufficient sight distance to select gaps in oncoming traffic and complete left turns. Apart
from these sight conditions, there are generally no other approach or departure sight triangles
needed for signalized intersections. Signalization may be an appropriate crash countermeasure for
higher volume intersections with restricted sight distance that have experienced a pattern of sight-
distance related crashes.
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Design vehicle Time gap (tg) seconds
Passenger car 8.0
Single-unit truck 10.0
Combination truck 12.0

Note: Time gaps are for a vehicle to turn right or left onto a two-lane highway
with no median.  The table values require adjustments for multilane
highways as follows:

For left turns onto two-way highways with more than two lanes, add
0.5 seconds for passenger cars or 0.7 seconds for trucks for each
additional lane, from the left, in excess of one, to be crossed by the
turning vehicle.

For right turns, no adjustment is necessary.

Exhibit 9-63.  Time Gap for Case C2—Left or Right Turn

Metric US Customary
Length of leg Length of leg

Passenger cars Passenger carsDesign
speed
(km/h)

Stopping
sight

distance (m)
Calculated

(m)
Design

(m)

Design
speed
(mph)

Stopping
sight

distance (ft)
Calculated

(ft)
Design

(ft)
20 20 44.5 45 15 80 176.4 180
30 35 66.7 70 20 115 235.2 240
40 50 89.0 90 25 155 294.0 295
50 65 111.2 115 30 200 352.8 355
60 85 133.4 135 35 250 411.6 415
70 105 155.7 160 40 305 470.4 475
80 130 177.9 180 45 360 529.2 530
90 160 200.2 205 50 425 588.0 590

100 185 222.4 225 55 495 646.8 650
110 220 244.6 245 60 570 705.6 710
120 250 266.9 270 65 645 764.4 765
130 285 289.1 290 70 730 823.2 825

75 820 882.0 885
80 910 940.8 945

Note: Intersection sight distance shown is for a passenger car making a right or left turn
without stopping onto a two-lane road.

Exhibit 9-64.  Design Intersection Sight Distance—Case C2—Left or Right Turn at Yield
Controlled Intersections
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Exhibit 9-65.  Intersection Sight Distance—Case C2—Yield Controlled Left or Right Turn
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However, if the traffic signal is to be placed on two-way flashing operation (i.e., flashing
yellow on the major-road approaches and flashing red on the minor-road approaches) under off-
peak or nighttime conditions, then the appropriate departure sight triangles for Case B, both to the
left and to the right, should be provided for the minor-road approaches. In addition, if right turns
on a red signal are to be permitted from any approach, then the appropriate departure sight
triangle to the left for Case B2 should be provided to accommodate right turns from that
approach.

Case E—Intersections With All-Way Stop Control

At intersections with all-way stop control, the first stopped vehicle on one approach should
be visible to the drivers of the first stopped vehicles on each of the other approaches. There are no
other sight distance criteria applicable to intersections with all-way stop control and, indeed, all-
way stop control may be the best option at a limited number of intersections where sight distance
for other control types cannot be attained.

Case F—Left Turns From the Major Road

All locations along a major highway from which vehicles are permitted to turn left across
opposing traffic, including intersections and driveways, should have sufficient sight distance to
accommodate the left-turn maneuver. Left-turning drivers need sufficient sight distance to decide
when it is safe to turn left across the lane(s) used by opposing traffic. Sight distance design should
be based on a left turn by a stopped vehicle, since a vehicle that turns left without stopping would
need less sight distance. The sight distance along the major road to accommodate left turns is the
distance traversed at the design speed of the major-road in the travel time for the design vehicle
given in Exhibit 9-66.

Design vehicle
Time gap (s) at design speed

of major road (tg)
Passenger car 5.5
Single-unit truck 6.5
Combination truck 7.5

Adjustment for multilane highways:
For left-turning vehicles that cross more than one opposing lane, add
0.5 seconds for passenger cars and 0.7 seconds for trucks for each
additional lane to be crossed.

Exhibit 9-66.  Time Gap for Case F—Left Turns From the Major Road

The table also contains appropriate adjustment factors for the number of major-road lanes to
be crossed by the turning vehicle. The unadjusted time gap in Exhibit 9-66 for passenger cars was
used to develop the sight distances in Exhibit 9-67 and illustrated in Exhibit 9-68.
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Metric US Customary
Intersection sight

distance
Intersection sight

distance
Passenger cars Passenger carsDesign

speed
(km/h)

Stopping
sight

distance (m)
Calculated

(m)
Design

(m)

Design
speed
(mph)

Stopping
sight

distance (ft)
Calculated

(ft)
Design

(ft)
20 20 30.6 35 15 80 121.3 125
30 35 45.9 50 20 115 161.7 165
40 50 61.2 65 25 155 202.1 205
50 65 76.5 80 30 200 242.6 245
60 85 91.7 95 35 250 283.0 285
70 105 107.0 110 40 305 323.4 325
80 130 122.3 125 45 360 363.8 365
90 160 137.6 140 50 425 404.3 405

100 185 152.9 155 55 495 444.7 445
110 220 168.2 170 60 570 485.1 490
120 250 183.5 185 65 645 525.5 530
130 285 198.8 200 70 730 566.0 570

75 820 606.4 610
80 910 646.8 650

Note: Intersection sight distance shown is for a passenger car making a left turn from an
undivided highway. For other conditions and design vehicles, the time gap should be
adjusted and the sight distance recalculated.

Exhibit 9-67.  Intersection Sight Distance—Case F—Left Turn From Major Road

If stopping sight distance has been provided continuously along the major road and if sight
distance for Case B (stop control) or Case C (yield control) has been provided for each minor-
road approach, sight distance will generally be adequate for left turns from the major road.
Therefore, no separate check of sight distance for Case F may be needed.

However, at three-leg intersections or driveways located on or near a horizontal curve or
crest vertical curve on the major road, the availability of adequate sight distance for left turns
from the major road should be checked. In addition, the availability of sight distance for left turns
from divided highways should be checked because of the possibility of sight obstructions in the
median.

At four-leg intersections on divided highways, opposing vehicles turning left can block a
driver’s view of oncoming traffic. Exhibit 9-98, presented later in this chapter, illustrates
intersection designs that can be used to offset the opposing left-turn lanes and provide left-turning
drivers with a better view of oncoming traffic.
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Exhibit 9-68.  Intersection Sight Distance—Case F—Left Turn from Major Road
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Effect of Skew

When two highways intersect at an angle less than 60 degrees, and when realignment to
increase the angle of intersection is not justified, some of the factors for determination of
intersection sight distance may need adjustment.

Each of the clear sight triangles described above are applicable to oblique-angle
intersections. As shown in Exhibit 9-69, the legs of the sight triangle will lie along the
intersection approaches and each sight triangle will be larger or smaller than the corresponding
sight triangle would be at a right-angle intersection. The area within each sight triangle should be
clear of potential sight obstructions as described previously.

At an oblique-angle intersection, the length of the travel paths for some turning and crossing
maneuvers will be increased. The actual path length for a turning or crossing maneuver can be
computed by dividing the total widths of the lanes (plus the median width, where appropriate) to
be crossed by the sine of the intersection angle. If the actual path length exceeds the total widths
of the lanes to be crossed by 3.6 m [12 ft] or more, then an appropriate number of additional lanes
should be considered in applying the adjustment for the number of lanes to be crossed shown in
Exhibit 9-54 for Case B1 and in Exhibit 9-57 for Cases B2 and B3. For Case C1, the w term in
the equation for the major-road leg of the sight triangle to accommodate the crossing maneuver
should also be divided by the sine of the intersection angle to obtain the actual path length. In the
obtuse-angle quadrant of an oblique-angle intersection, the angle between the approach leg and
the sight line is often so small that drivers can look across the full sight triangle with only a small
head movement. However, in the acute-angle quadrant, drivers are often required to turn their
heads considerably to see across the entire clear sight triangle. For this reason, it is recommended
that the sight distance criteria for Case A not be applied to oblique-angle intersections and that
sight distances at least equal to those for Case B should be provided, whenever practical.

Exhibit 9-69.  Sight Triangles at Skewed Intersections
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STOPPING SIGHT DISTANCE AT INTERSECTIONS FOR
TURNING ROADWAYS

General Considerations

The values for stopping sight distance as computed in Chapter 3 for open highway
conditions are applicable to turning roadway intersections of the same design speed. The values
from Chapter 3, together with the value for a design speed of 15 km/h [10 mph], are shown in
Exhibit 9-70. These distances have been rounded upward to provide an increased factor of safety.

Metric US Customary
Design speed
(km/h)

15 20 30 40 50 60 70 Design speed
(mph)

10 15 20 25 30 35 40 45

Stopping sight
distance (m)

15 20 35 50 65 85 105 Stopping sight
distance (ft)

50 80 115 155 200 250 305 360

Exhibit 9-70.  Stopping Sight Distance for Turning Roadways

These sight distances should be available at all points along a turning roadway; wherever
practical, longer sight distances should be provided. They apply as controls in design of both
vertical and horizontal alignment.

Vertical Control

The length of vertical curve is predicated, as it is for open highway conditions, on sight
distance measured from the height of eye of 1,080 mm [3.5 ft] to the height of object of 600 mm
[2 ft]. Formulas shown in the section on “Crest Vertical Curves” in Chapter 3 apply directly.
Exhibits 3-75 and 3-76 show the relation between design speed, algebraic difference in gradient,
and length of crest vertical curve to provide stopping distance. The factor K is constant for each
design speed and the length of vertical curve is found by multiplying A, the algebraic differences
in percent of grades, by K.

For design speeds of less than 60 km/h [40 mph], sag vertical curves, as governed by
headlight sight distances, theoretically should be longer than crest vertical curves. Lengths of sag
vertical curves are found by substituting the stopping sight distances from Exhibit 9-70 in the
formulas in the section on “Sag Vertical Curves” in Chapter 3. Because the design speed of most
turning roadways is governed by the horizontal curvature and the curvature is relatively sharp, a
headlight beam parallel to the longitudinal axis of the vehicle ceases to be a control. Where
practical, longer lengths for both crest and sag vertical curves should be used.
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Horizontal Control

The sight distance control as applied to horizontal alignment has an equal, if not greater,
effect on design of turning roadways than the vertical control. The sight line along the center line
of the inside lane around the curve, clear of obstructions, should be such that the sight distance
measured on an arc along the vehicle path equals or exceeds the stopping sight distance given in
Exhibit 9-70. A likely obstruction may be a bridge abutment or line of columns, wall, cut
sideslope, or a side or corner of a building.

The lateral clearance, centerline of inside lane to sight obstruction, for various radii and
design speeds, is shown in Exhibit 3-57. The lateral clearances shown in this exhibit apply to the
conditions where the horizontal curve is longer than the stopping sight distance. Where the curve
length is shorter than the sight distance control, the lateral clearance of Exhibit 3-57 results in
greater sight distance. In this case the lateral clearance is best determined by scaling on a plan
layout of the turning roadway in a manner indicated by the sketch in Exhibit 3-8 or 3-58. The
lateral clearance, so determined, should be tested at several points.

DESIGN TO DISCOURAGE WRONG-WAY ENTRY

An inherent problem of interchanges is the possibility of a driver entering one of the exit
terminals from the crossroad and proceeding along the major highway in the wrong direction in
spite of signing. This wrong-way entrance maneuver is becoming more of a problem with the
increased number of interchanges. However, attention to several details of design at the
intersection can discourage this maneuver.

As shown in Exhibits 9-71 and 9-72, a sharp or angular intersection is provided at the
junction of the left edge of the ramp entering the crossroad and the right edge of the traveled way.
The control radius should be tangent to the crossroad centerline, not the edge. This type of design
discourages the improper right turn onto the one-way ramp.

As shown in the same figures, islands can be used in the terminal areas where ramps
intersect the crossroads. The islands provide a means of channelizing the traffic into proper paths
and can be effectively used for sign placement. Design of the islands should take into
consideration initial or future signal installations at the ramp terminals.

Provision of a median as a deterrent to wrong-way movement, as illustrated in Exhibit 9-72,
is a very effective treatment. The median makes the left-turn movement onto the exit ramp
terminal very difficult, and a short-radius curve or angular break is provided at the intersection of
the left edge of the exit ramp and the crossroad to discourage wrong-way right turns from the
crossroads.

Additional design techniques to reduce wrong-way movements are (1) providing for all
movements to and from the freeway to reduce intentional wrong-way entry, (2) using
conventional, easily recognized interchange patterns to reduce driver confusion and hence wrong-
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Exhibit 9-71.  Two-Lane Crossroad Designs to Discourage Wrong-Way Entry
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Exhibit 9-72.  Divided Crossroad Designs to Discourage Wrong-Way Entry
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way entry, and (3) narrowing the arterial highway median opening to prevent left-turn movements
onto freeway off-ramps.

Signs and supplementary pavement markings are among the most important devices to
discourage wrong-way turns. Signing layouts are fully discussed in the MUTCD (9). Other
devices such as pavement markings or flashing lights have been used effectively to prevent
wrong-way movements. These devices are discussed elsewhere in this book and in the MUTCD.

GENERAL INTERSECTION TYPES

General Design Considerations

General types of intersections and terminology are indicated in Exhibits 9-73 and 9-74. The
geometric forms are the three-leg, four-leg, and multileg intersections. Further classification
includes such variations as unchannelized, flared, and channelized intersections. Details and
specific adaptations of each general type are demonstrated in the section of this chapter on
“Types and Examples of Intersections.”

Many factors enter into the choice of type of intersection and the extent of design of a given
type, but the principal controls are the design-hour traffic volume, the character or composition of
traffic, and the design speed. The character of traffic and design speed affect many details of
design, but in choosing the type of intersection they are not as significant as the traffic volume.
Of particular significance are the actual and relative volumes of traffic involved in various turning
and through movements.

When designing an intersection, left-turning traffic should be removed from the through
lanes, whenever practical. Therefore, provisions for left turns (i.e., left-turn lanes) have
widespread application. Ideally, left-turn lanes should be provided at driveways and street
intersections along major arterial and collector roads wherever left turns are permitted. In some
cases or at certain locations, providing for indirect left turns (jughandles, U-turn lanes, and
diagonal roadways) may be appropriate to improve safety and preserve capacity. The provision of
left-turn lanes has been found to reduce crash rates anywhere from 20 to 65 percent (1). Left-turn
facilities should be established on roadways where traffic volumes are high enough or safety
considerations are sufficient to warrant them. They are often needed to ensure adequate service
levels for the intersections and the various turning movements.

Guidelines for when left-turn lanes should be provided are set forth in several documents for
both signalized and unsignalized intersections (11, 12, 13). These guidelines key the need for left-
turn lanes to (a) the number of arterial lanes, (b) design, and operating speeds, (c) left-turn
volumes, and (d) opposing traffic volumes.

The HCM (6) indicates that exclusive left-turn lanes at signalized intersections should be
installed as follows:

• Where fully protected, left-turn phasing is to be provided;
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Exhibit 9-73.  General Types of Intersections
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Exhibit 9-74.  General Types of Intersections
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• Where space permits, left-turn lanes should be considered when left-turn volumes
exceed 100 vph (left-turn lanes may be provided for lower volumes as well on the basis
of the judged need and state of local practice, or both); and

• Where left-turn volumes exceed 300 vph, a double left-turn lane should be considered.

Exhibit 9-75 is a guide to traffic volumes where left-turn facilities should be considered on
two-lane highways. For the volumes shown, left turns and right turns from the minor street can be
equal to, but not greater than, the left turns from the major street.

Metric US Customary
Advancing volume (veh/h) Advancing volume (veh/h)Opposing

volume
(veh/h)

5%
left turns

10%
left turns

20%
left turns

30%
left turns

Opposing
volume
(veh/h)

5%
left turns

10%
left turns

20%
left turns

30%
left turns

60-km/h operating speed 40-mph operating speed
800 330 240 180 160 800 330 240 180 160
600 410 305 225 200 600 410 305 225 200
400 510 380 275 245 400 510 380 275 245
200 640 470 350 305 200 640 470 350 305
100 720 515 390 340 100 720 515 390 340

80-km/h operating speed 50-mph operating speed
800 280 210 165 135 800 280 210 165 135
600 350 260 195 170 600 350 260 195 170
400 430 320 240 210 400 430 320 240 210
200 550 400 300 270 200 550 400 300 270
100 615 445 335 295 100 615 445 335 295

100-km/h operating speed 60-mph operating speed
800 230 170 125 115 800 230 170 125 115
600 290 210 160 140 600 290 210 160 140
400 365 270 200 175 400 365 270 200 175
200 450 330 250 215 200 450 330 250 215
100 505 370 275 240 100 505 370 275 240

Exhibit 9-75.  Guide for Left-Turn Lanes on Two-Lane Highways (6)

Additional information on left-turn lanes, including their suggested lengths, can be found in
published sources (2, 11, 13). In the case of double left-turn lanes, a capacity analysis of the
intersection should be performed to determine what traffic controls are needed in order for it to
function properly.

Local conditions and the cost of right-of-way often influence the type of intersection selected
as well as many of the design details. Limited sight distance, for example, may make it desirable
to control traffic by yield signs, stop signs, or traffic signals when the traffic densities are less
than those ordinarily considered appropriate for such control. The alignment and grade of the
intersecting roads and the angle of intersection may make it advisable to channelize or use
auxiliary pavement areas, regardless of the traffic densities. In general, traffic service, highway
design designation, physical conditions, and cost of right-of-way are considered jointly in
choosing the type of intersection.
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For the general benefit of through-traffic movements, the number of crossroads, intersecting
roads, or intersecting streets should be minimized. Where intersections are closely spaced on a
two-way facility, it is seldom practical to provide signals for completely coordinated traffic
movements at reasonable speeds in opposing directions on that facility. At the same time the
resultant road or street patterns should permit travel on roadways other than the predominant
highway without too much inconvenience. Traffic analysis is needed to determine whether the
road or street pattern, left open across the predominate highway, is adequate to serve normal
traffic plus the traffic diverted from any terminated road or street.

The functional classification of the road, the patterns of traffic movement at the intersections
and the volume of traffic on each approach, including pedestrians, during one or more peak
periods of the day, are indicative of the type of traffic control devices necessary, the roadway
widths needed (including auxiliary lanes), and where applicable, the degree of channelization
needed to expedite the movement of all traffic. The differing arrangement of islands and the
shape and length of auxiliary lanes depend on whether signal control is provided.

The composition and character of traffic are a design control. Movements involving large
trucks need larger intersection areas and flatter approach grades than those needed at intersections
where traffic consists predominantly of passenger cars. Bus stops located near an intersection
may further modify the arrangement. Approach speeds of traffic also have a bearing on the
geometric design as well as on control devices and markings.

The number and locations of the approach roadways and their angles of intersection are
major controls for the intersection geometric pattern, the location of islands, and the types of
control devices. Intersections preferably should be limited to no more than four approach legs.
Two or more crossroads intersecting an arterial highway in close proximity should be combined
into a single crossing.

The distances between intersections influence the degree of channelization at any one
particular intersection. For example, where intersections are closely spaced, turn restrictions may
be imposed at some intersections and pedestrian crossings may be prohibited at others. This
makes some channelizing islands and auxiliary pavement areas unnecessary, or it may be
appropriate to introduce continuous auxiliary lanes between two or more intersecting roads or
streets to handle a buildup and weaving of traffic. Where crossroads are widely spaced, each
intersection should accommodate all crossing, turning, and pedestrian movements.

CHANNELIZATION

Channelization is the separation or regulation of conflicting traffic movements into definite
paths of travel by traffic islands or pavement marking to facilitate the orderly movements of both
vehicles and pedestrians. Proper channelization increases capacity, provides maximum
convenience, and instills driver confidence. Improper channelization has the opposite effect and
may be worse than none at all. Over channelization should be avoided because it could create
confusion and worsen operations. In some cases a simple channelization improvement can result
in dramatic operational efficiencies. Most of these cases involve some type of left-turn treatment.
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Left-turn lanes at intersections reduce rear-end exposure and provide a comfortable means for
making a left turn.

Channelization of intersections is generally considered for one or more of the following
factors:

• The paths of vehicles are confined by channelization so that not more than two paths
cross at any one point.

• The angle and location at which vehicles merge, diverge, or cross are controlled.
• The amount of paved area is reduced and thereby decreases vehicle wander and narrows

the area of conflict between vehicles.
• Clearer indications are provided for the proper path in which movements are to be

made.
• The predominant movements are given priority.
• Areas are provided for pedestrian refuge.
• Separate storage lanes permit turning vehicles to wait clear of through-traffic lanes.
• Space is provided for traffic control devices so that they can be more readily perceived.
• Prohibited turns are controlled.
• The speeds of vehicles are restricted to some extent.

Design of a channelized intersection usually involves the following significant controls: the
type of design vehicle, the cross sections on the crossroads, the projected traffic volumes in
relation to capacity, the number of pedestrians, the speed of vehicles, the location of any needed
bus stops, and the type and location of traffic control devices. Furthermore, the physical controls
such as right-of-way and terrain have an effect on the extent of channelization that is
economically practical.

Certain principles should be followed in the design of a channelized intersection, but the
extent to which they are applied will depend on the characteristics of the total design plan. These
principles are:

• Motorists should not be confronted with more than one decision at a time.
• Unnatural paths that involve turns greater than 90 degrees or sudden and sharp reverse

curves should be avoided.
• Areas of vehicle conflict should be reduced as much as practical. However, merging

and weaving areas should be as long as conditions permit. Channelization should be
used to keep vehicles within well-defined paths that minimize the area of conflict.

• Traffic streams that cross without merging and weaving should intersect desirably at
right angles with a range of 60 to 120 degrees acceptable.

• The angle of intersection between merging streams of traffic should be appropriate to
provide adequate sight distance.

• The points of crossing or conflict should be studied carefully to determine if such
conditions would be better separated or consolidated to simplify design with
appropriate control devices added to ensure efficient operation.

• Refuge areas for turning vehicles should be provided clear of through traffic.
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• Islands used for channelization should not interfere with or obstruct bicycle lanes at
intersections.

• Prohibited turns should be blocked wherever practical.
• Location of essential control devices should be established as a part of the design of a

channelized intersection.
• Channelization may be desirable to separate the various traffic movements where

multiple phase signals are used.

SPEED-CHANGE LANES AT INTERSECTIONS

Drivers leaving a highway at an intersection are usually required to reduce speed before
turning. Drivers entering a highway from a turning roadway accelerate until the desired open-road
speed is reached. When undue deceleration or acceleration by leaving or entering traffic takes
place directly on the highway traveled way, it disrupts the flow of through traffic. To preclude or
minimize these undesirable aspects of operation at intersections, speed-change lanes are provided
on highways having expressway characteristics and are frequently used on other main highway
intersections.

A speed-change lane is an auxiliary lane, including tapered areas, primarily for the
acceleration or deceleration of vehicles entering or leaving the through-traffic lanes. The terms
“speed-change lane,” “deceleration lane,” or “acceleration lane,” as used here, apply broadly to
the added pavement joining the traveled way of the highway or street with that of the turning
roadway and do not necessarily imply a definite lane of uniform width. A speed-change lane
should be of sufficient width and length to enable a driver to maneuver a vehicle into it properly,
and once into it, to make the necessary change between the speed of operation on the highway or
street and the lower speed on the turning roadway. Deceleration and acceleration lanes may be
designed in conjunction with each other, the relationship depending on the arrangement of the
intersection and traffic needs. They may be designed as parts of intersections but are especially
important at ramp junctions where turning roadways meet high-speed traffic lanes.

Warrants for the use of speed-change lanes cannot be stated definitely. Many factors should
be considered, such as speeds, traffic volumes, percentage of trucks, capacity, type of highway,
service provided, and the arrangement and frequency of intersections. Observations and
considerable experience with speed-change lanes have led to the following general conclusions:

• Speed-change lanes are warranted on high-speed and on high-volume highways where a
change in speed is necessary for vehicles entering or leaving the through-traffic lanes.

• All drivers do not use speed-change lanes in the same manner; some use little of the
available facility. As a whole, however, these lanes are used sufficiently to improve
highway operation.

• Use of speed-change lanes varies with volume, the majority of drivers using them at
high volumes.

• The directional type of speed-change lane consisting of a long taper fits the behavior of
most drivers and does not require maneuvering on a reverse-curve path.
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• Deceleration lanes on the approaches to intersections that also function as storage lanes
for turning traffic are particularly advantageous, and experience with them generally
has been favorable.

A median lane provides refuge for vehicles awaiting an opportunity to turn, and thereby
keeps the highway traveled way clear for through traffic. The width, length, and general design of
median lanes are similar to those of any other deceleration lane, but their design includes some
additional features discussed in the section on “Auxiliary Lanes” later in this chapter.

Deceleration lanes are always advantageous, particularly on high speed roads, because the
driver of a vehicle leaving the highway has no choice but to slow down on the through-traffic
lane if a deceleration lane is not provided. The failure to brake by the following drivers because
of a lack of alertness causes many rear-end collisions. Acceleration lanes are not always desirable
at stop-controlled intersections where entering drivers can wait for an opportunity to merge
without disrupting through traffic. Acceleration lanes are advantageous on roads without stop
control and on all high-volume roads even with stop control where openings between vehicles in
the peak-hour traffic streams are infrequent and short. (For additional design guidance relative to
lengths of deceleration and acceleration auxiliary lanes, refer to Chapter 10.)

MEDIAN OPENINGS

General Design Considerations

Medians are discussed in Chapter 4 chiefly as an element of the cross section. General
ranges in width are given, and median width at intersections is treated briefly. For intersection
conditions the median width, the location and length of the opening, and the design of the median
end are developed in combination to fit the character and volume of through and turning traffic.
Median openings should reflect street or block spacing and the access classification of the
roadway. In addition, full median openings should be consistent with traffic signal spacing
criteria. In some situations, median openings should be eliminated or directionalized.

Spacing of openings should be consistent with access management classifications or criteria.
Where the traffic pattern at an intersection shows that nearly all traffic travels through on the
divided highway and the volume is well below capacity, a median opening of the simplest and
least costly design may be sufficient. This type of opening permits vehicles to make cross and
turning movements, but in doing so they may encroach on adjacent lanes and usually will not
have a protected space clear of other traffic. Where a traffic pattern shows appreciable cross and
turning movements or through traffic of high speed and high volume, the shape and width of the
median opening should provide for turning movements to be made without encroachment on
adjacent lanes and with little or no interference between traffic movements.

The design of a median opening and median ends should be based on traffic volumes,
urban/rural area characteristics, and type of turning vehicles, as discussed in Chapter 2. Crossing
and turning traffic should operate in conjunction with the through traffic on the divided highway.
Design should be based on the volume and composition of all movements occurring
simultaneously during the design hours. The design of a median opening becomes a matter of
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considering what traffic is to be accommodated, choosing the design vehicle to use for layout
controls for each cross and turning movement, investigating whether larger vehicles can turn
without undue encroachment on adjacent lanes, and finally checking the intersection for capacity.
If the capacity is exceeded by the traffic demand, the design must be expanded, possibly by
widening or otherwise adjusting widths for certain movements. Urban/rural characteristics may
influence the median width selected. Intersections in urban/suburban areas have been found to
operate more safely with narrow medians, while unsignalized intersections in rural areas have
been found to operate more safely with wider medians. Traffic control devices such as yield
signs, stop signs, or traffic signals may be needed to regulate the various movements effectively
and improve the effectiveness of operations. However, wide medians may lead to inefficient
traffic signal operation.

Control Radii for Minimum Turning Paths

An important factor in designing median openings is the path of each design vehicle making
a minimum left turn at 15 to 25 km/h [10 to 15 mph]. Where the volume and type of vehicles
making the left-turn movement call for higher than minimum speed, the design may be made by
using a radius of turn corresponding to the speed deemed appropriate. However, the minimum
turning path at low speed is needed for minimum design and for testing layouts developed for one
design vehicle for use by an occasional larger vehicle.

The paths of design vehicles making right turns are given in Chapter 2 and are discussed in
this chapter in the section on “Types of Turning Roadways.” Any differences between the
minimum turning radii for left turns and those for right turns are small and are insignificant in
highway design. Minimum 90-degree left-turn paths for design vehicles are shown in Exhibit 9-
76. Exhibit 9-76A shows these paths positioned as they would govern median end design for
vehicles leaving a divided highway. Exhibit 9-76B shows them positioned for left turns to enter a
divided highway. In both cases it is assumed that the inner wheel of each design vehicle clears the
median edge and centerline of the crossroad by 0.6 m [2 ft] at the beginning and end of the turn.
For comparison, circular arcs of 12-, 15-, and 23-m [40-, 50-, and 75-ft] radii and tangent to the
crossroad centerline and the median edge are also shown. The transition paths of the inner rear
wheels are long, particularly for the semitrailer vehicles when completing the turn. Where the
controlling circular arc is sharper than these long transition paths, drivers can, and habitually do,
swing wide and turn on a reverse or S-curve path instead of turning directly to traverse the
minimum paths shown.

The traveled way edges that most closely fit the paths of turning vehicles are transitional;
however, for sharp turns at intersections, designs closely fitting these paths are three-centered
curves. Design guidance for three-centered curves is discussed in the section on “Types of
Turning Roadways” in this chapter. The same curves are applicable to left turns and should be
used where there is a physical edge of traveled way for left turns, as in a channelized intersection
and on ramps for the predominant highway.

The customary intersection on a divided highway does not have a continuous physical edge
of traveled way delineating the left-turn path. Instead, the driver has guides at the beginning and
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Metric

Exhibit 9-76.  Control Radii at Intersections for 90-Degree Left Turns
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US Customary

Exhibit 9-76.  Control Radii at Intersections for 90-Degree Left Turns (Continued)
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at the end of the left-turn operation: (1) the centerline of an undivided crossroad or the median
edge of a divided crossroad, and (2) the curved median end. For the central part of the turn the
driver has the open central intersection area in which to maneuver. Under these circumstances for
minimum design of the median end, the precision of compound curves does not appear necessary,
and simple curves for the minimum assumed edge of left turn have been found satisfactory. The
larger the simple curve radius used, the better it will accommodate a given design vehicle, but the
resulting layout for the larger curve radius will have a greater length of median opening and
greater paved areas than one for a minimum radius. These areas may be sufficiently large to result
in erratic maneuvering by small vehicles, which may interfere with other traffic. To reduce the
effective size of the intersection for most motorists, consideration should be given to providing an
edge marking corresponding to the desired turning path for passenger cars, while providing
sufficient paved area to accommodate the turning path of an occasional large vehicle.

By considering the range of radii for minimum right turns and the need for accommodation
of more than one type of vehicle at the usual intersections, the following control radii can be used
for minimum practical design of median ends: a control radius of 12 m [40 ft] accommodates
P vehicles suitably and occasional SU vehicles with some swinging wide; one of 15 m [50 ft]
accommodates SU vehicles and occasional WB-12 [WB-40] vehicles with some swinging wide;
and one of 23 m [75 ft] accommodates WB-12 [WB-40] and WB-15 [WB-50] vehicles with only
minor swinging wide at the end of the turn.

These relations are shown generally in Exhibits 9-77 through 9-83. In the following
explanation, each control radius design is tested for use by larger vehicles and for occasional
movements other than those for which the design is developed. The figures indicate how the
design may be tested for protection of cross traffic. This test is followed by development of
median opening designs for traffic conditions in which the volumes of through and turning
movements are such that it is desirable to provide space in the median for turning vehicles clear
of through traffic.

Metric US Customary
L = Minimum length of
median opening (m)

L = Minimum length of
median opening (ft)

M
Width of
median

(m) Semicircular Bullet nose

M
Width of
median

(ft) Semicircular Bullet nose
1.2 22.8 22.8 4 76 76
1.8 22.2 18.0 6 74 60
2.4 21.6 15.9 8 72 53
3.0 21.0 14.1 10 70 47
3.6 20.4 12.9 12 68 43
4.2 19.8 12.0 min 14 66 40 min
4.8 19.2 12.0 min 16 64 40 min
6.0 18.0 12.0 min 20 60 40 min
7.2 16.8 12.0 min 24 56 40 min
8.4 15.6 12.0 min 28 52 40 min
9.6 14.4 12.0 min 32 48 40 min

10.8 13.2 12.0 min 36 44 40 min
12.0 12.0 min 12.0 min 40 40 min 40 min
15.0 12.0 min 12.0 min 50 40 min 40 min
18.0 12.0 min 12.0 min 60 40 min 40 min

Exhibit 9-77.  Minimum Design of Median Openings (P Design
Vehicle, Control Radius of 12 m [40 ft])



AASHTO—Geometric Design of Highways and Streets

698

Exhibit 9-78.  Minimum Design of Median Openings (P Design Vehicle, Control Radius of
12 m [40 ft])

Metric US Customary
L = Minimum length of
median opening (m)

L = Minimum length of
median opening (ft)

M
Width of
median

(m) Semicircular Bullet nose

M
Width of
median

(ft) Semicircular Bullet nose
1.2 28.8 28.8 4 96 96
1.8 28.2 22.8 6 94 76
2.4 27.6 20.4 8 92 68
3.0 27.0 18.6 10 90 62
3.6 26.4 17.4 12 88 58
4.2 25.8 15.9 14 86 53
4.8 25.2 15.0 16 84 50
6.0 24.0 13.2 20 80 44
7.2 22.8 12.0 min 24 76 40 min
8.4 21.6 12.0 min 28 72 40 min
9.6 20.4 12.0 min 32 68 40 min

10.8 19.2 12.0 min 36 64 40 min
12.0 18.0 12.0 min 40 60 40 min
15.0 15.0 12.0 min 50 50 40 min
18.0 12.0 min 12.0 min 60 40 min 40 min
21.0 12.0 min 12.0 min 70 40 min 40 min

Exhibit 9-79.  Minimum Design of Median Openings (SU Design
Vehicle, Control Radius of 15 m [50 ft])
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Metric US Customary
L = Minimum length of
median opening (m)

L = Minimum length of
median opening (ft)

M
Width of
median

(m) Semicircular Bullet nose

M
Width of
median

(ft) Semicircular Bullet nose
1.2 43.8 36.6 4 146 122
1.8 43.2 34.5 6 144 115
2.4 42.6 33.0 8 142 110
3.0 42.0 31.5 10 140 105
3.6 41.4 30.0 12 138 100
4.2 40.8 28.8 14 136 96
4.8 40.2 27.6 16 134 92
6.0 39.0 25.5 20 130 85
7.2 37.8 23.4 24 126 78
8.4 36.6 21.9 28 122 73
9.6 35.4 20.1 32 118 67

10.8 34.2 18.6 36 114 62
12.0 30.0 17.1 40 100 57
18.0 27.0 12.0 min 60 90 40 min
24.0 21.0 12.0 min 80 70 40 min
30.0 15.0 12.0 min 100 50 40 min
33.0 12.0 min 12.0 min 110 40 min 40 min
36.0 12.0 min 12.0 min 120 40 min 40 min

Exhibit 9-80.  Minimum Design of Median Openings (WB-12
[WB-40] Design Vehicle, Control Radius of 23 m [75 ft])

Exhibit 9-81.  Minimum Design of Median Openings (SU Design Vehicle, Control Radius of
15 m [50 ft])
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Exhibit 9-82.  Minimum Design of Median Openings (WB-12 [WB-40] Design Vehicle,
Control Radius of 23 m [75 ft])

Exhibit 9-83.  Minimum Design of Median Openings (Radius of 30 m [100 ft])
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Shape of Median End

One form of a median end at an opening is a semicircle, which is a simple design that is
satisfactory for narrow medians. However, the several disadvantages of semicircular ends for
medians greater than about 3.0 m [10 ft] in width are widely recognized, and other more desirable
shapes are generally used.

Alternate minimum designs for median ends to fit the design control radii of 12, 15, 23, and
30 m [40, 50, 75, and 100 ft] are shown in Exhibits 9-78, 9-81, 9-82, and 9-83. The paths of
design vehicles are shown on the basis of the inner rear wheel beginning and ending the left-turn
maneuver 0.6 m [2 ft] from the edge of the median and the centerline of the undivided crossroad.
The alternate minimum designs are a semicircular end and a bullet nose form. The indicated PC
of the control radius on the median edge is a common PC for both forms of median end. The
bullet nose is formed by two symmetrical portions of control radius arcs and an assumed small
radius (e.g., 0.6 m [2 ft] is used, to round the nose). The bullet nose design closely fits the path of
the inner rear wheel and results in less intersection pavement and a shorter length of opening than
the semicircular end. These advantages are operational in that the driver of the left-turning
vehicle channelized for a greater portion of the path has a better guide for the maneuver, and the
elongated median is better positioned to serve as a refuge for pedestrians crossing the divided
highway.

For medians about 1.2 m [4 ft] wide there is little or no difference between the two forms of
median end. For a median width of 3.0 m [10 ft] or more the bullet nose is superior to the
semicircular end and preferably should be used in design. On successively wider medians the
bullet nose end results in shorter lengths of openings. For median widths greater than 4.2 m
[14 ft] and a 12-m [40-ft] control radius (Exhibit 9-78), the minimum length of opening to
provide for cross traffic becomes a positive control. The minimum ends for medians about 4.2 m
[14 ft] or more wide also take the shape of squared or flattened bullet ends, the flat end being
parallel to the crossroad centerline. This shape retains the advantages over semicircular median
ends regardless of the median width because of the channelizing control. The bullet nose curves
are such as to position the left-turning vehicles to turn to or from the crossroad centerline,
whereas the semicircular end tends to direct the left off movement onto the opposing traffic lane
of the crossroad.

Minimum Length of Median Opening

For any three- or four-leg intersection on a divided highway the length of median opening
should be as great as the width of crossroad traveled way plus shoulders. Where the crossroad is a
divided highway, the length of opening should be at least equal to the width of the crossroad
traveled ways plus that of the median.

The use of a minimum length of opening without regard to the width of median or the
control radius should not be considered except at very minor crossroads. Care should be taken not
to make the median opening longer than necessary at rural unsignalized intersections. The
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minimum length of opening for U-turns is discussed later in this chapter in the section, “Indirect
Left Turns and U-Turns.”

Median Openings Based on Control Radii for Design Vehicles

Passenger Vehicles

Exhibit 9-78 shows minimum median opening designs based on a control radius of 12 m
[40 ft] for a 90-degree intersection. The control radius is made tangent to the upper median edge
and to the centerline of the undivided crossroad, thereby locating the semicircular median end or
forming a portion of a bullet nose end. The resulting lengths of opening vary with the width of
median, as shown in the tabulation on the figure. For each of the median widths indicated, the
channelizing and area differences between the semicircular and bullet nose ends are apparent.

The control radius of 12 m [40 ft] accommodates P design vehicles making turns somewhat
above minimum, the actual path of which is not shown in Exhibit 9-78, but is shown in
Exhibit 9–76 instead.

The paths of the WB-12 [WB-40] and WB-15 [WB-50] design vehicles making minimum
left turns both off and onto the divided highway are shown in Exhibit 9-78 to indicate how these
large vehicles can turn at an intersection designed for passenger cars. Only the inner wheel track
and outer front overhang paths are indicated. The paths are depicted from a position parallel to
the median edge or centerline of the crossroad and at the beginning of the turn, and they indicate
that swinging wide and reversing are needed at the end of the turn. Drivers of large vehicles
making sharp left turns also may swing right before turning left. However, paths might be a
combination of these two extremes, swinging out before beginning the left turn with infringement
on the outer lane of the divided highway and also swinging wide and reversing at the end of the
turn. The path with the parallel movement at the beginning of the turn is shown because it
indicates the maximum encroachment.

In Exhibit 9-78, the WB-12 [WB-40] design vehicle turning from the divided highway
encroaches about 1 m [3 ft] beyond the two-lane (projected) crossroad edge of traveled way, and
the WB-15 [WB-50] vehicle encroaches about 3.3 m [11 ft]. With wide crossroads this
encroachment is within the median opening, but with two-lane crossroads, as shown in
Exhibit 9-79, the encroachment may be beyond the median end, particularly with wide medians
having a minimum length of opening. As the left turn is completed, the encroachment may be
beyond the edge of traveled way for right turns located diagonally opposite the beginning of the
left-turn movement off the divided highway. With wide crossroads this encroachment does not
extend beyond the right-turn edge of traveled way (not shown in Exhibit 9-78), but with two-lane
crossroads and narrow medians it may extend beyond. By swinging over a short distance on the
divided highway before beginning the turn, most drivers could pass through these openings and
remain on the paved areas. Although this procedure is used extensively, it should be discouraged
through a more expansive design where practical.
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For turns onto the divided highway the paths show varying degrees of encroachment on the
right lane of the divided highway. The SU design vehicle encroaches about 0.3 m [1 ft] on the
right lane of a four-lane divided highway, the WB-12 [WB-40] vehicle about 1.5 m [5 ft], and the
WB-15 [WB-50] vehicle about 3.0 m [10 ft]. These distances can be lessened by the drivers
anticipating the turn and swinging right before turning left, if space is available. This space
depends on the median width, the length of opening as governed by the number of lanes on the
crossroad, and other limitations such as triangular islands for channelizing right-turn movements.

Exhibit 9-78 indicates that minimum median openings based on a control radius of 12 m
[40 ft] are not well suited for lengths of opening for two-lane crossroads because trucks cannot
turn left without difficult maneuvering and encroachment on median ends or outer shoulders, or
both, depending on the median width. It may be suitable for wide crossroad traveled ways, but for
these cases it is advantageous to use a control radius greater than 12 m [40 ft], which enables all
vehicles to turn at a little greater speed and enables trucks to maneuver and turn with less
encroachment. Exhibits 9-78, 9-81, and 9-82 show the squared or truncated bullet nose design in
conjunction with the 12-m [40-ft] minimum length of opening. Provision of longer tapers not
only avoids this somewhat awkward-looking design but also provides for other important
objectives as well. This topic is discussed further in the section of this chapter on “Above-
Minimum Designs for Direct Left Turns.”

Single-Unit Trucks or Buses

Exhibit 9-81 shows minimum median opening designs for a 90-degree intersection, based on
a control radius of 15 m [50 ft]. The basis of development, median ends, and turning paths shown
are similar to those of Exhibit 9-78. As indicated in Exhibit 9-79, the control radius of 15 m
[50 ft] accommodates the SU design vehicle making minimum left turns without encroachment
on adjacent lanes. The paths of the WB-12 [WB-40] and WB-15 [WB-50] design vehicles
making left turns both off and onto the divided highway are shown in Exhibit 9-81 to indicate
how these large vehicles can turn at an intersection designed for the SU vehicles.

The WB-15 [WB-50] design vehicle would encroach about 1 m [4 ft] beyond a 7.2-m [24-ft]
crossroad in turning off the divided highway, but encroachment could be reduced by swinging
wide at the beginning of the turn. In turning onto the divided highway it would encroach about
2 m [7 ft] on the adjacent lane, a distance that could be reduced but not eliminated by swinging
wide at the beginning of the turn, but, to do so, the length of opening would have to be greater
than the 12-m [40-ft] minimum.

Exhibit 9-79 indicates that minimum lengths of median openings based on a control radius
of 15 m [50 ft] are suited for truck operation, except that WB-15 [WB-50] vehicles will encroach
on adjacent lanes. For these cases, additional advantage is gained by using a control radius greater
than 15 m [50 ft] where WB-15 [WB-50] semitrailers are expected to turn.
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Semitrailer Combinations

Exhibit 9-82 shows minimum median opening designs for a 90-degree intersection, which
are based on a control radius of 23 m [75 ft] while Exhibit 9-83 is based on a control radius of
30 m [100 ft]. The 23-m [75-ft] control radius is sufficiently large to accommodate a WB-12
[WB-40] design vehicle, and the minimum path of the WB-15 [WB-50] vehicle indicates that it
can also use this design without undue encroachments. The left turn to leave the divided highway
can be made within a two-lane crossroad. In the left turn to enter the divided highway, the WB-15
[WB-50] vehicle would encroach on the adjacent lane about 0.5 m [2 ft]. This encroachment can
be avoided by swinging wide at the beginning of the turn. The minimum median opening length
to accommodate a WB-12 [WB-40] design vehicle with a control radius of 23 m [75 ft] is shown
in Exhibit 9-80.

Effect of Skew

A control radius for design vehicles as the basis for minimum design of median openings
results in lengths of openings that increase with the skew angle of the intersection. Although the
bullet nose end remains preferable, the skew introduces other variations in the shape of median
end. At a skewed crossing, the control radius R should be used in the acute angle to locate the PT
on the median edge, point 1 as shown in Exhibit 9-84. The arc for this radius is the equivalent of

Exhibit 9-84.  Minimum Design of Median Openings (Effect of Skew)
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the minimum inner path for the vehicle in turning more than 90 degrees. With this PT as a design
control, several alternate designs that depend on the skew angle, median width, and control radius
may be considered.

Semicircular ends (A in Exhibit 9-84) result in very long openings and minor channelizing
control for vehicles making a left turn with less than 90 degrees in the turning angle.

A symmetrical bullet nose B with curved sides determined by the control radius and tangent
at points 1 and 2 is a layout similar to those in Exhibits 9-78, 9-81, 9-82, and 9-83. This design
also has little channelizing control for vehicles turning left less than 90 degrees from the divided
highway. An asymmetrical bullet nose (C in Exhibit 9-84) with radii R and R2 has the most
positive control and less paved area than designs A and B. The second radius R2, which exceeds
R, is that determined to be tangent at point 2 and also to the crossroad centerline. In this design
the nose is offset from the median center paths.

The length of the opening of these alternates for a given median width decreases in the order
discussed, A to C. For wide medians and a large skew, the length of openings may not be
sufficient to accommodate the crossroad and flattened ends, or an above-minimum design should
be used. With design ends B or C, a flattened bullet nose treatment for adequate length of opening
would be made parallel to the crossroad, as shown at the lower left, C-E, in Exhibit 9-84 for the
length of opening L. In such cases, the use of a control radius larger than the minimum should be
considered.

Exhibit 9-85 shows typical values obtained for the minimum median ends designed with a
control radius of 15 m [50 ft] (the same as in Exhibit 9-81) for a range of skew angles and median
widths. Lengths of openings, measured normal to the crossroad, are shown for median ends A, B,
and C, as shown in Exhibit 9-84. For any one median width with semicircular ends and skew of
20 degrees and 40 degrees, the openings are about one-third and two-thirds longer, respectively,
than that for a 90-degree crossing. Likewise, the symmetrical bullet nose ends give lengths of
openings for a 20-degree skew that are about one and one-half times, and for a 40-degree skew
about two times, the lengths for a 90-degree crossing.

Metric US Customary
Control radius (m) Control radius (ft)Design vehicles

accommodated 12 15 23
Design vehicles
accommodated 40 50 75

Predominant P SU WB-12 Predominant P SU WB-40
Occasional SU WB-12 WB-15 Occasional SU WB-40 WB-50

Exhibit 9-85.  Design Controls for Minimum Median Openings

In general, median openings longer than 25 m [80 ft] should be avoided, regardless of skew.
This plan may call for special channelization, left-turn lanes, or adjustment to reduce the
crossroad skew, all of which result in above-minimum designs.
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Preferably, each skew crossing should be studied separately with trial graphical solutions on
a suitable scale to permit the designer to make comparisons and choose the preferred layout. In
general, the asymmetrical bullet nose end (C in Exhibit 9-84) is preferable. Where end B is not
greatly different, the practical aspects of symmetry may make it preferable. In some cases end
C-E may well be considered in the alternate studies.

For the preceding discussion the design controls for minimum median openings for left turns
are summarized in Exhibit 9-86.

Above-Minimum Designs for Direct Left Turns

Median openings that enable vehicles to turn on minimum paths, and at 15 to 25 km/h [10 to
15 mph], are adequate for intersections where traffic for the most part proceeds straight through
the intersection. Where through-traffic volumes and speeds are high and left-turning movements
are important, undue interference with through traffic should be avoided by providing median
openings that permit turns without encroachment on adjacent lanes. This arrangement would
enable turns to be made at speeds above that for the minimum vehicle paths and provide space for
vehicle protection while turning or stopping. The general pattern for minimum design can be used
with larger dimensions.

A variety of median-opening arrangements may be considered that depend on the control
dimensions (width of median and width of crossroad or street, or other) and the size of vehicle to
be used for design control.

Median openings having above-minimum control radii and bullet nose median ends are
shown in Exhibit 9-87. The design controls are the three radii R, R1, and R2. Radius R is the
control radius for the sharpest portion of the turn, R1 defines the turnoff curve at the median edge,
and R2 is the radius of the tip. When a sufficiently large R1 is used, an acceptable turning speed
for vehicles leaving the major road is ensured and a sizable area inside the inner edge of through-
traffic lane between points 1 and 2 may be available for speed change and protection from turning
vehicles. Radius R1 may vary from about 25 to 120 m [80 to 400 ft], or more.

The tabulated values shown, 30, 50, and 70 m [90, 170, and 230 ft], are established
minimum radii for turning speeds of 30, 40, and 50 km/h [20, 25, and 30 mph], respectively. The
radii will vary depending on the maximum superelevation rate selected. In this case, the ease of
turning probably is more significant than the turning speeds because the vehicle will need to slow
down to about 15 to 25 km/h [10 to 15 mph] at the sharp part of the turn or may need to stop at
the crossroad. Radius R2 can vary considerably, but is pleasing in proportion and appearance
when it is about one-fifth of the median width. Radius R is tangent to the crossroad centerline (or
edge of crossroad median). Radii R and R1 comprise the two-centered curve between the
terminals of the left turn. For simplicity, the PC is established at point 2. Radius R cannot be
smaller than the minimum control radius for the design vehicle, or these vehicles will be unable
to turn to or from the intended lane even at low speed. To avoid a large opening, R should be held
to a reasonable minimum (e.g., 15 m [50 ft]), as used in Exhibit 9-84.



Metric US Customary
Length of median opening
measured normal to the

crossroad (m) bullet nose

Length of median opening
measured normal to the
crossroad (ft) bullet nose

Skew
angle

(degrees)

Width of
median

(m)

Semi-
circular

A Symmetrical B Asymmetrical C

R for
Design C

(m)

Skew
angle

(degrees)

Width of
median

(ft)

Semi-
circular

A Symmetrical B Asymmetrical C

R for
Design C

(ft)
0 3 27 19 – – 0 10 90 62 – –

6 24 13 – – 20 80 44 – –
9 21 12 Min. – – 30 70 40 Min. – –

12 18 12 Min. – – 40 60 40 Min. – –
15 15 12 Min. – – 50 50 40 Min. – –
18 13 12 Min. – – 60 40 40 Min. – –

10 3 32 24 23 21 10 10 106 80 77 70
6 28 17 16 20 20 94 58 54 68
9 25 14 12 Min. 20 30 82 45 40 Min. 65

12 21 12 Min. 12 Min. 19 40 71 40 Min. 40 Min. 63
15 18 12 Min. 12 Min. 18 50 60 40 Min. 40 Min. 61
18 14 12 Min. 12 Min. 18 60 47 40 Min. 40 Min. 59

20 3 36 29 27 29 20 10 121 97 90 97
6 32 22 20 28 20 107 74 65 92
9 28 18 14 26 30 94 59 48 86

12 24 14 12 Min. 25 40 81 48 40 Min. 82
15 20 12 Min. 12 Min. 23 50 68 40 Min. 40 Min. 76
18 16 12 Min. 12 Min. 21 60 54 40 Min. 40 Min. 71

30 3 41 34 32 42 30 10 135 114 105 140
6 36 27 23 39 20 120 91 77 130
9 31 23 17 36 30 104 75 58 120

12 27 19 13 33 40 90 62 42 110
15 23 15 12 Min. 30 50 76 51 40 Min. 100
18 18 12 12 Min. 27 60 60 40 40 Min. 90

40 3 44 38 35 63 40 10 148 127 118 210
6 39 32 27 58 20 131 106 90 193
9 35 27 20 53 30 115 90 68 174

12 29 23 15 47 40 98 77 51 156
15 24 19 12 Min. 42 50 81 64 40 Min. 139
18 19 15 12 Min. 36 60 64 51 40 Min. 121

Note:  A, B, and C in the headings for this exhibit refer to the types of median ends shown in Exhibit 9-84.

Exhibit 9-86.  Effect of Skew on Minimum Design for Median Openings (Typical Values Based on Control Radius of 15 m [50 ft])
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Metric US Customary

Dimensions in meters when Dimensions in feet when

R1 = 30 m R1 = 50 m R1 = 70 m R1 = 90 ft R1 = 170 ft R1 = 230 ft

M width
of

median
(m) L B L B L B

M width
of

median
(ft) L B L B L B

6.0 17.4 19.3 19.8 33.0 21.3 37.0 20 58 65 66 78 71 90
8.0 14.4 20.4 17.1 25.5 10.9 30.3 30 48 68 57 85 63 101

12.0 12.0 21.3 16.0 27.0 17.1 30.7 40 40 71 50 90 57 109
15.0 – – 13.7 76.5 15.3 39.5 50 – – 44 95 51 115
16.0 – – – – 13.8 36.4 60 – – – – 46 122
21.0 – – – – 12.3 34.4 70 – – – – 41 128

Exhibit 9-87.  Above Minimum Design of Median Openings
(Typical Bullet-Nose Ends)

The length of median opening is governed by the radii. For medians wider than about 9 m
[30 ft] coupled with a crossroad of four or more lanes, the control radius R generally will need to
be greater than 15 m [50 ft] or the median opening will be too short. A rounded value can be
chosen for the length of opening (e.g., 15 or 18 m [50 or 60 ft]) and that dimension can be used to
locate the center for R. Then R becomes a check dimension to ensure the workability of the
layout. The tabulation of values in Exhibit 9-87 shows the resultant lengths of median openings
over a range of median widths for three assumed values of R1 and for R assumed to be 15 m
[50 ft]. Dimension b is included as a general design control and for comparison with other above-
minimum designs.

The median end designs in Exhibit 9-87 do not positively provide protection areas within the
limits of the median width. A design using R1 = 30 m [100 ft] or more provides space for at least
a single passenger vehicle to pause in an area clear of both the through-traffic lanes and the
crossroad lanes with wide medians; such radii may provide enough protection space for larger
design vehicles. At skewed intersections, above-minimum designs with bullet nose median ends
can be applied directly. Where the skew is 10 degrees or more, adjustments in R and R2 from the
values shown are needed to provide the appropriate length of opening.



Intersections

709

INDIRECT LEFT TURNS AND U-TURNS

General Design Considerations

Divided highways need median openings to provide access for crossing traffic in addition to
left-turning and U-turning movements. The discussions to follow deal with the various design
methods that accommodate these movements predicated on median width.

At intersections where the median is too narrow to provide a lane for left-turning vehicles
and the traffic volumes or speeds, or both, are relatively high, safe, efficient operation is
particularly troublesome. Vehicles that slow down or stop in a lane primarily used by through
traffic to turn left greatly increase the potential for rear-end collision.

Other factors that should receive special consideration in design for left- and U-turning
movements are the turning paths of the various design vehicles in conjunction with narrow
medians. The demands for left- or U-turn maneuvers in the urban or heavily developed residential
or commercial sectors also present problems with respect to efficient operation.

The design plans shown in Exhibits 9-88 and 9-89 offer two options with respect to indirect
left turns and also provide for indirect U-turning movements. Exhibit 9-88 involves a jug-handle-
type ramp or diagonal roadway that intersects a secondary crossing roadway. The motorist exits
via the jug-handle-type ramp and makes a left turn onto the crossroad. For a U-turn maneuver, the
motorist make an additional left turn onto the divided highway.

Exhibit 9-89 shows an at-grade loop that can serve as an alternate to the jug-handle-type
ramp. The loop design might be considered when the jug-handle-type ramps would need costly
right-of-way, the opposite quadrant being less costly. There might be other justifications in
selecting the loop instead of the ramp, such as improved vertical alignment and comparative
grading costs.

Exhibit 9-90 illustrates a design that provides for indirect left turns to be made from the
right, via separate turning roadways connected to a crossroad. Such arrangements have the
advantage of eliminating left turns from the through lanes and providing storage for left-turning
vehicles not available on the highway itself. The left-turning vehicles with little extra travel
distance are able to cross the main highway with appropriate traffic control devices. Exhibit 9-90
illustrates three design options that might be adaptable to various roadway patterns. The turn from
bottom to left is accomplished via the added left-turn slip ramp at the lower right (similar to
previous discussions). This arrangement permits left turns onto the minor road under traffic signal
protection and prevents cars making left turns from blocking the lane adjacent to the medians.
Where there is a parallel roadway nearby, the added ramp may connect to it, as shown in the
upper left or alternately as shown by the dashed-line connection. However, this design is less
desirable because the vehicles must pass through the intersection twice and create delays by
reducing speed in turning right. This delay might be overcome by the introduction of auxiliary
lanes if space is available.
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Exhibit 9-88.  Jughandle-Type Ramp with Crossroad

Exhibit 9-89.  At-Grade Loop (Surface Loop) with Crossroad
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Exhibit 9-90.  Special Indirect Left-Turn Designs for Traffic Leaving Highway
with Narrow Median

Indirect Left Turn or Indirect U-Turn—Using Local Streets

Highways without control of access that involve narrow nontraversable medians and where
the adjacent property owners enter the divided highway by right turn only must gain access to the
opposite traveled way by one of three types of operation and control. The first option is to use the
interconnecting street patterns. This operation involves making the initial right turn, proceeding
by continuous right turns around the block to the median opening that services the secondary
crossroads, and then turning left. Variations of access to the divided highway would also prevail
for the property owners on the adjacent street patterns. However, the around-the-block principle
would still control movements with respect to exit and return trips. The around-the-block option
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needs careful examination of existing turning radii to accommodate SU vehicles and estimation
of the number of WB vehicles that might use this method of indirect left turns or indirect U-turns.
This approach needs careful design attention with respect to restrictive parking, regulatory signs,
and signal control devices in the proximity of each intersection.

The second alternative, which would only benefit the property owners abutting the divided
highway, is to provide median openings for the individual properties. This option would defeat a
major purpose of the median and would lead to complete erosion of this control feature.

The around-the-block alternative is not always practical, especially where radial routes
traverse areas that are only partially developed and where there is no established pattern of
adjacent roadways, often with no existing roads or streets running parallel to the through
highway. Even where there is a suitable network of adjacent roadways, the adverse travel is
objectionable. The increased traffic volumes passing through four intersections and the left turn to
the arterial might be as much of a hindrance to the free flow of traffic as a direct left-turn
maneuver.

The third alternative is use of the design principles previously described with respect to
constructing jug-handle-type ramps or at-grade intersecting loops.

From the preceding discussion it is apparent that, wherever practical, a newly designed
divided highway should have a median width that can accommodate normal left turns and U-turns
by using a median storage lane that will protect and store the design-hour turning volume.

Indirect Left Turn or Indirect U-Turn—Wide Medians

Exhibit 9-91 illustrates an indirect left turn for two arterials where left turns are heavy on
both roads. The north-south roadway is undivided and the east-west roadway is divided with a
wide median. Because left turns from the north-south road would cause congestion because of the
lack of storage, left turns from the north-south road are prohibited at the main intersection.
Left-turning traffic turns right onto the divided road and then makes a U-turn at a one-way
crossover located in the median of the divided road. Auxiliary lanes are highly desirable on each
side of the median between the crossovers for storage of turning vehicles.

The crossover should be 120 to 180 m [400 to 600 ft] away from the intersection to allow the
left-turn traffic to approach the intersection on a green signal. This scheme provides a slight
increase in capacity at very little cost with no additional acquisition of right-of-way. The main
disadvantage is that the left-turn traffic has to pass through the same intersection twice. This
maneuver also may be confusing to motorists unfamiliar with the design and thus needs special
signing.

Special left-turn considerations may also be needed at major crossroads, particularly at
isolated intersections in suburban areas, where one or more of the left-turning movements are so



Intersections

713

Exhibit 9-91.  Indirect Left Turn Through a Crossover

large that they cannot be handled by the conventional median lanes and where there is insufficient
width to install two median lanes. In such instances, the jug-handle-type ramp or the at-grade
loop pattern that provides an exit or entrance ramp in two of the crossing quadrants would be
appropriate.

Location and Design of U-Turn Median Openings

Median openings designed to accommodate vehicles making U-turns only are needed on
some divided highways in addition to openings provided for cross and left-turning movements.
Separate U-turn median openings may fit at the following locations:

• Locations beyond intersections to accommodate minor turning movements not
otherwise provided in the intersection or interchange area. The major intersection area
is kept free for the important turning movements, in some cases obviating expensive
ramps or additional structures.

• Locations just ahead of an intersection to accommodate U-turn movements that would
interfere with through and other turning movements at the intersection. Where a fairly
wide median on the approach highway has few openings, U-turns are necessary for
motorists to reach roadside areas. Advance separate openings to accommodate them
outside the intersection proper will reduce interference.

• Locations occurring in conjunction with minor crossroads where traffic is not permitted
to cross the major highway but instead is required to turn right, enter the through traffic
stream, weave to the left, U-turn, and then return. On high-speed or high-volume
highways, the difficulty of weaving and the long lengths involved usually make this
design pattern undesirable unless the volumes intercepted are light and the median is of
adequate width. This condition may occur where a crossroad with high-volume traffic, a
shopping area, or other traffic generator that needs a median opening nearby and
additional median openings would not be practical.

• Locations occurring where regularly spaced openings facilitate maintenance operations,
policing, repair service of stalled vehicles, or other highway-related activities. Openings
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for this purpose may be needed on controlled-access highways and on divided highways
through undeveloped areas.

• Locations occurring on highways without control of access where median openings at
optimum spacing are provided to serve existing frontage developments and at the same
time minimize pressure for future median openings. A preferred spacing at 400 to
800 m [0.25 to 0.50 mi] is suitable in most instances. Fixed spacing is not necessary,
nor is it fitting in all cases because of variations in terrain and local service needs.

For a satisfactory design for U-turn maneuvers, the width of the highway, including the
median, should be sufficient to permit the design vehicle to turn from an auxiliary left-turn lane in
the median into the lane next to the outside shoulder or outside curb and gutter on the roadway of
the opposing traffic lanes.

Medians of 5.0 m [16 ft] and 15 m [50 ft] or wider are needed to permit passenger and
single-unit truck traffic, respectively, to turn from the inner lane (next to the median) on one
roadway to the outer lane of a two-lane opposing roadway. Also, a median left-turn lane is highly
desirable in advance of the U-turn opening to eliminate stopping on the through lanes. This
scheme would increase the median width by approximately 3.6 m [12 ft].

Wide medians are uncommon in highly developed areas. Consequently, special U-turn
designs should be considered where right-of-way is restricted, speeds are low, and signal control
is used downstream to provide sufficient gaps in the traffic stream. Median widths of 2 to 12 m
[7 to 40 ft] may be used for U-turn openings to permit passenger vehicles or single-unit trucks to
turn from the inner lane in one direction onto the shoulder of a four-lane divided highway in the
other direction. This special U-turn feature can be incorporated into the design of an urban
roadway section by constructing a short segment of shoulder area along the outside edge of the
traveled way across from the U-turn opening. The outside curb and gutter section would then be
carried behind the shoulder area and the shoulder would be designed as a pavement.

Where U-turn openings are proposed for access to the opposite side of a multilane divided
street, they should be located 15 to 30 m [50 to 100 ft] in advance of the next downstream left-
turn lane. For U-turn openings designed specifically for the purpose of eliminating left-turn
movement at a major intersection, they should be located downstream of the intersection,
preferably midblock between adjacent cross road intersections. This type of U-turn opening
should be designed with a median left-turn lane for storage.

Normally, U-turns should not be permitted from the through lanes. However, where medians
have adequate width to shield a vehicle stored in the median opening, through volumes are low
and left-turn/U-turns are infrequent, this type of design may be permissible. Minimum widths of
median to accommodate U-turns by different design vehicles turning from the lane adjacent to the
median are given in Exhibit 9-92. These dimensions are for a four-lane divided facility. If the
U-turn is made from a median left-turn/U-turn lane, the width needed is the separator width; the
total median width needed would include an additional 3.6 m [12 ft] for a single median turn lane.
At major intersections, many jurisdictions allow both left turns and U-turns to be made around the
curbed nose at the end of a left-turn lane. Where dual left-turn lanes are needed along a street
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Exhibit 9-92.  Minimum Designs for U-turns

with a raised-curb median, left turns and U-turns may be permitted from the inside lane and left
turns only may be allowed from the outside turn lane.
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Exhibit 9-93 illustrates special U-turn designs with narrow medians. In Exhibit 9-93A, the
U-turning vehicle swings right from the outer lane, loops around to the left, stops clear of the
divided highway until a suitable gap in the traffic stream develops, and then makes a normal left
turn onto the divided highway. In Exhibit 9-93B, the U-turning vehicle begins on the inner lane of
the divided highway, crosses the through-traffic lanes, loops around to the left, and then merges
with the traffic. To deter vehicles from stopping on through lanes, a left-turn lane with proper
storage capacity should be provided to accommodate turning vehicles.

Exhibit 9-93.  Special Indirect U-Turn with Narrow Medians

FLUSH OR TRAVERSABLE MEDIANS

The foregoing discussion of design for indirect left turns and indirect U-turns with raised
curb medians brings into focus the difficulties involved in providing access to abutting property,
especially where such access is by commercial vehicles. These conditions are very common in
commercial and industrial areas where property values are high and rights-of-way for wide
medians are difficult to acquire. Under such conditions, paved flush or traversable-type medians
3.0 to 4.8 m [10 to 16 ft] wide may be the optimum type of design for left-turning vehicles.

Exhibit 9-94 illustrates two kinds of typical marking applications. Exhibit 9-94A shows a
flush median with separate left-turn lanes marked for turns into cross streets and Exhibit 9-94B
illustrates a flush or traversable-type median with both separate left-turn lanes into cross streets
and two-way left-turn lanes marked at midblock.
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Exhibit 9-94.  Flush or Traversable Median Lane Markings

In general, two-way left-turn lanes should be used only in an urban setting where operating
speeds are relatively low and where there are no more than two through lanes in each direction.
The operational characteristics of two-way left-turn lanes with more than two through lanes in
each direction is the subject of ongoing research, and caution is recommended at this time when
considering more than a five-lane cross section. This subject is discussed in Chapter 4 and in the
MUTCD (9). Additional research is available on the effects of midblock left turns (14).

AUXILIARY LANES

General Design Considerations

From the foregoing discussions it is appropriate to deal with the design elements of auxiliary
lanes as they relate to median openings with left-turning movements. In general, auxiliary lanes
are used preceding median openings and are also used at intersections preceding right-turning
movements. Auxiliary lanes may also be added to increase capacity and improve safety at an
intersection. In many cases, an auxiliary lane may be desirable after completing a right-turn
movement to provide for acceleration, maneuvering, and weaving.
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Auxiliary lanes should be at least 3 m [10 ft] wide and desirably should equal that of the
through lanes. Where curbing is to be used adjacent to the auxiliary lane, an appropriate curb
offset should be provided. The length of the auxiliary lanes for turning vehicles consists of three
components: (1) entering taper, (2) deceleration length, and (3) storage length.

Desirably, the total length of the auxiliary lane should be the sum of the length for these
three components. Common practice, however, is to accept a moderate amount of deceleration
within the through lanes and to consider the taper length as a part of the deceleration within the
through lanes. Each component of the auxiliary length is discussed in the following section.

Deceleration Length

Provision for deceleration clear of the through-traffic lanes is a desirable objective on arterial
roads and streets and should be incorporated into design, whenever practical. The approximate
total lengths needed for a comfortable deceleration to a stop from the full design speed of the
highway are as follows:  for design speeds of 50, 60, 70, 80, and 90 km/h [30, 40, 45, 50, and
55 mph], the desirable deceleration lengths of the auxiliary lane are 70, 100, 130, 165, and 205 m
[230, 330, 430, 550, and 680 ft], respectively (15). These approximate lengths are based on
grades of less than 3 percent.

On many urban facilities, it is not practical to provide full length of auxiliary lane for
deceleration and, in many cases, the storage length overrides the deceleration length. In such
cases, at least part of the deceleration must be accomplished before entering the auxiliary lane.
Inclusion of the taper length as part of the deceleration distance for an auxiliary lane assumes that
an approaching turning vehicle can decelerate comfortably up to 15 km/h [10 mph] in a through
lane before entering the auxiliary lane. Shorter auxiliary lane lengths will increase the speed
differential between turning vehicles and through traffic. A 15 km/h [10 mph] differential is
commonly considered acceptable on arterial roadways. Higher speed differentials may be
acceptable on collector highways and streets due to higher levels of driver tolerance for vehicles
leaving or entering the roadway due to slow speeds or high volumes. Therefore, the lengths given
above should be accepted as a desirable goal and should be provided where practical. The
deceleration lengths stated above are applicable to both left- and right-turning lanes, but the
approach speed is usually lower in the right lane than in the left lane.

Storage Length

The auxiliary lane should be sufficiently long to store the number of vehicles likely to
accumulate during a critical period. The storage length should be sufficient to avoid the
possibility of left-turning vehicles stopping in the through lanes waiting for a signal change or for
a gap in the opposing traffic flow.

At unsignalized intersections, the storage length, exclusive of taper, may be based on the
number of turning vehicles likely to arrive in an average two-minute period within the peak hour.
Space for at least two passenger cars should be provided; with over 10 percent truck traffic,
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provisions should be made for at least one car and one truck. The two-minute waiting time may
need to be changed to some other interval that depends largely on the opportunities for
completing the left-turn maneuver. These intervals, in turn, depend on the volume of opposing
traffic. Where the volume of turning traffic is high, a traffic signal will often be needed.

At signalized intersections, the storage length needed depends on the signal cycle length, the
signal phasing arrangement, and the rate of arrivals and departures of left-turning vehicles. The
storage length is a function of the probability of occurrence of events and should usually be based
on one and one-half to two times the average number of vehicles that would store per cycle,
which is predicated on the design volume. This length will be sufficient to serve heavy surges that
occur from time to time. As in the case of unsignalized intersections, provision should be made
for storing at least two vehicles. Traffic signal design fundamentals are discussed further in
MUTCD (9).

Where turning lanes are designed for two-lane operation, the storage length is reduced to
approximately one-half of that needed for single-lane operation. For further information, refer to
the HCM (6).

Taper

On high-speed highways it is common practice to use a taper rate that is between 8:1 and
15:1 (longitudinal:transverse or L:T). Long tapers approximate the path drivers follow when
entering an auxiliary lane from a high-speed through lane. However, long tapers tend to entice
some through drivers into the deceleration lane—especially when the taper is on a horizontal
curve. Long tapers constrain the lateral movement of a driver desiring to enter the auxiliary lanes.
This problem primarily occurs on urban curbed roadways.

For urbanized areas, short tapers appear to produce better “targets” for the approaching
drivers and to give more positive identification to an added auxiliary lane. Short tapers are
preferred for deceleration lanes at urban intersections because of slow speeds during peak
periods. The total length of taper and deceleration length should be the same as if a longer taper
was used. This results in a longer length of full-width pavement for the auxiliary lane. This type
of design may reduce the likelihood that entry into the auxiliary lane may spill back into the
through lane. Municipalities and urban counties are increasingly adopting the use of taper lengths
such as 30 m [100 ft] for a single-turn lane and 45 m [150 ft] for a dual-turn lane for urban streets.

Some agencies permit the tapered section of deceleration auxiliary lanes to be constructed in
a “squared-off” section at full paving width and depth. This configuration involves a painted
delineation of the taper. The abrupt squared-off beginning of deceleration exits offers improved
driver commitment to the exit maneuver and also contributes to driver security because of the
elimination of the unused portion of long tapers. The design involves transition of the outer or
median shoulders around the squared-off beginning of the deceleration lane.

The squared-off design principle can be applied to median deceleration lanes, and it can also
be used at the beginning of deceleration right-turn exit terminals when there is a single exit lane.
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When two or more exit lanes are used, the tapered designs discussed in the section on “Speed-
Change Lanes” in Chapter 10 are recommended. Additional guidance for lengths of tapers may
be found in the MUTCD (9).

The longitudinal location along the highway, where a vehicle will move from the through
lane to a full-width deceleration lane, will vary depending on many factors. These factors include
the type of vehicle, the driving characteristics of the vehicle operator, the speed of the vehicle,
weather conditions, and lighting conditions.

Straight-line tapers are frequently used, as shown in Exhibit 9-95A. The taper rate may be
8:1 [L:T] for design speeds up to 50 km/h [30 mph] and 15:1 [L:T] for design speeds of 80 km/h
[50 mph]. Straight-line tapers are particularly applicable where a paved shoulder is striped to
delineate the auxiliary lane. Short, straight-line tapers should not be used on curbed urban streets
because of the probability of vehicles hitting the leading end of the taper with the resulting
potential for a driver losing control. A short curve is desirable at either end of long tapers as
shown in Exhibit 9-95B, but may be omitted for ease of construction. Where curves are used at
the ends, the tangent section should be about one-third to one-half of the total length.

Symmetrical reverse curve tapers are commonly used on curbed urban streets. Exhibit 9-95C
shows a design taper with symmetrical reverse curves.

A more desirable reverse-curve taper is shown in Exhibit 9-95D where the turnoff curve
radius is about twice that of the second curve. When 30 m [100 ft] or more in length is provided
for the tapers in Exhibit 9-95D, tapers 1 and 2 would be suitable for low-speed operations. All the
dimensions and configurations shown in Exhibit 9-95 are applicable to right-turn lanes as well as
left-turn lanes.

Median Left-Turn Lanes

A median left-turn lane is an auxiliary lane for storage or speed change of left-turning
vehicles located at the left of one-directional roadway within a median or divisional island.
Inefficiencies in operations may be evident on divided highways where such lanes are not
provided. Median lanes, therefore, should be provided at intersections and at other median
openings where there is a high volume of left turns or where the vehicular speeds are high.
Minimum designs of median openings are shown in Exhibits 9-77 through 9-84. Median lane
designs for various widths of median are shown in Exhibits 9-96 and 9-97.

Median widths of 6 m [20 ft] or more are desirable at intersections with single median lanes,
but widths of 4.8 to 5.4 m [16 to 18 ft] permit reasonably adequate arrangements. Where two
median lanes are used, a median width of at least 8.4 m [28 ft] is desirable to permit the
installation of two 3.6-m [12-ft] lanes and a 1.2-m [4-ft] separator. Although not equal in width to
a normal traveled lane, a 3.0-m [10-ft] lane with a 0.6-m [2-ft] curbed separator or with traffic
buttons or paint lines, or both, separating the median lane from the opposing through lane may be
acceptable where speeds are low and the intersection is controlled by traffic signals.
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Exhibit 9-95.  Taper Design for Auxiliary Lanes (Metric)
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Exhibit 9-95.  Taper Design for Auxiliary Lanes (U.S. Customary) (Continued)
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Exhibit 9-96.  4.2 to 5.4 m [14 to 18 ft] Median Width Left-Turn Design (Metric)
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Exhibit 9-96.  4.2 to 5.4 m [14 to 18 ft] Median Width Left-Turn Design (U.S. Customary)
(Continued)
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Exhibit 9-97.  Median Left-Turn Design for Median Width in Excess of 5.4 m [18 ft]
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Exhibit 9-96A shows a minimum design for a median left-turn lane within a median 4.2 to
4.8 m [14 to 16 ft] wide. A curbed divider width of 1.2 m [4 ft] is recommended, and the median
left-turn lane should be 3.0 to 3.6 m [10 to 12 ft] wide. Exhibit 9-96B shows a typical median
left-turn design within a median width of 4.8 to 5.4 m [16 to 18 ft]. The only change in this
design from that in Exhibit 9-96A is a 0.6-m [2-ft] minimum offset to the approach nose.
Exhibit 9-97 illustrates a more liberal median left-turn design within a median width of 5.4 m
[18 ft] or more. On these medians the elongated tapers may be desirable. For medians 5.4 m
[18 ft] wide or more, a flush, color-contrasted divider is recommended to delineate the area
between the turning lane and the adjacent through lane in the same direction of travel.

Pavement markings, contrasting pavement texture, signs, and physical separators may be
used to discourage the through driver from inadvertently entering the wrong lane.

Where two median lanes are used, left-turning vehicles leave the through lanes to enter the
median lanes in single file, but once within the median lanes, the vehicles are stored in two lanes.
On receiving the green indication, the left-turning vehicles turn simultaneously from both lanes.

With three-phase signal control, such an arrangement results in an increase in capacity of
approximately 180 percent of that of a single median lane. Occasionally, there are operational
problems as a result of the two-abreast turns, especially the problems of sideswipe crashes. These
usually result from too sharp a turning radius or a roadway that is too narrow. The receiving leg
of the intersection should have adequate width to accommodate two lanes of turning traffic. A
width of 9 m [30 ft] is used by several highway agencies. Double turning lanes should only be
used with signalization providing a separate turning phase.

Median End Treatment

The form of treatment given the end of the narrowed median adjacent to lanes of opposing
traffic depends largely on the available width. The narrowed median may be curbed to delineate
the lane edge; to separate opposing movements; to provide space for signs, markers, and
luminaire supports; and to protect pedestrians. For a discussion on “ramped down” approaches to
curb medians, reference can be made to the earlier section in this chapter, “Islands.”  To serve
these purposes satisfactorily, the minimum narrowed median width of no less than 1.2 m [4 ft] is
recommended and is preferably 1.8 to 2.4 m [6 to 8 ft] wide. These dimensions can be provided
within a median 4.8 to 5.4 m [16 to 18 ft] wide and a turning lane width of 3.6 m [12 ft].

For medians wider than about 5.4 m [18 ft], as shown in Exhibit 9-97, it is usually preferable
to provide some offset between the left-turn lanes in the opposing directions of travel. Offset left-
turn lanes of this type are discussed in the next section.

For curbed dividers 1.2 m [4 ft] or more in width at the narrowed end, the curbed nose can
be offset from the opposing through-traffic lane 0.6 m [2 ft] or more, with gradual taper beyond
to make it less vulnerable to contact by through traffic, as shown in Exhibit 9-96B. The shape of
the nose for curbed dividers 1.2 m [4 ft] wide usually is semicircular, but for a wider width the
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ends are normally shaped to a bullet nose pattern to conform better with the paths of turning
vehicles.

Offset Left-Turn Lanes

For medians wider than about 5.4 m [18 ft], it is desirable to offset the left-turn lane so that
it will reduce the width of the divider to 1.8 to 2.4 m [6 to 8 ft] immediately before the
intersection, rather than to align it exactly parallel with and adjacent to the through lane. This
alignment will place the vehicle waiting to make the turn as far to the left as practical,
maximizing the offset between the opposing left-turn lanes, and thus providing improved
visibility of opposing through traffic. The advantages of offsetting the left-turn lanes are (1) better
visibility of opposing through traffic; (2) decreased possibility of conflict between opposing left-
turn movements within the intersection; and (3) more left-turn vehicles served in a given period
of time, particularly at a signalized intersection (16). Parallel offset left-turn lanes may be used at
both signalized and unsignalized intersections. This left-turn lane configuration is referred to as a
parallel offset left-turn lane and is illustrated in Exhibit 9-98A.

An offset between opposing left-turn vehicles can also be achieved with a left-turn lane that
diverges from the through lanes and crosses the median at a slight angle. Exhibit 9-98B illustrates
a tapered offset left-turn lane of this type. Tapered offset left-turn lanes provide the same
advantages as parallel offset left-turn lanes in reducing sight distance obstructions and potential
conflicts between opposing left-turn vehicles and in increasing the efficiency of signal operations.
Tapered offset left-turn lanes are normally constructed with a 1.2-m [4-ft] nose between the left-
turn lane and the opposing through lanes.  Tapered offset left-turn lanes have been used primarily
at signalized intersections.

This type offset is especially effective for turning radii allowance where trucks with long
rear overhangs, such as logging trucks, are turning from the mainline roadway. This same type of
offset geometry may also be used for trucks turning right with long rear overhangs.

Parallel and tapered offset left-turn lanes should be separated from the adjacent through
traffic lanes by painted or raised channelization.

SIMULTANEOUS LEFT TURNS

Simultaneous left turns may be considered at an intersection of two major highways.
Exhibit 9-99 indicates traffic patterns that should be considered in the design. Marking details are
given in the MUTCD (9).
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Exhibit 9-98.  Parallel and Tapered Offset Left-Turn Lane
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Exhibit 9-99.  Four-Leg Intersection Providing Simultaneous Left Turns

INTERSECTION DESIGN ELEMENTS WITH
FRONTAGE ROADS

Frontage road cross-sectional elements, functional characteristics, and service value as
collectors are discussed in Chapters 4, 6, and 7. The discussion to follow concerns frontage road
design elements with respect to the operational features where the frontage road intersects the
major highway. Frontage roads are generally needed adjacent to arterials or freeways where
adjacent property owners are not permitted direct access to the major facility. Short lengths of
frontage roads may be desirable along urban arterials to preserve the capacity of the arterial
through control of access. Much of the improvement in capacity may be offset by the added
conflicts introduced where the frontage road and arterial intersect the crossroad. Not only is there
an increase in the number of conflicting movements, but the confusing pattern of roadways and
separations can lead to wrong-way entry. Inevitably, where an arterial is flanked by frontage
roads, the problems of design and traffic control at intersections are far more complex than where
the arterial consists of a single roadway. Three intersections (two, if there is only one frontage
road) actually exist at each cross street.

In lightly developed areas, such as through single-family residential neighborhoods, an
intersection designed to fit minimum turning paths of passenger vehicles may operate
satisfactorily. In heavily developed areas, however, particularly through commercial districts
where frontage roads receive heavy use, an intersection designed with restricted geometrics will
seldom operate satisfactorily unless certain traffic movements are prohibited. Separate signal
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indications can be used to relieve some of the conflicts between the various movements but only
at the expense of delay to most of the traffic.

The preferred alternative to restricting turns is to design the intersection with expanded
dimensions, particularly the width of outer separation. This design permits the intersections
between the crossroad and frontage roads to be well removed from the crossroad intersection with
the main lanes.

For satisfactory operation with moderate-to-heavy traffic volumes on the frontage roads, the
outer separation should be 50 m [150 ft] or more in width at the intersection. The 50-m [150-ft]
dimension is derived on the basis of the following considerations:

• This dimension is about the shortest acceptable length needed for placing signs and
other traffic control devices to provide proper direction to traffic on the crossroad.

• It usually affords acceptable storage space on the crossroad in advance of the main
intersection to avoid blocking the frontage road.

• It enables turning movements to be made from the main lanes onto frontage roads
without seriously disrupting the orderly movement of traffic.

• It facilitates U-turns between the main lanes and two-way frontage roads. (Such a
maneuver is geometrically possible with a somewhat narrower separation but is
extremely difficult with commercial vehicles).

• It alleviates the potential of wrong-way entry onto through lanes of the predominant
highway.

However, wider separations can enhance operations significantly. Outer separations of
100 m [300 ft] allow for overlapping left turn lanes and provide a minimal amount of vehicle
storage. The design year traffic volumes, turning movements, signal phasing, and storage
requirements should determine the ultimate outer separation distance.

Narrower separations are acceptable where frontage-road traffic is very light, where the
frontage road operates one-way only, or where some movements can be prohibited. Turning
movements that are affected most by the width of outer separation are (1) left turns from the
frontage road onto the crossroad, (2) U-turns from the through lanes of the predominant highway
onto a two-way frontage road, and (3) right turns from the through lanes of the predominant
highway onto the crossroad. By imposing the restrictions, as may be appropriate on some or all of
these movements, outer separations as narrow as 2.4 m [8 ft] may operate satisfactorily. With
such narrow separations caution should be exercised in assessing the risk of wrong-way entry
onto the through lanes.

Except for the width of the outer separation, the design elements for intersections involving
frontage roads are much the same as those for conventional intersections. Exhibit 9-100 shows
two arrangements of highways with frontage roads intersecting cross streets. Turning movements
are shown on the assumption that frontage road volumes are very light and that all movements
will be under traffic signal control.
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Exhibit 9-100.  Intersections with Frontage Roads

As illustrated, deceleration or storage lanes may be provided for the right-turn movements
adjacent to the through roadway. Because traffic turning right must cross the path of traffic on the
frontage road, the need for such storage lanes is usually greater in this case than in the case of
conventional intersections. Storage and speed-change lanes are clearly delineated by pavement
markings. Contrasting surfaces are also desirable.
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Exhibit 9-100A shows a simple intersection design with an outer separation of 50 m [150 ft]
or more in width. The intersections of the two-way frontage roads and the crossroad are
sufficiently removed from the through roadways that they might operate as separate intersections.
The major elements in the design of the outer intersections are adequate width, adequate radii for
right turns, and divisional islands on the crossroad.

Exhibit 9-100B shows a design that would be adaptable for two-way frontage roads in areas
where right-of-way considerations would preclude the design shown in Exhibit 9-100A. With
narrow outer separations between intersections, a bulb treatment of the outer separations, as
shown, formed by a reverse-curve alignment of the frontage road on each side of the crossroad is
needed to widen the outer separation to a desirable width at the crossroad. The length of the
reverse curve is a matter of frontage road design, governed by design speeds and right-of-way
controls. The widths of the outer separation bulbs should be based on the pattern and volumes of
traffic, but the right-of-way controls may also govern because additional area is needed at the
intersection. The width of outer separation at the crossroad opening should be at least 18 m
[60 ft], which might be acceptable for light-to-moderate frontage road traffic, but preferably it
should be 50 m [150 ft] or more. A width of 9.6 m [32 ft] for the outer separation is the minimum
that will permit a U-turn by a passenger car from the through lanes onto the frontage road. Widths
of 22 m [74 ft] or more are needed for trucks and buses. Where such movements are likely to
occur frequently, the width of separations should be considerably greater, desirably 50 m [150 ft]
or more.

BICYCLES AT INTERSECTIONS

When on-street bicycle lanes and/or off-street bicycle paths enter an intersection, the design
of the intersection should be modified accordingly. These modifications may include special sight
distance considerations, wider roadways to accommodate on-street lanes, special lane markings to
channelize and separate bicycles from right-turning vehicles, provisions for left-turn bicycle
movements, or special traffic signal designs (such as conveniently located push buttons at
actuated signals or even separate signal indications for bicyclists). Further guidance in providing
for bicycles at intersections can be found in the AASHTO Guide for the Development of Bicycle
Facilities (5).

WHEELCHAIR RAMPS AT INTERSECTIONS

When designing a project that involves curbs and adjacent sidewalks to accommodate
pedestrian traffic, proper attention should be given to the needs of persons with disabilities,
whose mobility depends on wheelchairs and other devices. Related design criteria and
illustrations are given in Chapter 4.
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LIGHTING AT INTERSECTIONS

Lighting may affect the safety of highway and street intersections, as well as efficiency of
traffic operations. Statistics indicate that the nighttime crash rates are higher than that during
daylight hours. This fact, to a large degree, may be attributed to impaired visibility. In urban and
suburban areas where there are concentrations of pedestrians and roadside and intersectional
interferences, fixed-source lighting tends to reduce crashes. Whether or not rural intersections
should be lighted depends on the planned geometrics and the turning volumes involved.
Intersections that are not channelized are seldom lighted. However, for the benefit of nonlocal
highway users, lighting at rural intersections is desirable to aid the driver in ascertaining sign
messages during non-daylight periods.

Intersections with channelization, particularly multiple-road geometrics, should include
lighting. Large channelized intersections especially need illumination because of the higher range
of turning radii that are not within the lateral range of vehicular headlight beams. Vehicles
approaching the intersection should also reduce speed. The indication of this need should be
definite and visible at a distance from the intersection that may be beyond the range of headlights.
Illumination of intersections with fixed-source lighting accomplishes this need.

The planned location of intersection luminaire supports should be designed in accordance
with current roadside safety concepts. Additional discussions and design guidance can be found
in NCHRP Report 152 (17) and the AASHTO Roadside Design Guide (18).

DRIVEWAYS

Driveways are, in effect, intersections and should be designed consistent with their intended
use. For further discussion of driveways, refer to Chapter 4. The number of crashes is
disproportionately higher at driveways than at other intersections; thus their design and location
merit special consideration.

Ideally, driveways should not be located within the functional area of an intersection or in
the influence area of an adjacent driveway. The functional area extends both upstream and
downstream from the physical intersection area and includes the longitudinal limits of auxiliary
lanes. The influence area associated with a driveway includes (1) the impact length (the distance
back from a driveway that cars begin to be affected), (2) the perception-reaction distance, and
(3) the car length.

The spacing of driveways should reflect the impact lengths and influence areas associated
with motorists entering or leaving a driveway. The impact length represents the distance upstream
when the brake lights of through vehicles are activated or there is a lane change due to a turning
vehicle.

The impact lengths associated with motorists entering or leaving a driveway should be
considered in establishing driveway separation distances. Exhibit 9-101 shows impact lengths
based on recent research relating to vehicles making right turns into driveways (1). For example,
20 percent of the right-lane through vehicles were impacted at an approximate distance of 52 m
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[172 ft] or more in advance of a driveway at 50 km/h [30 mph] speed. At 80 km/h [50 mph],
20 percent of the right-lane through vehicles were impacted a distance of 105 m [345 ft] or more
in advance of a right-turn location. Influence areas can be obtained by adding the perception-
reaction distance and car length to the distance shown in Exhibit 9-101. The functional area of an
intersection should reflect these influence areas.

Exhibit 9-101.  Cumulative Frequency Distribution of Impact Lengths

When access points are signalized, their location should fit in the time-space pattern of
adjacent major intersections to the maximum extent practical.

The regulation and design of driveways are intimately linked with the type of road and
zoning of the roadside. On new highways, right-of-way can be obtained to provide the desired
degree of driveway regulation and control. In some cases, additional right-of-way can be acquired
with the reconstruction of an existing highway or agreements can be made to improve existing
undesirable access conditions. Often the desired degree of driveway control should be effected
through the use of police powers to require permits for all new driveways, through adjustments of
existing driveways, or through access-management regulations.

The main objectives of driveway regulation are to provide desirable spacing of driveways
and to ensure that a proper internal layout is being proposed. Achieving these objectives depends
on the type and extent of legislative authority granted the highway agency. Many states and cities
have developed policies for driveways and have separate units to handle the design details that
are incidental to checking requests and issuing permits for new driveways or requested changes to
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existing driveway connections. Major controls and design features are discussed in other
reference sources (19, 20, 21).

RAILROAD-HIGHWAY GRADE CROSSINGS

A railroad-highway crossing, like any highway-highway intersection, involves either a
separation of grades or a crossing at-grade. The geometrics of a highway and structure that
involves the overcrossing or undercrossing of a railroad are substantially the same as those for a
highway grade separation without ramps.

The horizontal and vertical geometrics of a highway approaching a railroad grade crossing
should be constructed in a manner that does divert driver attention to roadway conditions.

Horizontal Alignment

If practical, the highway should intersect the tracks at a right angle with no nearby
intersections or driveways. This layout enhances the driver’s view of the crossing and tracks,
reduces conflicting vehicular movements from crossroads and driveways, and is preferred for
bicyclists. To the extent practical, crossings should not be located on either highway or railroad
curves. Roadway curvature inhibits a driver’s view of a crossing ahead, and a driver’s attention
may be directed toward negotiating the curve rather than looking for a train. Railroad curvature
may inhibit a driver’s view down the tracks from both a stopped position at the crossing and on
the approach to the crossings. Those crossings that are located on both highway and railroad
curves present maintenance problems and poor rideability for highway traffic due to conflicting
superelevations.

Where highways that are parallel with main tracks intersect highways that cross the main
tracks, there should be sufficient distance between the tracks and the highway intersections to
enable highway traffic in all directions to move expeditiously. Where physically restricted areas
make it impossible to obtain adequate storage distance between the main track and a highway
intersection, the following should be considered:

• Interconnection of the highway traffic signals with the grade crossing signals to enable
vehicles to clear the grade crossing when a train approaches.

• Placement of a “Do Not Stop on Track” sign on the roadway approach to the grade
crossing.

Vertical Alignment

It is desirable from the standpoint of sight distance, rideability, braking, and acceleration
distances that the intersection of highway and railroad be made as level as practical. Vertical
curves should be of sufficient length to ensure an adequate view of the crossing.
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In some instances, the roadway vertical alignment may not meet acceptable geometrics for a
given design speed because of restrictive topography or limitations of right-of-way. To prevent
drivers of low-clearance vehicles from becoming caught on the tracks, the crossing surface should
be at the same plane as the top of the rails for a distance of 0.6 m [2 ft] outside the rails. The
surface of the highway should also not be more than 75 mm [3 in] higher or lower than the top of
nearest rail at a point 9 m [30 ft] from the rail unless track superelevation makes a different level
appropriate, as shown in Exhibit 9-102. Vertical curves should be used to traverse from the
highway grade to a level plane at the elevation of the rails. Rails that are superelevated, or a
roadway approach section that is not level, will necessitate a site specific analysis for rail
clearances.

Exhibit 9-102.  Railroad-Highway Grade Crossing

General

The geometric design of railroad-highway grade crossings should be made jointly when
determining the warning devices to be used. When only passive warning devices such as signs
and pavement markings are used, the highway drivers are warned of the crossing location but
must determine whether or not there are train movements for which they should stop. On the
other hand, when active warning devices such as flashing light signals or automatic gates are
used, the driver is given a positive indication of the presence or the approach of a train at the
crossing. A large number of significant variables should be considered in determining the type of
warning device to be installed at a railroad grade crossing. For certain low-volume highway
crossings where adequate sight distance is not available, additional signing may be needed.

Traffic control devices for railroad-highway grade crossings consist primarily of signs,
pavement markings, flashing light signals, and automatic gates. Criteria for design, placement,
installment, and operation of these devices are covered in the MUTCD (9), as well as the use of
various passive warning devices. Some of the considerations for evaluating the need for active
warning devices at a grade crossing include the type of highway, volume of vehicular traffic,
volume of railroad traffic, maximum speed of the railroad trains, permissible speed of vehicular
traffic, volume of pedestrian traffic, crash history, sight distance, and geometrics of the crossing.
The potential for complete elimination of grade crossings without active traffic control devices
(e.g., closing lightly used crossings and installing active devices at other more heavily used
crossings) should be given prime consideration.
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These guidelines are not all inclusive. Situations not covered by these guidelines should be
evaluated using good engineering judgment. Additional information on railroad-highway grade
crossings can be found in various published sources (22, 23, 24, 25, 26, 27).

Numerous index formulas have been developed to assess the relative conflict potential at
railroad-highway grade crossings on the basis of various combinations of its characteristics.
Although no single formula has universal acceptance, each has its own values in establishing an
index; when used with sound engineering judgment, each formula provides a basis for a selection
of the type of warning devices to be installed at a given crossing.

The geometric design of a railroad-highway grade crossing involves the elements of
alignment, profile, sight distance, and cross section. The appropriate design may vary with the
type of warning device used. Where signs and pavement markings are the only means of warning,
the highway should cross the railroad at or nearly at right angles. Even when flashing lights or
automatic gates are used, small intersection angles should be avoided. Regardless of the type of
control, the roadway gradient should be flat at and adjacent to the railroad crossing to permit
vehicles to stop, when necessary, and then proceed across the tracks without difficulty.

Sight distance is a primary consideration at crossings without train-activated warning
devices. A complete discussion of sight distance at grade crossings can be found in two published
sources (24, 27).

As in the case of a highway intersection, there are several events that can occur at a railroad-
highway grade intersection without train-activated warning devices. Two of these events related
to determining the sight distance are:

• The vehicle operator can observe the approaching train in a sight line that will allow the
vehicle to pass through the grade crossing prior to the train’s arrival at the crossing.

• The vehicle operator can observe the approaching train in a sight line that will permit
the vehicle to be brought to a stop prior to encroachment in the crossing area.

Both of these maneuvers are shown as Case A of Exhibit 9-103. The sight triangle consists
of the two major legs (i.e., the sight distance, dH, along the highway and the sight distance, dT,
along the railroad tracks). Case A of Exhibit 9-103 indicates values of the sight distances for
various speeds of the vehicle and the train. These distances are developed from two basic
formulas:
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Metric US Customary

and and

( 9-3 )

where:

A = constant = 0.278
B = constant = 0.039
dH = sight-distance leg along the

highway allows a vehicle
proceeding to speed Vv  to cross
tracks even though a train is
observed at a distance dT from the
crossing or to stop the vehicle
without encroachment of the
crossing area (m)

dT = sight-distance leg along the
railroad tracks to permit the
maneuvers described as for dH (m)

Vv = speed of the vehicle (km/h)
VT = speed of the train (km/h)
t = perception/reaction time, which is

assumed to be 2.5 s (This is the
same value used in Chapter 3 to
determine the stopping sight
distance.)

a = driver deceleration, which is
assumed to be 3.4 m/s2 (This is the
same value used in Chapter 3 to
determine stopping sight distance.)

D = distance from the stop line or front
of the vehicle to the nearest rail,
which is assumed to be 4.5 m

de = distance from the driver to the front
of the vehicle, which is assumed to
be 3.0 m

L = length of vehicle, which is
assumed to be 20 m

W = distance between outer rails(for a
single track, this value is 1.5 m)

where:

A = constant = 1.47
B = constant = 1.075
dH = sight-distance leg along the highway

allows a vehicle proceeding to speed
Vv  to cross tracks even though a train
is observed at a distance dT from the
crossing or to stop the vehicle
without encroachment of the
crossing area (ft)

dT = sight-distance leg along the railroad
tracks to permit the maneuvers
described as for dH (ft)

Vv = speed of the vehicle (mph)
VT = speed of the train (mph)
t = perception/reaction time, which is

assumed to be 2.5 s (This is the
same value used in Chapter 3 to
determine the stopping sight
distance.)

a = driver deceleration, which is
assumed to be 11.2 ft/s2

.. (This is the
same value used in Chapter 3 to
determine stopping sight distance.)

D = distance from the stop line or front of
the vehicle to the nearest rail, which
is assumed to be 15 ft

de = distance from the driver to the front
of the vehicle, which is assumed to
be 10 ft

L = length of vehicle, which is assumed
to be 65 ft

W = distance between outer rails(for a
single track, this value is 5 ft)

Corrections should be made for skew crossings and highway grades that are other than flat.
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Exhibit 9-103.  Case A:  Moving Vehicle to Safely Cross or Stop at Railroad Crossing
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Case B of Exhibit 9-104 contains various values of departure sight distance for a range of
train speeds. When a vehicle has stopped at a railroad crossing, the next maneuver is to depart
from the stopped position. The vehicle operator should have sufficient sight distance along the
tracks to accelerate the vehicle and clear the crossing prior to the arrival of a train, even if the
train comes into view just as the vehicle starts, as shown in Exhibit 9-105. These values are
obtained from the formula:

Metric US Customary

( 9-4 )

where:

A = constant = 0.278
dT = sight distance leg along railroad

tracks to permit the maneuvers
described as for dH (m)

VT = speed of train (km/h)
VG = maximum speed of vehicle in first

gear, which is assumed to be
2.7 m/s

a1 = acceleration of vehicle in first gear,
which is assumed to be 0.45 m/s2

L = length of vehicle, which is
assumed to be 20 m

D = distance from stop line to nearest
rail, which is assumed to be 4.5 m

J = sum of perception and time to
activate clutch or automatic shift,
which is assumed to be 2.0 s

W = distance between outer rails for a
single track, this value is 1.5 m

or distance vehicle travels while
accelerating to maximum speed in
first gear

where:

A = constant = 1.47
dT = sight distance leg along railroad tracks

to permit the maneuvers described as
for dH (ft)

VT = speed of train (mph)
VG = maximum speed of vehicle in first gear,

which is assumed to be 8.8 fps
a1 = acceleration of vehicle in first gear,

which is assumed to be 1.47 ft/s2

L = length of vehicle, which is assumed to
be 65 ft

D = distance from stop line to nearest rail,
which is assumed to be 15 ft

J = sum of perception and time to activate
clutch or automatic shift, which is
assumed to be 2.0 s

W = distance between outer rails for a
single track, this value is 5 ft

or distance vehicle travels while
accelerating to maximum speed in first
gear

Adjustments should be made for skewed crossings and for highway grades other than flat.
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Metric US Customary
Case A

Moving vehicle
Case A

Moving vehicle
Train
speed
(km/h)

Case B
Departure
from stop Vehicle speed (km/h)

Train
speed
(mph)

Case B
Departure
from stop Vehicle speed (mph)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 0 10 20 30 40 50 60 70 80

Distance along railroad from crossing, dT(m) Distance along railroad from crossing, dT(ft)

10 45 39 24 21 19 19 19 19 20 21 21 22 23 24 10 240 146 106 99 100 105 111 118 126

20 91 77 49 41 38 38 38 39 40 41 43 45 47 48 20 480 293 212 198 200 209 222 236 252

30 136 116 73 62 57 56 57 58 60 62 64 67 70 73 30 721 439 318 297 300 314 333 355 378

40 181 154 98 82 77 75 76 77 80 83 86 89 93 97 40 961 585 424 396 401 419 444 473 504

50 227 193122 103 96 94 95 97 100 103 107 112 116 121 50 1201 732 530 494 501 524 555 591 630

60 272 232147 123 115 113 113116 120 124 129 134 140 145 60 1441 878 636 593 601 628 666 709 756

70 317 270171 144 134 131 132135 140 145 150 156 163 169 70 1681 1024 742 692 701 733 777 828 882

80 362 309196 164 153 150 151155 160 165 172 179 186 194 80 1921 1171 848 791 801 838 888 946 1008

90 408 347220 185 172 169 170174 179 186 193 201 209 218 90 2162 1317 954 890 901 943 999 1064 1134

100 453 386245 206 192 188 189193 199 207 215 223 233 242

110 498 425269 226 211 207 208213 219 227 236 246 256 266

120 544 463294 247 230 225 227232 239 248 258 268 279 290

130 589 502318 267 249 244 246251 259 269 279 290 302 315

140 634 540343 288 268 263 265271 279 289 301 313 326 339

Distance along highway from crossing, dH(m) Distance along highway from crossing, dH(ft)

16 26 39 54 71 90 112 137 163 192 223 256 292 71 137 222 326 449 591 753 933

Exhibit 9-104.  Required Design Sight Distance for Combination of Highway and Train Vehicle Speeds; 20-m [65-ft] Truck Crossing
a Single Set of Tracks at 90°
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Exhibit 9-105.  Case B:  Departure of Vehicle From Stopped Position to Cross Single
Railroad Track
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Sight distances of the order shown in Exhibit 9-104 are desirable at any railroad grade
crossing not controlled by active warning devices. Their attainment, however, is difficult and
often impractical, except in flat, open terrain.

In other than flat terrain, it may be appropriate to rely on speed control signs and devices and
to predicate sight distance on a reduced vehicle speed of operation. Where sight obstructions are
present, it may be appropriate to install active traffic control devices that will bring all highway
traffic to a stop before crossing the tracks and will warn drivers automatically in time for an
approaching train.

The driver of a stopped vehicle at a crossing should see enough of the railroad track to be
able to cross it before a train reaches the crossing, even though the train may come into view
immediately after the vehicle starts to cross. The length of the railroad track in view on each side
of the crossing should be greater than the product of the train speed and the time needed for the
stopped vehicle to start and cross the railroad. The sight distance along the railroad track may be
determined in the same manner as it is for a stopped vehicle crossing a preference highway,
which is covered previously in this chapter. In order for vehicles to cross two tracks from a
stopped position, with the front of the vehicle 4.5 m [15 ft] from the closest rail, sight distances
along the railroad, in meters [feet], should be determined by the formula with a proper adjustment
for the W value.

The highway traveled way at a railroad crossing should be constructed for a suitable length
with all-weather surfacing. A roadway section equivalent to the current or proposed cross section
of the approach roadway should be carried across the crossing. The crossing surface itself should
have a riding quality equivalent to that of the approach roadway. If the crossing surface is in poor
condition, the driver’s attention may be devoted to choosing the smoothest path over the crossing.
This effort may well reduce the attention given to observance of the warning devices or even the
approaching train. Information concerning various surface types that may be used can be found in
Railroad-Highway Grade Crossing Surfaces (26).
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CHAPTER 10
GRADE SEPARATIONS AND INTERCHANGES

INTRODUCTION AND GENERAL TYPES OF INTERCHANGES

The ability to accommodate high volumes of traffic safely and efficiently through
intersections depends largely on the arrangements provided for handling intersecting traffic. The
greatest efficiency, safety, and capacity are attained when the intersecting traveled ways are grade
separated. An interchange is a system of interconnecting roadways in conjunction with one or
more grade separations that provides for the movement of traffic between two or more roadways
or highways on different levels.

The selection of the appropriate type of grade separation and interchange, along with its
design, is influenced by many factors, such as highway classification, character and composition
of traffic, design speed, and degree of access control. In addition to these controls, signing needs,
economics, terrain, and right-of-way are of great importance in designing facilities with adequate
capacity to safely accommodate traffic demands.

To avoid conflicts between vehicles, pedestrians, and/or bicycles within interchanges, it is
preferable to separate their movements. When separation cannot be provided, each interchange
site should be studied and alternate designs considered to determine the most appropriate
arrangement of structures and ramps to accommodate bicycle and pedestrian traffic through the
interchange area.

Interchanges vary from single ramps connecting local streets to complex and comprehensive
layouts involving two or more highways. The basic interchange configurations are shown in
Exhibit 10-1. Any one configuration can vary extensively in shape and scope, and there are
numerous combinations of interchange types that are difficult to designate by separate names. An
important element of interchange design is the assembly of one or more of the basic types of
ramps, which are discussed later in this chapter. The layout for any specific ramp and type of
traffic movement will reflect surrounding topography and culture, cost, and degree of flexibility
in desired traffic operation. The practical aspects of topography, culture, and cost may be
determining factors in the configuration and nature of ramps, but the desired traffic operation
should predominate in design.

Exhibit 10-1A and 10-1B illustrate typical three-leg interchanges. Exhibit 10-1A is a trumpet
interchange, named for the trumpet or jug-handle ramp configuration. Exhibit 10-1B is a
three-level, directional, three-leg interchange. With ramps in one quadrant, the interchange in
Exhibit 10-1C is not suitable for freeway systems but becomes very practical for an interchange
between a major highway and a parkway. This design is appropriate for parkways because design
speeds are usually lower, large trucks are prohibited, and turning movements are light. A typical
diamond interchange is illustrated in Exhibit 10-1D. Diamond interchanges have numerous other
configurations incorporating frontage roads and continuous collector or distributor roads.
Exhibit 10-1E is a single-point urban interchange (SPUI). The SPUI is a form of a diamond
interchange with a single signalized intersection through which all left turns utilizing the
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interchange must travel. All right turns into and out of ramp approaches are generally free flow.
Exhibit 10-1F presents a partial cloverleaf that contains two cloverleaf loops and two diagonal
ramps. Varying configurations favor heavier traffic movements. A full cloverleaf, as shown in
Exhibit 10-1G, gives each interchanging movement an independent ramp; however, it generates
weaving maneuvers that occur either in the area adjacent to the through lanes or on collector-
distributor roads. Exhibit 10-1H illustrates a fully directional interchange.

Exhibit 10-1. Interchange Configurations
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WARRANTS FOR INTERCHANGES AND GRADE SEPARATIONS

An interchange can be a useful and an adaptable solution for many intersection problems
either by reducing existing traffic bottlenecks or by improving safety. However, the high cost of
constructing an interchange limits its use to those cases where the additional expenditure can be
justified. An enumeration of the specific conditions or warrants justifying an interchange at a
given intersection is difficult and, in some instances, cannot be conclusively stated. Because of
the wide variety of site conditions, traffic volumes, highway types, and interchange layouts, the
warrants that justify an interchange may differ at each location. The following six conditions, or
warrants, should be considered when determining if an interchange is justified at a particular site:

1. Design designation. The determination to develop a highway with full control of access
between selected terminals becomes the warrant for providing highway grade separations or
interchanges for all intersecting roadways crossing the highway. Although access control,
provision of medians, and elimination of parking and pedestrian traffic are important, the
separation of grades on freeways provides the greatest increment of safety. Once it has been
decided to develop a route as a freeway, it should be determined whether each intersecting
highway will be terminated, rerouted, or provided with a grade separation or interchange. The
chief concern is the continuous flow on the major road. If traffic on the minor road will cross the
freeway, a grade separation or interchange is provided. Thus, an intersection that might warrant
only traffic signal control, if considered as an isolated case, will warrant a grade separation or
interchange when considered as a part of a freeway.

2. Reduction of bottlenecks or spot congestion. Insufficient capacity at the intersection
of heavily traveled routes results in intolerable congestion on one or all approaches. Inability to
provide essential capacity with an at-grade facility provides a warrant for an interchange where
development and available right-of-way permit. Even on facilities with partial control of access,
the elimination of random signalization contributes greatly to improvement of free-flow
characteristics.

3. Safety improvement. Some at-grade intersections have a disproportionate rate of
serious crashes. If inexpensive methods of eliminating crashes are likely to be ineffective or
impractical, a highway grade separation or interchange may be warranted. Crash-prone
intersections are frequently found at the junction of comparatively light-traveled highways in
sparsely settled rural areas where speeds are high. In such areas, structures can usually be
constructed at little cost compared with urban areas, right-of-way is not expensive, and lower cost
improvements can be justified by the elimination of only a few serious crashes. Serious crashes at
heavily traveled intersections, of course, also provide a warrant for interchange facilities. In
addition to greater safety, the operational efficiency for all traffic movements is also improved at
the interchange.

4. Site topography. At some sites, grade-separation designs are the only type of
intersection that can be constructed economically. The topography at the site may be such that, to
satisfy appropriate design criteria, any other type of intersection is physically impossible to
develop or is equal to or greater than the cost of a grade-separated design.
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5. Road-user benefits. The road-user costs due to delays at congested at-grade
intersections are large. Road-user costs, such as fuel and oil usage, wear on tires, repairs, delay to
motorists, and crashes that result from speed changes, stops, and waiting, are well in excess of
those for intersections permitting uninterrupted or continuous operation. In general, interchanges
involve somewhat more total travel distance than direct crossings at grade, but the added cost of
the extra travel distance is less than the cost savings resulting from the reduction in stopping and
delay. The relation of road-user benefits to the cost of improvement indicates an economic
warrant for that improvement. For convenience, the relation is expressed as a ratio and represents
the annual benefit divided by the annual capital cost of the improvement. Annual benefit is the
difference in road-user costs between the existing and the improved condition. Annual capital
cost is the sum of interest and amortization for the cost of the improvement. The larger the ratio,
the greater the justification insofar as road-user benefits are concerned.

Comparison of these ratios for design alternatives is an important factor in determining the
type and extent of improvement to be made. If used for justifying a single project or design, a
ratio in excess of one is appropriate for minimum economic justification. Furthermore,
interchanges usually are adaptable to stage construction, and initial stages may produce
incremental benefits that compare even more favorably with incremental costs.

6. Traffic volume warrant. A traffic volume warrant for interchange treatment may be the
most tangible of any interchange warrant. Although a specific volume of traffic at an intersection
cannot be completely rationalized as the warrant for an interchange, it is an important guide,
particularly when combined with the traffic distribution pattern and the effect of traffic behavior.
However, volumes in excess of the capacity of an at-grade intersection would certainly be a
warrant. Interchanges are desirable at cross streets with heavy traffic volumes because the
elimination of conflicts due to high crossing volume greatly improves the movement of traffic.

Not all warrants for grade separations are included in the warrants for interchanges.
Additional warrants for grade separations include grade separations that would:

• Serve local roads or streets that cannot practically be terminated outside the right-of-
way limits of freeways.

• Provide access to areas not served by frontage roads or other means of access.
• Eliminate a railroad-highway grade crossing.
• Serve unusual concentrations of pedestrian traffic (for instance, a city park developed

on both sides of a major arterial).
• Serve bikeways and routine pedestrian crossings.
• Provide access to mass transit stations within the confines of a major arterial.
• Assure free-flow operation of certain ramp configurations and serve as part of an

interchange.
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ADAPTABILITY OF HIGHWAY GRADE SEPARATIONS AND
INTERCHANGES

The three general types of intersections are: at-grade intersections, highway grade
separations without ramps, and interchanges. For each type of intersection, there is a range of
situations for which the intersection is practical, but the limits of that range are not sharply
defined. Furthermore, there is much overlapping between these ranges, and the final selection of
intersection type is frequently a compromise after joint consideration of design traffic volume and
pattern, cost, topography, and availability of right-of-way.

Traffic and Operation

Each intersection type accommodates through traffic to varying degrees of efficiency. Where
traffic on the minor crossroad is considerably less than on the major road, through traffic on the
major road is minimally inconvenienced on at-grade intersections, particularly where topography
is flat. Where the minor crossroad traffic volume is sufficient to justify a traffic signal, delay is
experienced by all through traffic. Where through and crossroad volumes are nearly equal, about
50 percent of the traffic on each approach is required to stop.

Through traffic has no delays at highway grade separations except where approach gradients
are long and steep and many heavy trucks are included in the traffic stream. Ramps at
interchanges have no severe effect on through traffic except where the capacity is not adequate,
the merging or speed-change lanes are not of adequate length, or a full complement of turning
roadways is not provided.

Turning movements can affect traffic operations at an intersection and is accommodated to
varying degrees, depending on the type of at-grade intersection or interchange. At interchanges,
ramps are provided for turning movements. Where turning movements are light and some
provision is made for all turning movements, a one-quadrant ramp design may suffice. However,
left-turning movements on both highways may be no better accommodated than at an intersection
at grade. Ramps provided in two quadrants may be situated such that crossings of through
movements occur only at the crossroad and the major highway is free of such interference. An
interchange with a ramp for every turning movement is suitable for heavy volumes of through
traffic and for any volume of turning traffic, provided the ramps and terminals are designed with
sufficient capacity.

Right-turning movements at interchanges follow simple direct or nearly direct paths on
which there is little possibility of driver confusion. Cloverleaf interchanges involve loop paths for
the left-turning movements, which may confuse drivers, and which involve added travel distance,
and in some cases induce weaving movements. The diamond pattern of ramps is simple and more
adaptable than a cloverleaf in cases where direct left turns are fitting on the minor road. However,
where traffic on the minor road is sufficient to justify the expenditure to eliminate the at-grade
left turns, a cloverleaf or higher type interchange should be considered.
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Except on freeways, interchanges usually are provided only where crossing and turning
traffic cannot readily be accommodated by an at-grade intersection. Some driver confusion may
be unavoidable on interchanges, but such difficulties are minor in comparison to the benefits
gained by the reduction of delays, stops, and crashes. Furthermore, confusion is minimized as
interchanges become more frequent, drivers gain experience in operating through them,
interchange designs are improved, and the quality and use of signing and other control devices are
increased. Where interchanges are infrequent, publicity, education, and enforcement regarding
proper usage of ramp patterns provided are valuable in ensuring efficient operation.

Interchanges are adaptable to various traffic mixes. The presence of a high proportion of
heavy trucks in the traffic stream makes interchanges especially desirable. Interchanges help to
maintain the capacity of the intersecting highways by minimizing vehicle delays caused by heavy
trucks that do not have the accelerating ability that passenger cars have.

Site Conditions

In rolling or hilly topography, interchanges usually can be well fitted to the existing ground,
and the through roads often can be designed more generously than if an at-grade intersection were
provided. Such terrain may also simplify the design of some ramps. Other ramps, however, may
involve steep grades, substantial length, or both, depending on the site terrain. Interchange design
is simple in flat terrain, but grades may be introduced that do not favor vehicle operation.
However, interchanges in flat terrain generally are not as pleasing in appearance as those fitted to
rolling terrain. When it is practical to regrade the whole of the interchange area and to landscape
it properly, most of the deficiency in appearance can be overcome.

The right-of-way needed for an interchange is largely dependent on the number of turning
movements for which separate ramps need to be provided. The actual area needed for any
particular interchange also depends on the highway type, topography, overall criteria of
interchange development, and the impact on property access that may occur with provision of an
interchange. The construction of an interchange may require adjustment in the existing highway
profiles, complicate local access, or involve circuitous travel paths.

Type of Highway and Intersecting Facility

Interchanges are practical for all types of intersecting highways and for any range of design
speeds. Conflicts from vehicles stopping and turning at an intersection increase with the design
speed such that high-design-speed highways warrant interchange treatment earlier than
low-design-speed roads with similar traffic volumes. The ramps on a high-design-speed highway
should permit suitably high-turning speeds and include sufficiently long speed-change lanes.

Interchanges provide areas suitable for landscape development. For some conditions, the
two-level nature of an interchange is a disadvantage with respect to appearance and may block a
driver’s view of the landscape. On the other hand, consideration of the architectural features in
the structural design, the flattening and rounding of slopes for erosion control, and landscape
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treatment can provide a development that is aesthetically pleasing. Landscape development may
involve above-minimum layouts rather than less costly structures or ramps with minimal grading.

Interchanges are essential components of freeways. With full control of access, grade
separations are provided at all crossroads of sufficient importance to prohibit their termination.
The interchange configuration will vary with the terrain, development along the highway, and
right-of-way conditions, but in general it will be based on ramp layouts to expedite entrance to or
exit from the freeway. In addition, ramp connections may involve frontage roads.

The extent to which local service should be maintained or provided is also a consideration in
selecting the intersection type. Whereas local service can be provided readily on certain types of
at-grade intersections, it may be difficult to provide for some types of interchanges.

ACCESS SEPARATIONS AND CONTROL ON THE CROSSROAD
AT INTERCHANGES

As one of the most critical elements in the design of freeways and other high-volume
highways, interchanges are expensive to build and equally expensive to upgrade. Therefore, it is
essential that they be designed and operated as efficiently as practical. To preserve their intended
function, adequate geometry at ramp termini and appropriate access control along crossroads are
essential.

Many older interchanges have been designed with only limited access control on the
intersecting crossroad. As a result, considerable development may occur in close proximity to the
intersection of the ramp terminus and the crossroad. Over time, such ramp terminals, as well as
several nearby access connections, require signalization, causing traffic operational problems.

In urbanized areas, high turning volumes and close spacing between adjacent ramp terminals
and access connections create operational problems on the crossroad that affect traffic on the
ramp and may spill back onto the mainline freeway. These problems consist of queue spillback,
stop-and-go travel, heavy weaving volumes, and poor traffic signal progression.

Access control should be an integral part of the design of highways whose primary function
is mobility, and it is a highly desirable feature along the crossroad at an interchange to provide
efficient traffic operations and safety. Access control can be accomplished by purchasing access
rights or by establishing access-control policies along the crossroad.

To ensure efficient operations along the crossroad at an interchange, adequate lengths of
access control should be part of the overall design of an interchange. This minimizes spillback on
the ramp and crossroad approaches to the ramp terminal, provides adequate distances for
crossroad weaving, provides space for merging maneuvers, and provides space for storage of
turning vehicles at access connections on the crossroad (1, 2).

Exhibit 10-2A illustrates the elements to be considered in determining access separation and
access-control distances in the vicinity of free-flowing ramp entrances and exits. These include
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the distances needed to enter and weave across the through-traffic lanes, move into the left-turn
lane, store left turns with a low likelihood of failure, and extend from the stop line to the
centerline of the intersecting road or driveway. In addition, driver perception-reaction distance
may be included in the computation. Where only right-turn access is involved and there are no
left turns or median breaks, the weaving distance governs.

Exhibit 10-2B illustrates factors affecting access separation and control distances along a
crossroad where there is a diamond interchange and the ramp termini are controlled by either a
traffic signal or stop sign (1).

Exhibit 10-2. Factors Influencing Length of Access Control Along an
Interchange Crossroad
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Safety

Elimination or minimization of crossing and turning conflicts can be very effective in
improving safety, especially at intersections. Regardless of design, signing, and signalization,
at-grade intersections have a potential for crashes resulting from vehicle-vehicle conflicts. This is
due, in part, to conflicting crossing and turning movements that occur within a limited area.

By separating the grades of the intersecting roadways, crashes caused by crossing and
turning movements can be reduced. The grade separation structure itself may be a roadside
obstruction; however, this can be minimized by the use of adequate clear roadside widths and
protective devices at bridge abutments and piers. Where access between intersecting roadways
will be provided, an interchange is appropriate for providing the maximum degree of safety.
Depending on the interchange configuration used, left turns may be entirely eliminated or
confined to the crossroad. Right-turning traffic can be accommodated on ramps that provide
operation approaching the equivalent of free flow. Thus, conflicts caused by crossing traffic can
be eliminated or minimized.

Stage Development

Where the ultimate development consists of a single grade-separation structure, stage
construction may be uneconomical unless provisions are made in the original design for a future
stage of construction. Ramps, however, are well adapted to stage development.

Economic Factors

Initial Costs

An interchange is the most costly type of intersection. The combined cost of the structure,
ramps, through roadways, grading and landscaping of large areas, and possible adjustments in
existing roadways and utilities generally exceeds the cost of an at-grade intersection. Directional
interchanges involve more than one structure, and their cost is usually greater than any simple
interchange.

Maintenance Costs

Each type of intersection has appreciable and distinct maintenance costs. Interchanges have
large paved and variable slope areas, the maintenance of which, together with that of the
structure, signs, and landscaping, exceeds that of an at-grade intersection. In addition,
interchanges often involve maintenance and operation costs for lighting.
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Vehicular Operating Costs

In a complete analysis of the adaptability of an interchange, vehicular operating costs should
be compared between the interchange and other intersections. The values are so dependent on
traffic, site, and design that a general comparison cannot be cited. Through traffic at an
interchange usually follows a direct path with only a minor speed reduction. The added vehicular
costs related to the change in grade when passing over or under the structure may need to be
considered only when grades are steep, a condition that is usually limited to the minor
intersecting roads. Right-turning traffic is subject to added vehicular costs of deceleration and
acceleration and may also be subject to the costs of operation on a grade; however, travel distance
is usually shorter than that on an at-grade intersection. Left-turning traffic is subject to added
costs of acceleration and deceleration and usually to added travel distance compared with direct
left turns at grade. Directional ramps may eliminate large speed changes and save travel distance,
as compared with at-grade intersections. For any one vehicle, these differences in operating costs
may appear insignificant, but when considered in cumulative totals, they indicate a pronounced
benefit to traffic as a whole at the intersection. For intermediate-to-heavy traffic, the total
vehicle-operating costs at an intersection usually will be lower with an interchange than with an
at-grade design, especially if the through movements predominate.

GRADE SEPARATION STRUCTURES

Introduction

Various types of structures are employed to separate the grades of two intersecting roadways
or a highway and a railroad. Although many phases of structural design should also be
considered, this discussion is confined to the geometric features of grade separation structures.
Some phases of structural design are referred to because of their effect on geometric design. This
discussion largely concerns highway grade separations, but most of the geometric design features
also apply to railroad grade separations.

Types of Separation Structures

Grade-separation structures are identified by three general types: deck type, through, and
partial through. The deck type is most common for grade separations. However, the through and
partial through types are appropriate for railroad structures. In special cases where the spans are
long and the difference in elevation between the roadways is to be severely limited, truss bridges
may be used.

Through girder bridges, in comparison to through deck-type bridges, will decrease vertical
restrictions. In the case where the upper roadway extends from hilltop to hilltop and vertical
clearance is not a problem, deck-type structures, such as trusses, arches, girders, etc., may be
appropriate. A through plate girder bridge is often used for railroad separations when the railroad
overpasses the highway or street. The through plate girder and through truss bridges produce a
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greater sense of visual restriction than deck-type structures; therefore, lateral clearances from the
edge of lane should be as great as practical.

In any single separation structure, care should be exercised in maintaining a constant clear
roadway width and a uniform protective railing or parapet. The type of structure best suited to
grade separations is one that gives drivers little sense of restriction. Where drivers take practically
no notice of a structure over which they are crossing, their behavior is the same or nearly the
same as at other points on the highway, and sudden, erratic changes in speed and direction are
unlikely. On the other hand, it is virtually impossible not to notice a structure overpassing the
roadway being used. For this reason, every effort should be made to design the structure so that it
fits the environment in a pleasing and functional manner without drawing unnecessary or
distracting attention. Collaboration between the bridge and highway engineers throughout the
various stages of planning and design can provide excellent results in this regard. Overpass
structures should have liberal lateral clearances on the roadways at each level. All piers and
abutment walls should be suitably offset from the traveled way. The finished underpass roadway
median and off-shoulder slopes should be rounded, and there should be a transition to backslopes
to redirect errant vehicles away from protected or unprotected structural elements.

A grade-separation structure should conform to the natural lines of the highway approaches
in alignment, profile, and cross section. Fitting structures to the highway may result in variable
structural widths, flared roadways, flared parapets or bridge railing, and non-symmetrical
substructure units. Such dimensional variations are recognized as essential by both highway and
bridge engineers and result in individual designs for each separate structure. In addition to the
above geometric considerations, other conditions such as span lengths, depths of structure,
foundation material at the site, aesthetics, safety, and especially skew may substantially influence
the engineering and cost feasibility of the structure being considered. The bridge engineer should
be consulted during alignment (horizontal and vertical) studies, and close coordination should be
maintained throughout the design phase so that the most prudent design from the standpoint of
safety, functionality, and economics of the total highway (including the bridge) can be selected.
Many times a minor adjustment in alignment can substantially reduce serious structural problems,
especially with wide structures.

For the overpass highway, the deck-type structure is most suitable. Although the supports
may present both lateral and vertical clearance problems on the lower roadway, they are out of
sight for motorists on the upper roadway. The deck-type bridge at the upper roadway has
unlimited vertical clearance; lateral clearance is controlled only by location of the protective
barrier. The parapet system should provide a freedom of view from the passing vehicles insofar as
practical; however, capability to redirect errant vehicles should have precedence over preserving
the motorist’s view. The parapet and railing should have an appearance of strength and the ability
to safely redirect the design vehicle(s) under the design impact conditions. Consideration should
also be given to containing and redirecting larger vehicles crossing the structure. The end posts of
through trusses should be protected by a suitable approach traffic barrier and transition section.
Spans at highway grade separations should not be long enough to require through trusses. In
special cases where spans are long and the difference in elevation between the two roadways is to
be limited, all practical designs should be compared by the bridge engineer for suitability,
including economic and aesthetic considerations.
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For the underpass highway, the most desirable structure from the standpoint of vehicular
operation is one that will span the entire highway cross section and provide a lateral clearance of
structural supports from the edge of roadway that is consistent with good roadside design. The
lateral clearance between the edge of roadway and the structural supports should be as wide and
flat as practical to provide usable recovery space for errant vehicles and to prevent distraction in
the motorist’s peripheral field of vision. In the case of depressed roadways, lateral clearances may
be reduced, as discussed in the section “Lateral Clearances” later in this chapter. On divided
highways, center supports should be used only where the median is wide enough to provide
sufficient lateral clearance or narrow enough to need protective barriers. The usual lateral
clearance of an underpass at piers or abutments may allow sufficient room to construct additional
lanes under the structure in the future, but at a sacrifice of recovery space. In anticipation of
future widening, the piers or abutment design should provide footings with sufficient cover after
widening. The bridge engineer should be advised when future widening is contemplated. A
greater sense of openness results with end spans than with full-depth abutments. Perched stub or
semistub abutments can also provide appropriate visual clearance.

In urban areas, although not all cross streets are important enough to warrant interchange
ramps with the main line, a sufficient number of cross streets should be separated in grade to
preserve the continuity of traffic flow on the local street system. As a matter of economics,
however, it is seldom practical to continue all cross streets across the main line. Most streets that
cross the major roadway, whether or not they connect with it, experience a rapid increase in
traffic following construction of the major roadway as a result of intensified land development
and local street closures within the main-line corridor. Terminated and through streets may be
intercepted by one-way frontage roads on each side of the main facility. Access between the main
roadway and frontage roads can be provided by slip ramps at prescribed intervals to serve traffic
demands.

On elevated facilities with viaduct construction, cross streets are relatively undisturbed;
however, on all other types of roadways, considerable savings can be achieved by terminating
some of the less important cross streets. Special consideration is needed relative to the spacing
and treatment of cross streets on these roadways. Arterials and other major cross streets should
continue across the main line without interruption or deviation. Grade separations should be of
sufficient number and capacity to accommodate not only the normal cross traffic but also the
traffic diverted from the other streets terminated by the main facility and the traffic generated by
access connections to and from the main line. Thus, determination of the number and location of
cross streets to be separated in grade needs a thorough analysis of traffic on the street system, in
addition to that on the main line and its interchanges.

Insofar as throughway operation is concerned, there is no minimum spacing or limit to the
number of grade-separated cross streets. The number and their location along one corridor are
governed by the local street system, existing or planned. Depending on features of the city street
network such as block length, the presence or absence of frontage roads, and degree of adjacent
urban development, it may be appropriate to provide more crossings than otherwise needed for
the principal cross streets. Where frontage roads are not provided or where they are used only
intermittently, more crossings may be needed to provide convenient access to all areas. Other
factors that may affect the number and spacing of cross streets are the location of schools,
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recreational areas, other public facilities, school bus routes, and fire-fighting equipment routes.
Whereas in and near downtown districts, cross streets continuing across the throughway may be
located at intervals of two or three blocks, and sometimes every block, in intermediate areas they
are likely to be three to five blocks apart, and in residential or outlying districts they should be at
greater intervals.

Cross streets should also fit the existing, revised, or expected pattern of transit operation and
the needs of pedestrians and bicyclists. For the most part, pedestrians and bicyclists are
accommodated on structures that also serve vehicular traffic. Because extra travel distance is
more acceptable for vehicular travel and bicyclists than for pedestrians, it is appropriate to add
separate pedestrian crossings, particularly where there are large numbers of pedestrians, such as
near schools, churches, and factories.

Although the streets that are to cross the major roadway should be selected during the
planning stage, all crossings need not necessarily be constructed initially. Normally, structures
carrying the major roadway should be constructed initially, as it is impractical to disrupt the main
line after it is open to traffic. However, some of the planned structures to carry cross streets over
the major roadway may be deferred until fully justified by traffic growth or other planned
developments. The system of overcrossing streets should be coordinated with and shown in the
design of the major roadway, and a plan should be developed showing those that are to be
constructed initially and those that are to be provided later. Such a plan should show the traffic
circulation scheme at initial and later stages, and it should be checked periodically against traffic
needs of the major roadway, the interchanges, and the street system.

The new cross-street structure and approaches are usually designed for projected traffic 10 to
20 years in the future. In many cases, the existing cross street is not as generously designed at
either side of the separation structure as the newly designed separation. Improvement of the cross
street may not be scheduled for several years. Therefore, there should be a suitable transition of
the new work to the existing facility in a manner that will promote the safe, orderly movement of
traffic.

In many instances, the existing street approaching the major roadway needs some
improvements to increase capacity and facilitate traffic more efficiently to and from the major
roadway. Typical improvements include lane and shoulder widening, control of parking and
pedestrian movement, improvements of intersections with traffic signals, marking,
channelization, and one-way operation where appropriate.

Where a city street underpasses a major roadway, the underside of the structure is a design
feature that deserves special treatment for aesthetic reasons. Because of numerous pedestrians and
slower moving traffic, the underside of a structure as viewed from the cross street is especially
noticeable to local citizens. It should therefore be as open as practical to allow the maximum
amount of light and air below. An open-type structural design is also needed to improve the sight
distance, especially if there are intersections adjacent to the structure.

On sections of roadway that are elevated on a viaduct, the local street system may be left
relatively undisturbed unless there is a need to realign the cross street or widen it for additional
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capacity. Structural openings should allow for future expansion of approach width and vertical
clearance.

Cross-street overcrossings and undercrossings have many features in common such as lane
and shoulder widths, corner curb radii, storage for turning vehicles, horizontal clearances, curbs,
and sidewalks.

Typical highway separation structures are depicted in Exhibits 10-3 and 10-4. The bridge
span arrangement is determined principally by the need for a clear roadside recovery area,
although sight distance is an important design element for all roadways and diamond
interchanges.

Exhibit 10-3. Typical Grade Separation Structures With Closed Abutments
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Exhibit 10-4. Typical Grade Separation Structure With Open-End Span

A single simple-span girder bridge may be used with spans of up to approximately 45 m
[150 ft] and can accommodate conditions of severe skew and horizontal curvature. Spans of
greater length need greater structure depth and higher approach embankments. The structure
depth for single-span girder bridges is approximately 1/15 to 1/30 of the span.

The conventional type of overpass structure over divided highways is currently a two-span,
deck-type bridge. When bridging with two or more spans, the deck-girder-type bridge, either steel
or concrete, is usually continuous in design for reasons of economy, providing some saving in
structure depth and elimination of deck joints over the piers.

As an alternative to the girder bridge, a deck-type, single-span rigid frame or a three-span
rigid-frame, slant leg bridge may be used for aesthetic purposes where appropriate. At special
geographic locations, where excess vertical clearance is available and the skew is not severe, a
spandrel arch bridge may be economically and aesthetically desirable when foundation support is
adequate. This type of bridge is also inherently pleasing in appearance.

Two or more structures are not uncommon at interchanges with direct connections for left-
turning movements. In special cases, several structures may be combined to form one multilevel
structure. Two variations of roadways crossing at three or four levels are shown in Exhibit 10-5.
Designs that include three- and four-level structures may not be more costly than the equivalent
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number of conventional structures to provide the same traffic service, particularly in urban areas
where right-of-way costs are high.

Exhibit 10-5. Multilevel Grade Separation Structures

Overpass Versus Underpass Roadways

General Design Considerations

A detailed study should be made at each proposed highway grade separation to determine
whether the main road should be carried over or under the crossroad. Often this decision is based
on features such as topography or highway classification. It may be appropriate to make several
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nearly complete preliminary layout plans before an appropriate decision can be reached. General
guidelines for over-versus-under preference follow, but such guidelines should be used in
combination with detailed studies of the grade separation as a whole.

At any site, the issues governing whether a road should be carried over or under usually fall
into one of three groups: (1) the influence of topography predominates and, therefore, the design
should be closely fitted to it; (2) the topography does not favor any one arrangement; and (3) the
alignment and gradeline controls of one highway predominate and, therefore, the design should
accommodate that highway’s alignment instead of the site topography.

As a rule, a design that best fits the existing topography is the most pleasing and economical
to construct and maintain, and this factor becomes the first consideration in design. Where
topography does not govern, as is common in the case of flat topography, it may be appropriate to
study secondary factors, and the following general guidelines should be examined:

• For the most part, designers are governed by the need for economy, which is obtained
by designs that fit existing topography, not only along the intersecting highways but
also for the whole of the area to be used for ramps and slopes. Thus, it is appropriate to
consider alternatives in the interchange area as a whole to decide whether the major
road should go over or under the crossroad.

• An undercrossing highway has a general advantage in that an approaching interchange
may be easily seen by drivers. As a driver approaches, the structure appears ahead,
making the presence of the upper-level crossroad obvious, and providing advance
warning of the likely presence of interchange ramps.

• Through traffic is given aesthetic preference by a layout in which the more important
road is the overpass. A wide overlook can be provided from the structure and its
approaches, giving drivers a minimum feeling of restriction.

• Where turning traffic is significant, the ramp profiles are best fitted when the major
road is at the lower level. The ramp grades then assist turning vehicles to decelerate as
they leave the major highway and to accelerate as they approach it, rather than the
reverse. In addition, for diamond interchanges, the ramp terminal is visible to drivers as
they leave the major highway.

• In rolling topography or in rugged terrain, major-road overcrossings may be attainable
only by a forced alignment and rolling gradeline. Where there otherwise is no
pronounced advantage to the selection of either underpass or an overpass, the design
that provides the better sight distance on the major road (desirably passing distance if
the road is two-lane) should be preferred.

• An overpass offers the best possibility for stage construction, both in the highway and
structure, with minimum impairment of the original investment. The initial
development of only part of the ultimate width is a complete structure and roadway in
itself. By lateral extension of both or construction of a separate structure and roadway
for a divided highway, the ultimate development is reached without loss of the initial
facility.

• Troublesome drainage problems may be reduced by carrying the major highway over
without altering the crossroad grade. In some cases, the drainage problem alone may be
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sufficient reason for choosing to carry the major highway over rather than under the
crossroad.

• Where topography control is secondary, the cost of bridges and approaches may
determine whether the major roadway underpasses or overpasses the minor facility. A
cost analysis that takes into account the bridge type, span length, roadway cross section,
angle of skew, soil conditions, and cost of approaches will determine which of the two
intersecting roadways should be placed on structure.

• An underpass may be more advantageous where the major road can be built close to the
existing ground, with continuous gradient and with no pronounced grade changes.
Where the widths of the roads differ greatly, the quantity of earthwork makes this
arrangement more economical. Because the minor road usually is built to less generous
design criteria than the major road, grades on it may be steeper and sight distances
shorter, with resultant economy in grading volume and pavement area on the shorter
length of road to be rebuilt above the general level of the surrounding country.

• Frequently, the choice of an underpass at a particular location is determined not by
conditions at that location, but by the design of the highway as a whole. Grade
separations near urban areas constructed as parts of a depressed expressway, or as one
raised above the general level of adjoining streets, are good examples of cases where
decisions regarding individual grade separations are subordinated to the general
development.

• Where a new highway crosses an existing route carrying a large volume of traffic, an
overcrossing by the new highway causes less disturbance to the existing route and a
detour is usually not needed.

• The overcrossing structure has no limitation as to vertical clearance, which can be a
significant advantage in the case of oversized loads requiring special permits on a major
highway or route.

• Desirably, the roadway carrying the highest traffic volume should have the fewest
number of bridges for better rideability and fewer conflicts when repair and
reconstruction are needed.

• In some instances, it may be appropriate to have the higher volume facility depressed
and crossing under the lower volume facility to reduce noise impact.

• In some instances, the lower volume facility should be carried over if there is a
pronounced economic advantage.

Structure Widths

Roadways with wide shoulders, wide gutters, and flat slopes are the safest and give the
driver a sense of freedom. Poles, walks, bridge columns, bridge railing, and parapets located close
to the traveled way are potential obstructions and cause drivers to shy away from them. For this
reason, the clear width on bridges should preferably be as wide as the approach roadway in order
to give drivers a sense of openness and continuity.

On long bridges, particularly on long-span structures where cost per square meter is greater
than the cost on short-span structures, widths that are less than ideal may be acceptable; however,
economy alone should not be the governing factor in determining structure widths. The analysis
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of traffic characteristics, safety features, emergency contingencies, and benefit/cost ratios should
be fully considered before the desirable structure width is compromised.

When determining the appropriate width of the roadway over or under a grade separation, in
determining the dimensions, location, and design of the structure as a whole, and in detailing
features adjacent to the road, the designer should aim to provide a facility on which driver
reaction and vehicle placement will be essentially the same as elsewhere on the intersecting
roads. However, the width should not be so great as to result in the high cost of structure without
proportionate value in usefulness and safety.

Underpass Roadways

For each underpass, the type of structure used should be determined by the dimensional,
load, foundation, and general site needs for that particular location. Only the dimensional details
are reviewed herein.

Although it is an expensive element, an underpass is only one component of the total facility
and should, therefore, be consistent with the design standards of the rest of the facility to the
extent practical. It is desirable that the entire roadway cross section, including the median,
traveled way, shoulders, and clear roadside areas, be carried through the structure without change.
However, several possible limitations may require some reduction in the basic roadway cross
section:  structural design limitations; vertical clearance limitations; controls on grades and
vertical clearance; limitations due to skewed crossings, appearance, or aesthetic dimension
relations; and cost factors, such as those encountered in lengthy depressed sections of roadway.
On the other hand, where conditions permit a substantial length of freeway to be developed with
desirable lateral dimensions, an isolated overpass along the section should not be designed as a
restrictive element. In such cases, the additional structural costs are strongly encouraged to ensure
consistency through the facility.

Lateral Clearances

Minimum lateral clearances at underpasses are illustrated in Exhibit 10-6. For a two-lane
roadway or an undivided multilane roadway, the cross-section width at underpasses will vary,
depending on the design criteria appropriate for the particular functional classification and traffic
volume. The minimum lateral clearance from the edge of the traveled way to the face of the
protective barrier should be the normal shoulder width.

On divided highways, the clearances on the left side of each roadway are usually governed
by the median width. A minimum median width of 3.0 m [10 ft] may be used on a four-lane
roadway to provide 1.2-m [4-ft] shoulders and a rigid median barrier. For a roadway with six or
more lanes, the minimum median width should be 6.6 m [22 ft] to provide 3.0-m [10-ft] shoulders
and a rigid median barrier. Exhibit 10-6A shows the minimum lateral clearances to a continuous
median barrier, either concrete or metal, for the basic roadway section and for an underpass
where there is no center support. The same clearance dimensions are applicable for a continuous
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wall on the left. Where a concrete median barrier is used, its base should be aligned with respect
to the traveled way, as shown in Exhibit 10-6A.

Exhibit 10-6. Lateral Clearances for Major Roadway Underpasses

Exhibit 10-6B shows the minimum lateral clearance on the right side of the roadway as
applicable to a continuous wall section. A concrete barrier is constructed integrally with the wall.
For this situation, the lateral clearance on the right should be measured to the base of the barrier.
For design with a continuous concrete barrier on the right, usually a section similar to a median
barrier, Exhibit 10-6B is applicable. The same type of barrier may be used as an introduced
feature where conditions lead to structure design with full-depth abutments.
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As discussed in earlier chapters, the shoulder on high-speed highways should be flush with
the traveled way. Continuous curbs on high-speed highways should be limited to special
situations, such as drainage systems on the outside of shoulders. Such curbs should be carried
through the underpass. Where walkways are provided, the full shoulder section should be
maintained through the underpass and the span increased by the width of the walk. Where a curb
is needed along solid abutments or walls, a concrete barrier may be used. See Chapter 4 for a
discussion on other types of barriers, their warrants, and issues concerning their placement.

Where conditions preclude the clear roadside design concept, all abutments, piers, and
columns should be shielded with suitable protective devices unless they are so situated that they
cannot be hit by out-of-control vehicles. Protective devices are usually not needed along
continuously walled sections.

Guardrail installed along the face of an exposed pier or abutment should have a clearance
appropriate to the dynamic lateral deflection of the particular rail type. The rail cannot cushion
and deflect an errant vehicle unless there is sufficient lateral space clear of the bridge support.
Exhibit 10-6C shows the limits of the dynamic lateral deflection distance between the face of
bridge support and the back of the rail system. Guardrail attached flush with the exposed faces of
piers, abutments, and bridge railings should be stiffened preceding the obstruction to avoid
snagging an errant vehicle. This may be accomplished by reducing the post spacing, increasing
the post imbedment, increasing the rail section modulus, and/or transitioning to a different, stiffer
barrier (i.e., metal to concrete). The rail should be fastened securely enough to develop its full
strength longitudinally. For further details, see the AASHTO Roadside Design Guide (3).

Where structural design and cost features make it necessary to reduce the horizontal
clearance through an underpass, the change in lateral width should be accomplished through
gradual adjustments in the cross section of the approach roadway rather than abruptly at the
structure. Such transitions in width should have a gradual rate of 50:1 or more
(longitudinal:lateral).

Vertical Clearance

Vertical clearance is typically determined for an entire route and may be governed by the
established policies of the highway system. Although State laws vary somewhat, most States
permit the vehicle height, including load, to be between 4.1 m [13.5 ft] and 4.4 m [14.5 ft]. The
vertical clearance of all structures above the traveled way and shoulders should be at least 0.3 m
[1 ft] greater than the legal vehicle height, and allowance should be made for future resurfacing.

Additional vertical clearance is desirable to compensate for several resurfacings, for snow or
ice accumulation, and for an occasional slightly overheight load. The recommended minimum
vertical clearance is 4.4 m [14.5 ft], and the desirable vertical clearance is 5.0 m [16.5 ft].

Some roadways are parts of systems or routes for which a minimum vertical clearance of
4.9 m [16 ft], plus an allowance for future resurfacing, has been established. Freeway and arterial
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systems are generally provided with such clearance, but for other routes a lower minimum
vertical clearance is acceptable.

To permit the movement of exceptionally high loads through an urban area, it is desirable to
have at least one route with structures designed so that the movement can be easily
accommodated. This design could entail the use of deck-type bridges, street lights mounted
higher than normal, underground utilities, mast-arm-supported traffic signals, which can be
swung to one side, etc.

Where a depressed facility is a parkway with traffic restricted to passenger vehicles, the
vertical clearance at structures should be 4.6 m [15 ft], and in no case should it be less than 3.8 m
[12.5 ft]. The minimum clearance should be obtained within all portions of the roadway.

Overpass Roadways

The roadway dimensional design of an overpass or other bridge should be the same as that of
the basic roadway. The bridge is a small part of the continuous roadway and should be designed
without change in cross-section dimensions, unless the cost becomes prohibitive.

This section covers the general dimensional features for single structures typically used at a
grade separation, a stream crossing, or a single-structure interchange. Overpasses usually are deck
structures. Their major dimensional features are the parapet rail system, lateral clearances, and the
median treatment, where applicable. Typical overpass structures are shown in Exhibit 10-7. For
further discussion see also the sections under “Curbs” and “Traffic Barriers” in Chapter 4.

Bridge Railings

The typical bridge railing has some form of concrete base or parapet on which metal or
concrete rail or rails are mounted on structurally adequate posts. The bridge railing should be
designed to accommodate the design vehicle(s) on the structure under the design impact
conditions. That is, the design vehicle should be safely redirected, without penetration or vaulting
over the railing. Likewise, the railing should not pocket or snag the design vehicle, causing abrupt
deceleration or spinout, and it should not cause the design vehicle to roll over.

Most bridge railings in service are of a rigid, non-yielding design. Several railings
incorporate energy-absorbing features in their design to reduce vehicle impact severity. Where
noise is a factor, solid rails may be considered for their added value in noise attenuation.

At certain locations, there may be a need to provide a pedestrian walkway or bicycle path on
the freeway overpass. In these situations, a barrier-type bridge rail of adequate height should be
installed between the pedestrian walkway and the roadway. Also, a pedestrian rail or screen
should be provided on the outer edge of the walkway.
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Exhibit 10-7. Typical Overpass Structures
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Bridge railings located on the inside of horizontal curves may restrict stopping sight
distance. Adjustment of the horizontal alignment or the offset to the bridge railing may be needed
to provide adequate stopping sight distance.

Lateral Clearances

On overpass structures, it is desirable to carry the full width of the approach roadway across
all structures. For facilities other than freeways, exception may be made on major structures with
a high unit cost. The selection of cross-section dimensions that are different from those on the
approach roadway should be subject to individual economic studies. Refer to previous chapters
on arterials, collectors, and local roads and streets for permissible deviations from providing full
approach roadway width across bridges. In the case of a curbed roadway, the minimum structure
width should match the curbed approach roadway.

When the full approach roadway width is continued across the structure, the parapet rail,
both left and right, should align with the guardrail on the approach roadway. For example, where
the typical practice of the highway agency is to place the longitudinal barrier 0.6 m [2 ft] from the
outer edge of the surfaced shoulder, the bridge rail should be placed 0.6 m [2 ft] outside the
effective edge of the shoulder. This provides additional clearance for high-speed operation and
door-opening space for vehicles stopped on the shoulder of the structure. Some agencies prefer to
place the roadway longitudinal barrier 0.6 m [2 ft] from the outer edge of the shoulder and the
bridge rail at the shoulder edge. In this case, a transition rate of about 20:1 is appropriate to taper
the longitudinal barrier into the bridge rail.

At some interchanges, additional width for speed-change lanes or weaving sections is needed
across overpass structures. Where the auxiliary lane is a continuation of a ramp, the horizontal
clearance to the bridge rail should be at least equal to the width of shoulder on the approach ramp.
Where the auxiliary lane is a weaving lane connecting entrance and exit ramps or is a parallel-
type speed-change lane across the entire structure, the clearance to the parapet should be of
uniform width and be at least equal to the shoulder width on the ramp.

Medians

On a divided highway with a wide median or one being developed in stages, the overpass
will likely be built as two parallel structures. The approach width of each roadway should be
carried across each individual structure. If separate parallel structures are used, the width of
opening between structures is unimportant.

Where the approach is a multilane, undivided roadway or one with a flush median less than
1.2-m [4-ft] wide, a raised median is considered unnecessary on short bridges of about 30 m
[100 ft] in length but is desirable on bridges of 120 m [400 ft] or more in length. On bridges
between 30 m [100 ft] and 120 m [400 ft] in length, local conditions such as traffic volume,
speed, sight distance, need for luminaire supports, future improvement, approach cross section,
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number of lanes, and whether the roadway is to be divided determine whether or not medians are
warranted.

Where there are medians of narrow or moderate width on approaches to long single
structures, the structure should be wide enough to accommodate the same type of median barrier
as is used in the median of the approach roadway.

Longitudinal Distance to Attain Grade Separation

The longitudinal distance needed for adequate design of a grade separation depends on the
design speed, the roadway gradient, and the amount of rise or fall needed to achieve the
separation. Exhibit 10-8 shows the horizontal distances needed in flat terrain. It may be used as a
guide for preliminary design to determine quickly whether or not a grade separation is practical
for given conditions, what gradients may be involved, and what profile adjustments, if any, may
be needed on the cross street. These data also may serve as a general guide in other than flat
terrain, and adjustments can be made in the length of the terminal vertical curves. The chart is
useful where the profile is rolled to overpass some cross streets and to underpass others, and it is
useful for design of an occasional grade separation on a facility located at ground level, such as a
major street or at-grade expressway.

The distance needed to achieve a grade separation can be determined from Exhibit 10-8 for
gradients ranging from 2 to 7 percent and for design speeds (Vo) ranging from 50 km/h to
110 km/h [30 mph to 70 mph]. Design speeds (Vo) of 80 km/h to 110 km/h [50 mph to 70 mph]
are applicable to urban freeways, and 60 km/h (50 km/h in special cases) [40 mph (30 mph in
special cases)] is used on major arterials. The curves are derived with the same approach gradient
on each side of the structure. However, values of D from Exhibit 10-8 also are applicable to
combinations of unequal gradients. Distance D is equal to the length of the initial vertical curve,
plus one-half the central vertical curve, plus the length of tangent between the curves. Lengths of
vertical curves, both sag and crest, are minimums based on the minimum stopping sight distance.
Longer curves are desirable. Length D applies equally to an overpass and an underpass, despite
the fact that the central crest vertical curve may be longer than the central sag vertical curve for
comparable values of H and G.

Certain characteristics and relations in Exhibit 10-8 are worthy of note:

• For the usual profile rise (or fall) needed for a grade separation (H of 7.5 m [25 ft] or
less), gradients greater than 3 percent for a design speed of 110 km/h [70 mph],
4 percent for 100 km/h [60 mph], 5 percent for 80 km/h [50 mph], and 6 percent for
60 km/h [40 mph] cannot be used. For values of H less than 7.5 m [25 ft], flatter
gradients than cited above should generally be used. The lower terminal of the gradient
lines on the chart, marked by a small circle, indicates the point where the tangent
between curves is 0 and below which a design for the given grade is not feasible (i.e., a
profile condition where the minimum central and end curves for the gradient would
overlap).
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Exhibit 10-8. Flat Terrain, Distance Required to Effect Grade Separation
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Exhibit 10-8.  Flat Terrain, Distance Required to Effect Grade Separation (Continued)

• For given H and design speed, distance D is shortened a negligible amount by
increasing the gradient above 4 percent for a design speed of 80 km/h [50 mph] and
above 5 percent for 60 and 50 km/h [40 and 30 mph]. Distance D varies to a greater
extent, for given H and G, with changes in design speed.

A 6.0- to 6.6-m [20- to 22-ft] difference in elevation is usually needed at a grade separation
of two highways for essential vertical clearance and structural thickness. The same dimension
generally applies to a highway undercrossing a railroad, but about 8.4 m [28 ft] is needed for a
highway overcrossing a main line railroad. In level terrain, these vertical dimensions correspond
to H, the rise or fall needed to achieve a grade separation. In practice, however, H may vary over
a wide range because of topography. Where a relatively short distance is available for a grade
separation, it may be appropriate to reduce H to keep D within the distance available. This
reduction is accomplished by raising or lowering the intersecting street or railroad.

Grade Separations Without Ramps

There are many situations where grade separations are constructed without the provision of
ramps. For example, some major arterials intersecting the existing highway must be kept open for
access but carry only low traffic volumes. Lacking a suitable relocation plan for the crossroad, a
highway grade separation without ramps may be provided. All drivers desiring to turn to or from
that road are required to use other existing routes and enter or leave the highway at other
locations. In some instances, these vehicles may have to travel a considerable extra distance,
particularly in rural areas.

In other situations, despite sufficient traffic demand, ramps may be omitted (1) to avoid
having interchanges so close to each other that signing and operation would be difficult, (2) to
eliminate interference with large highway traffic volumes, and (3) to increase safety and mobility
by concentrating turning traffic where it is practical to provide adequate ramp systems. On the
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other hand, undue concentration of turning movements at one location should be avoided where it
would be better to provide several interchanges.

In rugged topography, the site conditions at an intersection may be more favorable for
provision of a grade separation than an at-grade intersection. If ramp connections are difficult or
costly, it may be practical to omit them and accommodate turning movements at other
intersecting roads.

INTERCHANGES

General Considerations

There are several basic interchange configurations to accommodate turning movements at a
grade separation. The type of configuration used at a particular site is determined by the number
of intersection legs, expected volumes of through and turning movements, type of truck traffic,
topography, culture, design controls, and proper signing. The designer’s initiative also plays an
important role.

While interchanges are custom designed to fit specific site conditions, it is desirable that the
overall pattern of exits along the freeway have some degree of uniformity. Furthermore, from the
standpoint of driver expectancy, it is desirable that all interchanges have one point of exit located
in advance of the crossroad wherever practical.

Signing and operations are major considerations in the design of the interchanges. The
signing of each design should be tested to determine if it can provide for the smooth, safe flow of
traffic. The need to simplify interchange design from the standpoint of signing and driver
understanding cannot be overstated.

To prevent wrong-way movements, all freeway interchanges with non-access-controlled
highways should provide ramps to serve all basic directions. Drivers expect freeway-to-freeway
interchanges to provide all directional movements. As a special case treatment, a freeway-to-
freeway movement may be omitted if the turning traffic is minor and can be accommodated by
and given the same route signing over other freeway facilities.

The accommodation of pedestrians and bicyclists also should be considered in the selection
of an interchange configuration.

For convenience, examples of interchange configurations are illustrated in the following
discussion in general terms for three- and four-leg intersections and for special designs involving
two or more structures. The general interchange configurations are shown either schematically or
as examples of existing facilities.
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Three-Leg Designs

An interchange with three intersecting legs consists of one or more highway grade
separations and one-way roadways for all traffic movements. When two of the three intersection
legs form a through road and the angle of intersection is not acute, the term T interchange applies.
When all three intersection legs have a through character or the intersection angle with the third
intersection leg is small, the interchange may be considered a Y configuration. A clear distinction
between the T and Y configurations is not important. Regardless of the intersection angle and
through-road character, any basic interchange pattern may apply for a wide variety of conditions.
Three-leg interchanges should only be considered when future expansion to the unused quadrant
is either impossible or highly unlikely. This is due in part to the fact that three-leg interchanges
are very difficult to expand or modify in the future.

Exhibit 10-9 illustrates patterns of three-leg interchanges with one grade separation.
Exhibits 10-9A and 10-9B show the widely used trumpet pattern. Through-traffic movements,
from points a to c, are on direct alignment. A criterion for selection of either design is the relative
volumes of the left-turning movements, the more direct alignment favoring the heavier volume
and the loop favoring the lesser volume. Skewed crossings are more desirable than right-angle
crossings because the skewed crossing has a somewhat shorter travel distance and flatter turning
radius for the heavier left-turning volume, and there is less angle of turn for both left turns. In
Exhibit 10-9A, the curvature of the loop b-a begins before the structure, warning the driver to
anticipate a major break in curvature. The transition spirals provide for a smooth speed change
and steering maneuver both into the loop and onto the high-speed facility. The oblong shape of
the loop allows the curvature of the high-volume left turn, c to b, to be flattened, allowing higher
operating speeds to be attained. The exit to the loop ramp of Exhibit 10-9B is placed well in
advance of the structure to provide sufficient deceleration length in the approach to the break in
curvature. Curves with spiral transitions are effective in developing the desired shape of ramps.
The curvature of the left turn, b-a, is initiated in advance of the structure for driver anticipation.

The other type of three-leg single-structure interchange shown in Exhibit 10-9C is less
common, with loops for both left-turning movements. The interchange in Exhibit 10-9C has an
excellent field of usage as the initial stage of an ultimate cloverleaf. A collector-distributor road is
provided to eliminate weaving on the main road. In the second stage, the roadway forming the
fourth leg opposite the stem of the T is developed, and the remaining ramps are added. With
respect to traffic, this type of interchange is inferior to those in Exhibits 10-9A and 10-9B
because both left-turns movements use loops and weave across each other. Furthermore, the
small-radius loop ramps are not considered to be an appropriate method of terminating a freeway.
Although the pattern is appropriate for interchanges where the left-turning volumes are not great,
the configurations in Exhibits 10-9A and 10-9B are preferable if they are equally adaptable to the
site conditions. For comparable conditions, construction costs for Exhibits 10-9A and 10-9B
should be about the same.
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Exhibit 10-9. Three-Leg Interchanges With Single Structures

Exhibit 10-10 illustrates high-type T and Y interchanges, each with more than one structure
or with one three-level structure, that provide for all of the movements without loops. These
configurations are more costly than single-structure configurations and are justified only where
all movements are large.

In Exhibit 10-10A, all movements are directional, three structures are needed, and weaving
is avoided. This plan is suitable for the intersection of a through freeway with the terminal of
another major freeway. Some or all of the interchanging movements will need at least two-lane
roadways. All entrances and exits are designed as branch connections or major forks, as discussed
later in this chapter. The alignment of this interchange may be adjusted to reduce the right-of-way
needs, forming an interchange with only one three-level structure, as illustrated in
Exhibit 10-10B.

Operationally, the configuration in Exhibit 10-10A might be superior to the configuration in
Exhibit 10-10B because of the inherent sharp curvature on movement c-b in Exhibit 10-10B.
While complete cost comparison involves a special analysis, there usually is little difference in
cost. In some cases, the more complex three-level structure has been found to be less costly.

Exhibit 10-10C illustrates a three-leg interchange with a double jug-handle pattern. This
pattern applies where it is appropriate to carry one of the freeways through the interchange with
minimal deviation in alignment but where the intersecting radius is also considerably important.
Interchanging traffic enters and exits the freeway on the right and ramps are usually only single-
lane roadways. This pattern involves the use of three structures, at least two of which span double
roadways. As shown in Exhibit 10-10D, the basic pattern can be arranged so that the two left-turn
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ramps and the through roadway meet at a common point where a three-level structure replaces the
three structures shown.

Exhibit 10-10E is another variation of the configuration in Exhibits 10-10C and 10-10D.
Separate roadways are provided for each left-turning movement with two, two-level structures
separating the ramps from the through movements. The grade separation structures should be
spaced sufficiently far apart to permit the placement of the separate ramp, b-a, between them, thus
avoiding the third structure of Exhibit 10-10C. This design may be altered, as shown in Exhibit
10-10F. This arrangement provides smoother alignment on the ramps, but successful operation
depends on provision of a weaving section that is suitably long for these two movements.

Exhibit 10-10. Three-Leg Interchanges With Multiple Structures

Exhibit 10-11 shows a trumpet interchange at the junction of a freeway and a major local
road in a rural area. A unique feature of this configuration is that the local road overpasses one
roadway of the freeway and underpasses the other because of the steep slope on the terrain. This
pattern also explains the relatively sharp radius on the loop. The design favors the heavier traffic
movement that is provided by the semidirect connection, and the loop handles the lighter volume.

Exhibit 10-12 shows an interchange between two freeways in a rural area. The directional
design with large radii permits high-speed operation for all movements. The frontage roads
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Exhibit 10-11. Three-Leg Interchange (T-Type or Trumpet)

Exhibit 10-12. Three-Leg Interchange Semidirectional Design
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provide desirable one-way operations with connections from the interchange roadways being as
long as practical. The separation distance between major forks and the ramp terminals that follow
should be sufficient to provide for smooth traffic operations. There are three separate structures in
this configuration.

Exhibit 10-13 shows a directional, three-leg interchange between two freeways at a river
crossing. The turning roadways are liberally designed to permit high-speed operation. Note the
major fork and branch connection on the river crossings. A much more expansive gore area is
provided on the divergence than on the convergence for a recovery area and possible installation
of an attenuator.

Exhibit 10-13. Directional Three-Leg Interchange of a River Crossing

Exhibit 10-14 illustrates a trumpet-type interchange. The two-lane exit and entrance at the
bridge in the foreground of the exhibit serve both the local street system and the freeway-to-
freeway movements. All interchange movements are usually provided in this type of interchange,
and the exits on the curves are properly designed to discourage inadvertent exits. The exit in the
bottom of the foreground of the exhibit is placed so that it commences in advance of the main-
line curve. The gores are liberally designed with good delineation.
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Exhibit 10-14. Trumpet Freeway-to-Freeway Interchange

Four-Leg Designs

Interchanges with four intersection legs may be grouped under five general configurations:
(1) ramps in one quadrant, (2) diamond interchanges, (3) single-point urban interchanges
(SPUIs), (4) full or partial cloverleafs (including ramps in two or three quadrants), and (5)
interchanges with direct and semidirect connections. Operational characteristics and adaptations
of each configuration are discussed separately. Actual examples of existing or planned
interchanges are presented for each type.

Ramps in One Quadrant

Interchanges with ramps in only one quadrant have application for an intersection of
roadways with low traffic volumes. Where a grade separation is provided at an intersection
because of topography, even though volumes do not justify the structure, a single two-way ramp
of near-minimum design usually will suffice for all turning traffic. The ramp terminals may be
simple T intersections.

Appropriate locations for this type of interchange are very limited. A typical location would
be at the intersection of a scenic parkway and a State or county two-lane highway where turning
movements are light, there is minimal truck traffic, and the terrain and preservation of natural
environment typically take precedence over providing additional ramps.
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At some interchanges it may be appropriate to limit ramp development to one quadrant
because of topography, culture, or other controls, even though the traffic volumes justify more
extensive turning facilities. With ramps in only one quadrant, a high degree of channelization at
the ramp terminals, at the median, and at the left-turn lanes on the through facilities is normally
needed to control turning movements properly.

In some instances, a one-quadrant interchange may be constructed as the first step in a stage
construction program. In this case, the initial ramps should be designed as a part of the ultimate
development.

Exhibit 10-15A illustrates a one-quadrant interchange at the intersection of a State highway
and a scenic parkway located in a rural mountainous area. The elongated shape of the ramp was
determined largely by topography. Traffic entering both through roadways is under stop-sign
control. Although traffic volumes are low, the turning traffic consists of a substantial proportion
of the total volume.

Exhibit 10-15B is a one-quadrant interchange designed to function as an early phase of stage
construction. On future construction, it is readily adaptable to become a part of a full or partial
cloverleaf interchange without major renovation. The channelization, although elaborate, is
conducive to safety and attractive landscaping.

Exhibit 10-15. Four-Leg Interchanges, Ramps in One Quadrant
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Diamond Interchanges

The simplest and perhaps most common interchange configuration is the diamond. A full
diamond interchange is formed when a one-way diagonal ramp is provided in each quadrant. The
ramps are aligned with free-flow terminals on the major highway, and the left turns at grade are
confined to the crossroad. The diamond interchange has several advantages over a comparable
partial cloverleaf:  all traffic can enter and leave the major road at relatively high speeds, left-
turning maneuvers entail little extra travel, and a relatively narrow band of right-of-way is
needed, sometimes no more than that needed for the highway alone.

Diamond interchanges have application in both rural and urban areas. They are particularly
adaptable to major-minor crossings where left turns at grade on the minor road are fitting and can
be handled with minimal interference to traffic approaching the intersection from either direction.
The intersection on the crossroad formed by the terminals functions as any other T intersection at
grade and should be designed as outlined in Chapter 9. However, because these intersections have
four legs, two of which are one-way, they present a problem in traffic control to prevent wrong-
way entry from the crossroad. For this reason, a median should be provided on the crossroad to
facilitate proper channelization. While this median can be a painted median, a depressed or raised
median with a sloping curb is preferred. In most cases, additional signing to help prevent
improper use of the ramps should be incorporated in the interchange design. Wrong-way entry
problems are further discussed in Chapter 9 in the section on “Design to Discourage Wrong-Way
Entry.”

Diamond interchanges usually need signalization where the cross street carries moderate-to-
large traffic volumes. The capacity of the ramps and that of the cross street may be determined by
the signal-controlled ramp terminals. In such a case, roadway widening may be needed on the
ramps or on the cross street through the interchange area, or both. While a single-lane ramp may
adequately serve traffic from the freeway, it may have to either be widened to two or three lanes
or be channelized for storage at the cross street, or both, in order to provide the capacity needed
for the at-grade condition. This design would prevent stored vehicles from extending too far
along the ramps or onto the freeway. Left-turning movements in the most common diamond
interchange configurations, as shown in Exhibit 10-16, usually need multiphase control.

Exhibits 10-16 through 10-18 illustrate a variety of diamond interchange configurations.
These interchanges may be designed with or without frontage roads. Designs with frontage roads
are common in built-up areas, often as part of a series of such interchanges along a freeway.
Ramps should connect to the frontage road at a minimum distance of 100 m [350 ft] from the
crossroad. Greater distances are desirable to provide adequate weaving length, space for vehicle
storage, and turn lanes at the crossroad. Exhibit 10-16C is a spread diamond rural interchange
with the potential for conversion to a cloverleaf.

In a diamond interchange, the greatest impediment to smooth operations is left-turning
traffic at the crossroad terminal. Arrangements that may be suitable to reducing traffic conflicts
are shown in Exhibits 10-17 and 10-18. By using a split diamond (i.e., each pair of ramps
connected to a separate crossroad about a block apart), as shown in Exhibit 10-17A, conflicts are
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Exhibit 10-16. Diamond Interchanges, Conventional Arrangements

Exhibit 10-17. Diamond Interchange Arrangements to Reduce Traffic Conflicts



AASHTO—Geometric Design of Highways and Streets

784

Exhibit 10-18. Diamond Interchanges with Additional Structures

minimized by handling the same traffic at four rather than two crossroad intersections, reducing
the left-turn movements at each intersection from two to one. A disadvantage with this
arrangement is that traffic leaving the freeway cannot return to the freeway at the same
interchange. Frontage roads (shown as dashed lines) are optional.

Exhibit 10-17B shows a split diamond in conjunction with a pair of one-way cross streets
and one-way frontage roads. Simplicity of layout and operation of both the crossroad and the
at-grade terminals result. Traffic leaving the freeway is afforded easy access to return to the
freeway and continue the journey in the same direction.

Exhibit 10-17C shows a diamond interchange with frontage roads and separate turnaround
provisions. These are highly desirable if the cross street has heavy traffic volumes and there is
considerable demand for the U-turning movement. The turnaround roadways are adjacent to the
cross street with additional width provided beneath the structure or, if the cross street overpasses
the freeway, on top of the structure. As an alternative, separate structures may be provided for the
U-turn movements.

Exhibit 10-18 shows diamond interchanges with more than one structure. The layout in
Exhibit 10-18A and the “criss-cross” arrangement in Exhibit 10-18B are sometimes dictated by
topographic conditions or right-of-way restrictions. The operational performance of the
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interchanges in Exhibits 10-18A and 10-18B are the same as those shown in Exhibit 10-17A. The
layout of Exhibit 10-18B also may be used to eliminate weaving between two closely spaced
interchanges. These layouts may be further modified by the use of one-way operation on the cross
streets. The deficiency of both layouts in Exhibits 10-18A and 10-18B is that traffic that has left
the freeway cannot return directly to it and continue in the same direction. The spacing of the
crossroads is determined primarily by grade constraints and acceleration and deceleration lengths.

The double or three-level diamond in Exhibit 10-18C, which has a third-level structure and
four pairs of ramps, provides uninterrupted flow of through traffic on both of the intersecting
highways. Only the left-turning movements cross at grade. This arrangement is applicable where
the cross street carries large traffic volumes and topography is favorable . The right-of-way
needed is much less than that for other layouts having comparable capacity. Although large
through and turning volumes can be handled, it is disadvantageous for intersections of two
freeways in that some of the turning movements must either stop or slow down substantially.
Signals are used in high-volume situations, and their efficiency is dependent on the relative
balance in left-turn volumes. They are normally synchronized to provide continuous movement
through a series of left turns once the area is entered.

Exhibits 10-19 and 10-20 present examples of diamond interchange configurations that are
somewhat different from the conventional application. Exhibit 10-19 shows a freeway that
features a three-level diamond interchange at the crossing of another controlled-access facility. In
urban areas, where a crossing street carries a high volume of traffic, the three-level diamond
interchange may be appropriate. Exhibit 10-20 shows a spread diamond interchange with
provision in all four quadrants for future loop ramps. When there is sufficient traffic to justify the
additional loop ramps, the diamond ramps would also be modified to convert the interchange to a
full cloverleaf. The interchange in the exhibit is currently located in a rural area, but the area is
rapidly developing. The ramps are all 4.2 m [14 ft] wide with grades less than 1 percent. The
minor road is a four-lane divided highway with left-turn lanes at the diamond ramp terminals.
Traffic control consists only of stop signs for traffic on the off-ramps from the freeway.

Exhibit 10-19. Freeway With a Three-Level Diamond Interchange
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Exhibit 10-20. Existing Four-Leg Interchange With Diamond Stage Construction

It may be beneficial to consider the use of “X” pattern ramps at diamond interchanges in
urban areas. With this ramp pattern, the entrance occurs prior to the intersection while the exit
occurs after the cross street. This configuration, as shown in Exhibit 10-21, can improve traffic
flow characteristics for the through roadways around diamond interchanges. However, driver
expectancy should be considered.

Exhibit 10-21. X-Pattern Ramp Arrangement
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Single-Point Urban Interchanges

The single-point urban interchange (SPUI) is a relatively recent development in interchange
design with the first SPUIs being constructed in the early 1970s. The SPUI is also known as an
urban interchange or a single-point diamond interchange. The primary features of a SPUI are that
all four turning moves are controlled by a single traffic signal and opposing left turns operate to
the left of each other.

SPUIs are typically characterized by narrow right-of-way, high construction costs, and
greater capacity than conventional tight diamond interchanges. These interchanges can be
constructed either with or without frontage roads. They are primarily suited for urban areas where
right-of-way is restricted but may also be applicable to rural settings where it is undesirable to
utilize adjacent right-of-way due to environmental, geographical, or other constraints.

SPUIs offer several advantages. These include construction in a relatively narrow right-of-
way, resulting in potentially significant cost reductions. The primary operational advantage of this
interchange configuration is that vehicles making opposing left turns pass to the left of each other
rather than to the right, so their paths do not intersect. In addition, the right-turn movements are
typically free-flow movements and only the left turns must pass through the signalized
intersection. As a result, a major source of traffic conflict is eliminated, increasing overall
intersection efficiency and reducing the traffic signal needed from four-phase to three-phase
operation. Since the SPUI has only one intersection, as opposed to two for a diamond
interchange, the operation of the single traffic signal on the crossroad may result in reduced delay
through the intersection area when compared to a diamond interchange. Curve radii for left-turn
movements through the intersection are significantly flatter than at conventional intersections
and, therefore, the left turns move at higher speeds. The above-mentioned operational
improvements result in a higher capacity than a conventional tight diamond interchange.

The primary disadvantage of SPUIs is high construction costs associated with bridges.
Overpass SPUIs need long bridges to span the large intersection below. A two-span structure is
not a design option because a center column would conflict with traffic movements. Single-span
overpass bridges are typically 65 m [220 ft] in length, while three-span bridges often exceed
120 m [400 ft]. As shown in Exhibit 10-22, the SPUI underpass tends to be wide and often is
“butterfly” in shape, resulting in high costs. Where right-of-way is tightly constrained, SPUIs
typically utilize extensive retaining walls, further adding to the cost. However, the higher
construction cost of SPUIs is often offset by the reduced right-of-way cost. Exhibit 10-23 shows
an underpass SPUI in restricted right-of-way.

A second potential problem encountered with SPUIs is the length and geometry of the path
for left-turning vehicles through the intersection. Like most typical intersections, left-turning
vehicles pass to the left of opposing left-turning vehicles. However, due to the size and distance
between opposing approaches, the path of left-turning vehicles does not resemble a quarter of a
circle found at typical intersections, but rather resembles a quarter of an ellipse. To provide
positive guidance for this non-traditional path, various features have been developed. At a
minimum, 0.6-m [2-ft] dashed lane lines should be painted through the intersection. Another
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Exhibit 10-22. Underpass Single Point Urban Interchange

Exhibit 10-23. An SPUI Underpass in Restricted Right-of-Way
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option is to install directional guide lights, such as airport runway lights, flush with the pavement
surface. These lights can be sequenced in coordination with the traffic signal at the intersection.

On underpass SPUIs, airport runway lights placed in the bridge deck may conflict with the
reinforcing steel and therefore may not be practical.

A skew angle between the two roadway alignments has an adverse effect on SPUIs because
it increases clearance distances and adversely affects sight distance. Severe skew in alignments
may also increase the length of the bridge and widen the distance between the stop bars on the
local streets. Extreme care should be exercised in planning SPUIs when the skew angle
approaches 30 degrees.

Several basic design considerations can optimize the geometrics and operation of an SPUI.
First, it is desirable that the left-turn curve be a single radius. This will, however, typically result
in additional right-of-way and/or a larger bridge structure. Where it is not practical to provide a
single radius, and curves are compounded from a larger to a smaller radii, the second curve
should be at least half the radius of the first. Another important design feature is to provide
stopping sight distance on the left-turn movements equal to or exceeding the design speed for the
curve radius involved. A third design feature that can improve intersection operation is to provide
additional median width on the cross street. The stop bar location on the cross street is dependent
on the wheel tracks from the opposing ramp left-turn movement (See Exhibit 10-22). By
widening the median, the stop bar on the cross street can be moved forward, thus reducing the
size of the intersection and the distance each vehicle travels through the intersection. The results
include greater available green time and less potential driver confusion due to an expansive
intersection area.

An SPUI with frontage roads, as illustrated in Exhibit 10-24, introduces additional
considerations into the design. Frontage roads should be one way in the direction of the ramp
traffic. A slip ramp from the mainline to the frontage road provides access to and from the
intersection. This ramp should connect to the frontage road at least 200 m [650 ft], and preferably
greater than 300 m [1,000 ft], from the crossroad. The traffic signal needs a fourth phase to
provide through movements on the frontage roads. A free-flow, U-turn movement may be
desirable to expedite movements from one direction on the frontage road to the other.

Because of the size, shape, and operational characteristics of SPUIs, pedestrian movement
through the intersection should be given careful consideration. Pedestrian crossing of the local
street at ramp terminals typically adds a signal phase and involves considerable green time,
resulting in reduced operational efficiency. Therefore, the overall design should include provision
of pedestrian crossings at adjacent intersections instead of at the ramp terminal intersection.
Pedestrian movements parallel to the local street are more readily handled. If, however,
crosswalks are provided at ramps, they should be perpendicular to the ramp direction of travel
and near to the local street. Perpendicular crosswalks minimize the length of the crossing and
therefore minimize conflicting movements. Crosswalks located near the local street meet driver
expectation and allow good sight distance to the pedestrian crossing.
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Exhibit 10-24. Overpass Layout With a Frontage Road and a Separate U-Turn Movement



Grade Separations and Interchanges

791

Right-turn lanes at SPUIs are typically separated from the left-turn lanes, often by a
considerable distance. The exit ramp right turn can be a free or controlled movement. The design
of free right turns should include an additional lane on the cross street beginning at the free
right-turn lane for at least 60 m [200 ft] before being merged. Free-flow right turns from the exit
ramp to an arterial crossroad are not desirable when the nearest intersection on the crossroad is
within 150 m [500 ft] because there may be inadequate weaving distance between the exit ramp
and the adjacent intersection. Heavy pedestrian traffic also can diminish the desirability of free
right-turn lanes by adding a potential conflict with non-controlled vehicular traffic. Where the
right-turn move is controlled by stop sign or traffic signal, adequate right-turn storage on the exit
ramp should be provided to prevent blockage of vehicles turning left or traveling straight. Free-
flow right turns on entrance ramps pose little operational problem, assuming adequate merge
length is provided on the entrance ramp. As shown at the upper left portion of Exhibit 10-22, the
right-turn lane should extend at least 30 m [100 ft] beyond the convergence point before
beginning the merge.

Exhibit 10-25 illustrates both an underpass and an overpass SPUI.

Underpass SPUI

Overpass SPUI

Exhibit 10-25. Underpass SPUI and Overpass SPUI
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Cloverleafs

Cloverleafs are four-leg interchanges that employ loop ramps to accommodate left-turning
movements. Interchanges with loops in all four quadrants are referred to as “full cloverleafs” and
all others are referred to as “partial cloverleafs.”  A full cloverleaf may not be warranted at major-
minor crossings where, with the provision of only two loops, freedom of movement for traffic on
the major road can be maintained by confining the direct at-grade left turns to the minor road. The
principal disadvantages of the cloverleaf are the additional travel distance for left-turning traffic,
the weaving maneuver generated, the very short weaving length typically available, and the
relatively large right-of-way areas needed. When collector-distributor roads are not used, further
disadvantages include weaving on the main line, the double exit on the main line, and problems
associated with signing for the second exit. Because cloverleafs are considerably more expansive
than diamond interchanges, they are less common in urban areas and are better adapted to
suburban or rural areas where space is available.

The travel distance on a loop, as compared with that of a direct left turn at grade, increases
rapidly with an increase in design speed. On a loop designed for 30 km/h (30-m radius
[20 mph (110-ft radius)], the extra travel distance is approximately 200 m [650 ft]; for a design
speed of 40 km/h (50-m radius) [25 mph (170-ft radius)], it is about 300 m [1,000 ft], and for a
design speed of 50 km/h (80-m radius) [30 mph (250-ft radius)], it is around 500 m [1,500 ft].
Thus, for a 10-km/h [5-mph] increase in design speed, extra travel distance increases 50 percent;
the right-of-way area needed increases by about 130 percent.

Travel time on loops varies almost directly with the design speed, the increased speed being
more than balanced by increased distance. For an increase of 10 km/h [5 mph] in loop design
speed, travel time increases 20 to 30 percent or approximately 7 s. This increase in travel time is
actually somewhat less when the overall maneuver is considered because of deceleration and
acceleration outside the limits of the loop proper. (In any case, the travel time via a loop may be
much less than the travel time when making a direct left turn.)

The advantages of increased speed should be weighed against the disadvantages of increased
travel time, distance, and right-of-way. It should also be noted that large trucks may not be able to
operate as efficiently on smaller radii curves. Considering all factors, experience shows that the
practical size of loops resolves into approximate radii of 30 to 50 m [100 to 170 ft] for minor
movements on highways with design speeds of 80 km/h [50 mph] or less and 50 to 75 m [170 to
250 ft] for more important movements on highways with higher design speeds. A continuous
additional lane is needed for deceleration, acceleration, and weaving between the on- and off-loop
ramps. Additional structure width or length is usually needed for this lane. The lateral placement
of bridge abutments or columns, or main-line bridge widths, may have to be reviewed due to the
effects of offtracking at the exit end of the ramp curve.

The cloverleaf involves weaving maneuvers as discussed in the section of this chapter on
“Weaving Sections.” This is not objectionable when the left-turning movements are relatively
light, but when the sum of traffic on two adjoining loops approaches about 1,000 vph,
interference mounts rapidly, which results in a reduction in speed of through traffic. The weaving
lengths presented in Exhibit 10-68 later in this chapter should be provided on low-volume
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cloverleaf interchanges. When the weaving volume in a particular weaving section exceeds
1,000 vph, the quality of service on the main facility deteriorates rapidly, thus generating a need
to transfer the weaving section from the through lanes to a collector-distributor road. A loop
rarely operates with more than a single line of vehicles, regardless of the roadway width, and thus
has a design capacity limit of 800 to 1,200 vph, the higher figure being applicable only where
there are no trucks and where the design speed for the ramp is 50 km/h [30 mph] or higher. Loop
ramp capacity is, therefore, a major control in cloverleaf designs. Loops may be made to operate
with two lanes abreast, but only by careful attention to design of the terminals and design for
weaving, which would need widening by at least two additional lanes through the separation
structure. To accomplish this type of design, the terminals should be separated by such great
distances and the loop radii should be made so large that cloverleafs with two-lane loops are not
generally economical from the standpoint of right-of-way, construction, cost, and amount of
out-of-direction travel. Loops that operate with two lanes of traffic, therefore, are considered
exceptional cases.

Where no direct left turns are permitted on either the main facility and the crossroad, but all
turning movements are to be accommodated, a four-quadrant cloverleaf interchange is the
minimum interchange configuration that will suffice. When a full cloverleaf interchange is used
in conjunction with a freeway and the sum of the traffic on two adjoining cloverleaf loops
approaches about 1,000 vph, collector-distributor roads should be considered. Collector-
distributor roads are generally not cost effective where the ramp volumes are low and are not
expected to increase significantly. The use of acceleration or deceleration lanes with cloverleaf
interchanges is one possible alternative to collector-distributor roads.

Exhibit 10-26 shows an existing cloverleaf interchange between a freeway and an
expressway with partial control of access, located on the edge of a rapidly expanding suburban
area. Collector-distributor roads have been provided along the freeway in expectation of heavy
weaving volumes. Because of the high unit cost of right-of-way, this design was more economical
with the collector-distributor roads and loop ramps with smaller radii. A design with ramps of
larger radii would have been used if the collector-distributor roads had not been provided. The
grades are relatively flat, with 3 percent being the maximum.

Exhibit 10-26. Four-Leg Interchange, Full Cloverleaf With Collector-Distributor Roads
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Exhibit 10-27 shows a cloverleaf interchange between a freeway and a divided arterial street.
Collector-distributor roads serve all the ramp movements on the freeway.

Exhibit 10-27. Cloverleaf Interchange With Collector-Distributor Roads

Partial Cloverleaf Ramp Arrangements. In the design of partial cloverleafs, the site
conditions may offer a choice of quadrants to use. However, at a particular interchange site,
topography and culture may be the factors that determine the quadrants in which the ramps and
loops can be developed. There is considerable operational advantage in certain arrangements of
ramps. These are discussed and summarized in the following analysis.

Ramps should be arranged so that the entrance and exit turns create the least impediment to
the traffic flow on the major highway. The following guidelines should be considered in the
arrangement of the ramps at partial cloverleafs:

• The ramp arrangement should enable major turning movements to be made by
right-turn exits and entrances.

• Where through-traffic volume on major highways is decidedly greater than that on the
intersecting minor road, preference should be given to an arrangement placing the right



Grade Separations and Interchanges

795

turns, either exit or entrance, on the major highway even though it results in a direct left
turn off the crossroad.

These controls do not always lead to the most direct turning movements. Instead, drivers
frequently are required to first turn away from or drive beyond the road of their intended
direction. Such arrangements cannot be avoided if the through-traffic movements, for which the
separation is provided, are to be facilitated to the extent practical.

Exhibit 10-28 illustrates the manner in which the turning movements are made for various
two- and three-quadrant cloverleaf arrangements. When ramps in two quadrants are adjacent and
on the same side of the minor road, as shown in Exhibits 10-28A and 10-28B, or diagonally
opposite each other, as shown in Exhibits 10-28E and 10-28F, all turning movements to and from
the major road are accomplished by right turns. Any choice between the arrangement in
Exhibit 10-28A and its alternate arrangement (ramps in the other two quadrants) will depend on
the predominant turning movements or the availability of right-of-way, or both. When the ramps
in two quadrants are adjacent but on the same side of the major road (Exhibits 10-28B and
10-28D), four direct left turns fall on the major road. This arrangement and its alternate are the
least desirable of the six possible arrangements, and their use should be avoided.

Exhibit 10-28. Schematic of Partial Cloverleaf Ramp Arrangements, Exit
and Entrance Turns
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The arrangement with ramps in diagonally opposite quadrants is advantageous in that the
turning movements in both directions in the quadrants in which the ramps are located are made by
desirable right-turn exits and entrances. At interchanges where turning movements in one
quadrant predominate, the best two-quadrant arrangement has ramps in that quadrant and in the
quadrant diagonally opposite. Where turning movements in two adjacent quadrants are of nearly
the same importance, arrangements shown in Exhibits 10-28A, 10-28E, and 10-28F are
applicable in that all turns to and from the major road are on the right. However, the arrangement
in Exhibit 10-28E is preferable because the ramps are on the near side of the structure as drivers
approach on the major road. With this plan, it may be practical to provide for high-speed turns
from the major road, and drivers desiring to turn are not confused by ramps that may be hidden
by the structure, as shown in Exhibit 10-28F.

There are four possible arrangements for ramps in three quadrants, including the
arrangement in Exhibit 10-28G and the alternate arrangements in which each of the other three
quadrants has no ramps. In an arrangement with ramps in three quadrants, six of the eight turning
movements can be made by right-turn exits and entrances, and the other two are made by right
turns on the major road and corresponding left turns on the minor road. The determination of
which quadrant is to be without ramps is usually dependent on the availability of right-of-way
and the predominant turning movements to be handled.

In some cases, it is desirable to provide diagonal ramps in all four quadrants, but with loops
in one, two, or three of the quadrants. Exhibit 10-28H shows a design with loops in diagonally
opposite quadrants. This design has the advantage of providing all right exits. Storage of vehicles
waiting to make the left turn at the at-grade intersections occurs on the ramp and not on either of
the through highways. In addition, there is no weaving on the major highway.

Exhibit 10-29 shows an existing partial cloverleaf interchange where a two-lane highway
overpasses a six-lane freeway in a suburban area. The design consists of ramps in diagonally
opposite quadrants, arranged to needed minimum frontage on the crossroad. Directional islands
and merge lanes at the ramp terminals permit free-moving right turns to and from the crossroad.
The only traffic control needed is stop signs at the crossroad for the left turns from the off-ramps.
Protected left-turn bays on the crossroad are desirable.

Exhibit 10-29. Four-Leg Interchange (Partial or Two-Quadrant Cloverleaf with Ramps
Before Main Structure)
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Exhibit 10-30 shows an existing partial cloverleaf with ramps in diagonally opposite
quadrants. In relation to the major highway, the ramps are in opposite quadrants from those of the
two previous examples. A major highway crosses over a four-lane freeway. Ramps are located to
avoid heavy commercial and residential development in the other two quadrants. Direct left turns
are confined to the minor road where the terminals are channelized by divisional islands. In the
right half of the exhibit, the intersection of the ramps with the minor highway is signalized. The
outer connections are designed to encourage high-speed merging with the freeway traffic. The
loops have slightly larger radii than the previous example and are designed for a speed of 50 km/h
[30 mph].

Exhibit 10-30. Four-Leg Interchange (Partial or Two-Quadrant Cloverleaf with Ramps
Beyond Main Structure)

Any other arrangement of two loop ramps and four diagonal ramps does involve direct left
turns from the minor road onto a ramp. Note the triangular island channelization at the ends of the
two ramps from which left turns are made onto the two-lane high-volume crossroad. This design
provides adequate left-turn storage and a free-flow right-turn movement from the freeway to the
crossroad. The design of free-flow right turns should include an extension of the right turn-lane
for at least 60 m [200 ft] along the crossroad to allow adequate space for merging. Free right turns
are not desirable when the adjacent intersection is within 150 m [500 ft] because there may be
insufficient weaving area for vehicles making a right turn onto the crossroad and then turning left
at the adjacent intersection.

The loop ramps are carried on separate roadways under structure spans, so the loop traffic
merges with the outer connection traffic before entering the freeway. This design entails a
considerable extra cost but reduces the points of conflict on the freeway.
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Directional and Semidirectional Interchanges

Direct or semidirect connections are used for important turning movements to reduce travel
distance, increase speed and capacity, eliminate weaving, and avoid the need for out-of-direction
travel in driving on a loop. Higher levels of service can be realized on direct connections and, in
some instances, on semidirect ramps because of relatively high speeds and the likelihood of better
terminal design. Often a direct connection is designed with two lanes. In such cases, the ramp
capacity may approach the capacity of an equivalent number of lanes on the through highway.

In rural areas, there rarely is a volume justification for provision of direct connections in
more than one or two quadrants. The remaining left-turning movements usually are handled
satisfactorily by loops or at-grade intersections. At least two structures are needed for such an
interchange. There are many possible arrangements with direct and semidirect connections, but
only the more basic arrangements are discussed herein.

A direct connection is defined as a one-way roadway that does not deviate greatly from the
intended direction of travel. Interchanges that use direct connections for the major left-turn
movements are directional interchanges. Direct connections for one or all left-turn movements
would qualify an interchange to be also considered directional even if the minor left-turn
movements are accommodated on loops.

When one or more interchange connections are indirect in alignment yet more direct than
loops, the interchange is described as semidirectional. All left-turn connections or only those that
accommodate major left-turn movements may be semidirect in alignment. On direct or semidirect
interchanges usually more than one highway grade separation is involved.

Semidirect or direct connections for one or more left-turning movements are often
appropriate at major interchanges in urban areas. In fact, interchanges involving two freeways
almost always require directional layouts. In such cases, turning movements in one or two
quadrants often are comparable in volume to through movements. In comparison to loops, direct
or semidirect connections have shorter travel distance, higher speeds of operation, and a higher
level of service, and they often avoid the need for weaving.

There are many configurations for directional interchanges that use various combinations of
directional, semidirectional, and loop ramps. Any one of them may be appropriate for a certain set
of conditions, but only a limited number of patterns are generally used. The most common
configurations fill the least space, have the fewest or least complex structures, minimize internal
weaving, and fit the common terrain and traffic conditions. Basic patterns of selected
semidirectional and all directional interchanges are illustrated in Exhibits 10-31 through 10-33,
with distinctions made as to configurations with and without weaving.

With Loops and Weaving. Common arrangements where turning movements in one
quadrant predominate are shown in Exhibits 10-31A and 10-31B. The predominant turning
movement bypasses the central portion of the interchange via two-lane terminals. The minor
turning movements pass through weaving sections between loops on each highway. In both
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Exhibit 10-31. Semidirect Interchanges With Weaving

Exhibit 10-32. Semidirect Interchanges With No Weaving



AASHTO—Geometric Design of Highways and Streets

800

Exhibit 10-33.  Semidirectional and Directional Interchanges—Multilevel Structures

figures, a semidirect connection is used without affecting the alignment of the intersecting
highways. Both arrangements involve three structures, and the area occupied is about the same as
or somewhat greater than a full cloverleaf.

The efficiency and capacity of all the layouts shown in Exhibit 10-31 may be improved by
eliminating weaving on the main roadways through the use of a collector-distributor road, as
shown dashed in Exhibit 10-31.

With Loops and No Weaving. Semidirectional interchanges that do not involve weaving
but include loops are shown in Exhibit 10-32. The through lanes do not need to be spread apart
for any of these configurations; however, four or more structures are needed. Single exits on the
right side along with right-hand entrances enhance the operational characteristics of these
designs.

Fully Directional. Fully directional interchanges are generally preferred where two high-
volume freeways intersect. Since traffic movements between the two freeways are free-flow with
this interchange configuration, there are no at-grade intersections, only direct ramp connections
from one freeway to the other. Fully directional interchanges are costly to construct due to the
increased number and length of ramps and the increased number of bridge crossings, but offer
high capacity movements for both through and turning traffic with comparatively little additional
area needed for construction. The configuration and design of each interchange is uniquely based
on the traffic volumes and patterns, environmental considerations, costs, etc. As a result, detailed
and time-consuming studies are usually needed for each interchange and should include a study
of all likely alternatives. A detailed discussion is, therefore, not within the purview of this policy;
however, Exhibits 10-33A through 10-33C are included to show diagrammatic layouts.
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Weaving, left-side exits, and left-side entrances are undesirable within directional
interchanges; however, there may be instances where they cannot be reasonably avoided because
of site restrictions or other considerations. With heavy left-turn movements, the terminals should
be designed as major forks and branch connections, as covered later in this chapter.

The most widely used directional interchange configuration is the four-level layout shown in
Exhibit 10-33B. A variation of this configuration is the four-level interchange with two exits from
both major roadways, as shown in Exhibit 10-33C. Exhibit 10-34 shows a diagram of an existing
interchange between two high-volume freeways in a suburban area. Other examples of
semidirectional or directional interchanges are shown in Exhibits 10-35 through 10-37.

Exhibit 10-34. Directional Interchange, Two Semidirect Connections

Exhibit 10-35. Four-Level Directional Interchange
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Exhibit 10-36. Four-Level Directional Interchange

Exhibit 10-37. Semidirectional Interchange With Loops
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Other Interchange Configurations

Offset Interchanges

Exhibit 10-38 illustrates an offset interchange arrangement between freeways that may be
suitable where there are major buildings or other developments near the crossing of the freeways.
This arrangement consists of a pair of trumpet interchanges, one on each highway, which is
connected to each other with a ramp highway. The length of the connecting roadway depends on
the distances between each trumpet interchange and the crossing of the freeways. As illustrated in
Exhibit 10-38, the ramp highway may include local service connections, in this case
accommodated by a diamond interchange.

Exhibit 10-38. Offset Interchange via Ramp Highway

A disadvantage of this interchange configuration is the substantial out-of-direction travel for
six of the eight turning movements between the freeways. However, when one pair of these
movements is predominant, the ramp highway may be located in such a way that favors these
movements. When considered from a city street system, the overall configuration may be
confusing to unfamiliar drivers. With adequate signing, however, most motorists should be
unaware of the unusual pattern.

Combination Interchanges

When one or two turning movements have very high volumes with respect to the other
turning movements, analysis may indicate the need for a combination of two or more of the
previously discussed interchanges.
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Exhibit 10-39 shows an existing diamond interchange in which a semidirectional ramp has
been added to accommodate the high-volume, left-turning traffic. The complementary high-
volume, right-turning movement in the opposite direction of travel is provided with a liberal
radius to facilitate high speeds. Because the cross street connects a city on the left with a four-
lane freeway, relatively high volumes result in that direction. This design needs two more
structures than a diamond interchange. Three of the crossroad terminals are channelized with
separate right- and left-turning roadways.

Exhibit 10-39. Four-Leg Interchange, Diamond With a Semidirect Connection

Exhibit 10-40 presents an existing cloverleaf interchange between two freeways in which a
semidirect connection has been substituted for the loop ramp in the upper left quadrant. The
interchange is located at the edge of a suburban area that is rapidly developing both industrially
and residentially, and where considerably higher volumes are expected in the future. The ramps
along the left-to-right roadway have been combined so that the traffic merges with the freeway
traffic at a single point at the upper left. The semidirectional turning roadway permits traffic to
travel at operating speeds approaching that on the main roadways. The complement of this
movement is provided with a high-type two-lane ramp with more liberal radii than provided for
the remaining movements. The design was complicated by an adjacent railroad and two adjacent
important local roads, one of which was relocated from the center of the interchange area. An
additional structure and spans were needed for the local road crossings to provide the two
high-speed directional ramps.
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Exhibit 10-40. Four-Leg Interchange, Cloverleaf With a Semidirect Connection

Unusual ramp configurations are shown in Exhibits 10-41 and 10-42. Exhibit 10-41 shows a
complex interchange arrangement at a crossing of two major routes in an urban area. The
interchange design chosen minimizes disruption of existing development.

Exhibit 10-41. Complex Interchange Arrangement
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Exhibit 10-42. Freeway with a Three-Level Cloverleaf Interchange

Exhibit 10-42 shows the unusual arrangement of a three-level cloverleaf. In this case,
environmental constraints and other site restrictions made the use of this configuration
appropriate. Advance traffic studies were carefully prepared to ensure that the loop ramps would
continue to function properly as the traffic volumes increased. Signing was also critical to the
proper operation of the facility. Another interesting aspect of this interchange is the park-and-ride
public transportation facility provided underneath the structures on the lowest level. While this
interchange does not have widespread applicability, it exemplifies the type of innovative design
that is sometimes needed to provide a functional facility under restrictive conditions.

General Design Considerations

Determination of Interchange Configuration

The need to use interchanges may occur in the design of all functionally classified roadways,
as discussed previously in the section on “Warrants for Interchanges and Grade Separations” in
this chapter. Interchange configurations are covered in two categories, “system interchanges” and
“service interchanges.” The term “system interchanges” is used to identify interchanges that
connect two or more freeways, whereas the term service interchange applies to interchanges that
connect a freeway to lesser facilities.
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In rural areas, interchange configurations are selected primarily on the basis of service
demand. When the intersecting roadways are freeways, directional interchanges may be needed
for high-turning volumes.

A combination of directional, semidirectional, and loop ramps may be appropriate where
turning volumes are high for some movements and low for others. When loop ramps are used in
combination with direct and semidirect ramp designs, it is desirable that the loops be arranged in
such a way that weaving sections are avoided.

A cloverleaf interchange is the minimum design that can be used at the intersection of two
fully controlled access facilities or where left turns at grade are prohibited. A cloverleaf
interchange is adaptable in a rural environment where right-of-way is not prohibitive and weaving
is minimal. When designing a cloverleaf interchange, careful attention should be given to the
potential improvement in operational quality that would be realized if the design included
collector-distributor roads on the major roadway.

A simple diamond interchange is the most common interchange configuration for the
intersection of a major roadway with a minor facility. The capacity of a diamond interchange is
limited by the capacity of the at-grade terminals of the ramps at the crossroad. High through and
turning volumes could preclude the use of a simple diamond unless signalization is used.

Partial cloverleaf designs with loops in opposite quadrants are very desirable because they
eliminate the weaving problem associated with the full cloverleaf designs. They may also provide
superior capacity to other interchange configurations. Partial cloverleaf designs are especially
appropriate where rights-of-way are not available (or expensive) in one or more quadrants or
some of the movements are disproportionate to the others. This is especially true for heavy
left-turn volumes where loop ramps may be utilized to accommodate the left-turn movements.

Generally, interchanges in rural areas are widely spaced and can be designed on an
individual basis without any appreciable effect from other interchanges within the system.
However, the final configuration of an interchange may be determined by the need for route
continuity, uniformity of exit patterns, single exits in advance of the separation structure,
elimination of weaving on the main facility, signing potential, and availability of right-of-way.
Sight distance on the highways through a grade separation should be at least as long as that
needed for stopping and preferably longer. Where exits are involved, decision sight distance is
preferred, although not always practical.

Selecting an appropriate interchange configuration in an urban environment involves
considerable analysis of prevailing conditions so that the most practical interchange configuration
alternatives can be developed. At a new location, it is desirable that the interchange be planned
into the location study so that the final alignment is compatible, both horizontally and vertically,
with the interchange site. Generally, in urban areas, interchanges are so closely spaced that each
interchange may be influenced directly by the preceding or following interchange to the extent
that additional traffic lanes may be needed to satisfy capacity, weaving, and lane balance.
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On a continuous urban route, all the interchanges should be integrated into a system design
rather than considered on an individual basis. Line sketches for the entire urban corridor can be
prepared, and several alternate interchange combinations developed for analysis and comparisons.

During the analysis procedure, a thorough study of the crossroad should be made to
determine its potential for handling the heavier volume of traffic that an interchange would
discharge. The ability of the crossroad to receive traffic from and discharge traffic to the main
roadway has considerable bearing on the interchange geometry. For example, loop ramps may be
needed to eliminate heavy left turns on a conventional diamond interchange.

In the process of developing preliminary line-sketch studies, systems interchanges may be
inserted at freeway-to-freeway crossings and varying combinations of service interchanges
developed for lesser crossroads. Generally, cloverleaf interchanges with or without collector-
distributor roads are not practical for urban construction because of the excessive right-of-way
needs.

Once several alternates have been prepared for the system design, they can be compared on
the following principles: (1) capacity, (2) route continuity, (3) uniformity of exit patterns,
(4) single exits in advance of the separation structure, (5) with or without weaving, (6) potential
for signing, (7) cost, (8) availability of right-of-way, (9) potential for stage construction, and
(10) compatibility with the environment. The most desirable alternatives can be retained for plan
development.

In the case of an isolated interchange well removed from the influence of other interchanges,
the criteria set forth for rural interchange determination apply. Exhibit 10-43 depicts interchanges
that are adaptable on freeways as related to classifications of intersecting facilities in rural,
suburban, and urban environments.

Exhibit 10-43. Adaptability of Interchanges on Freeways as Related to Types of
Intersecting Facilities



Grade Separations and Interchanges

809

Approaches to the Structure

Alignment, profile, and cross section. Traffic passing through an interchange should be
afforded the same degree of utility and safety as that given on the approaching highways. The
design speed, alignment, profile, and cross section in the intersection area, therefore, should be
consistent with those on the approaching highways, even though this may be difficult to attain.
The presence of the structure itself is somewhat of an obstruction, which should not be
augmented by inconsistent designs that might encourage undesirable driver behavior. Preferably,
the geometric design at the highway grade separation should be better than that for the
approaching highways to counterbalance any possible sense of restriction caused by abutments,
piers, curbs, and rails. Desirably, the alignment and profile of the through highways at an
interchange should be relatively flat with high visibility. Sometimes it will be practical to design
only one of the intersecting roadways on a tangent with flat grades. Preferably, the major
highway should be so treated.

The general controls for horizontal and vertical alignment and their combination, as stated in
Chapter 3, should be adhered to closely. In particular, any relatively sharp horizontal or vertical
curves should be avoided. Horizontal curves that begin at or near a pronounced crest or sag
should be kept to a minimum and should satisfy the design criteria established for open-highway
conditions. Gradients that may slow down commercial vehicles or that may be difficult to
negotiate under icy conditions should be avoided. Reduction of vehicle speeds by long upgrades
encourages passing, which is undesirable in the vicinity of ramp terminals. Slow-moving through
vehicles also encourage abrupt cutting in by vehicles leaving and entering the highways.

For a grade separation without ramps, the alignment and cross section of the approaches do
not present a problem except where the median is widened to accommodate a middle pier or
where the median is narrowed for structure economy. With ramps, changes in alignment and
cross section may be needed to ensure proper operation and to develop the capacity needed at the
ramp terminals, particularly where there is not a full complement of ramps and where some left
turns at grade are provided. On a divided highway, the provision of direct left turns may involve
widening of the cross section to ensure a suitably wide median for a combined speed-change and
storage lane. On an undivided multilane highway, the introduction of a median is usually
appropriate to ensure that the direct left turn is made to the proper ramp. Where a two-lane
highway is carried through an interchange, wrong-way left turns are likely to occur, even with the
provision of a full complement of ramps. For high-speed or high-volume conditions, this factor
may warrant a divided section through the interchange area to prevent such turns.

A four-lane highway should be divided at interchanges. Since four-lane highways may carry
enough traffic to justify the elimination of at-grade left turns, a nontraversable median should be
provided to ensure that drivers use the proper ramps for left-turning maneuvers. At-grade left
turns preferably should be accommodated within a suitably wide median.

Widening a roadway cross section to gain the desired width for a divisional island in an
interchange area is done in the same manner as that done at any other intersection. Some of the
more typical widening situations are illustrated in Exhibit 10-44. Exhibit 10-44A shows the
customary symmetrical development of a divisional island on a four-lane undivided highway.
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Traffic in each direction is required to traverse two reverse curves. Exhibit 10-44B shows a
divisional island developed on a four-lane undivided highway in which the centerline is offset
through the interchange area. Traffic in each direction enters the area without traversing any
curvature, but traverses one reverse curve beyond the structure and ramp terminals. The scenario
in Exhibit 10-44B is not usable on existing four-lane highways unless the approaches are
reconstructed to obtain the center line offset.

Exhibit 10-44. Widening for Divisional Island at Interchanges

Sight distance. Sight distance on the highways through a grade separation should be at least
as long as that needed for stopping and preferably longer. Where exits are involved, decision
sight distance is preferred, although not always practical. Design of the vertical alignment is the
same as that at any other point on the highway.

The horizontal sight distance limitations of piers and abutments at curves usually present a
more difficult problem than that of vertical limitations. With the minimum radius for a given
design speed (see Chapter 3), the normal lateral clearance at piers and abutments of underpasses
does not provide the minimum stopping sight distance. Similarly, on overpasses with the sharpest
curvature for the design speed, sight distance deficiencies result from the usual offset to bridge
rails. Thus, above-minimum radii should be used for curvature on highways through
interchanges. If sufficiently flat curvature cannot be used, the clearances to abutments, piers, or
rails should be increased to obtain the proper sight distance, even though this involves increasing
structure spans or widths.

Ramp terminals at crossroads should be treated as at-grade intersections and should be
designed in accordance with Chapter 9.
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Interchange Spacing

Interchange spacing has a pronounced effect on freeway operations. In areas of concentrated
urban development, proper spacing usually is difficult to attain because of traffic demand for
frequent access. Minimum spacing of arterial interchanges (distance between intersecting streets
with ramps) is determined by weaving volumes, ability to sign, signal progression, and lengths of
speed-change lanes. A general rule of thumb for minimum interchange spacing is 1.5 km [1 mi]
in urban areas and 3.0 km [2 mi] in rural areas. In urban areas, spacing of less than 1.5 km [1 mi]
may be developed by grade-separated ramps or by adding collector-distributor roads.

Uniformity of Interchange Patterns

When a series of interchanges are being designed, attention should be given to the group of
interchanges as a whole, as well as to each individual interchange. Interchange uniformity and
route continuity are interrelated concepts, and both can be obtained under ideal conditions.
Considering the need for high capacity, appropriate level of service, and maximum safety in
conjunction with freeway operations, it is desirable to provide uniformity in exit and entrance
patterns. Because interchanges are closely spaced in urban areas, shorter distances are available in
which to inform drivers of the course to follow when exiting a freeway. An inconsistent
arrangement of exits between successive interchanges causes driver confusion, resulting in
drivers slowing down on high-speed lanes and making unexpected maneuvers. Examples of
inconsistent exit arrangements are illustrated in Exhibit 10-45A and include inconsistency of exit
ramp locations with respect to the structure (near and far side of structure) and exit ramps on the
left side of the traveled way. The difficulty of left-entrance merging with high-speed through
traffic and the requisite lane changing for left-exit ramps make these layouts undesirable. Except
in highly special cases, all entrance and exit ramps should be on the right. To the extent practical,
all interchanges along a freeway should be reasonably uniform in geometric layout and general
appearance, as shown in Exhibit 10-45B.

Route Continuity

Route continuity refers to the provision of a directional path along and throughout the length
of a designated route. The designation pertains to a route number or a name of a major highway.
Route continuity is an extension of the principle of operational uniformity coupled with the
application of proper lane balance and the principle of maintaining a basic number of lanes.

The principle of route continuity simplifies the driving task in that it reduces lane changes,
simplifies signing, delineates the through route, and reduces the driver’s search for directional
signing.

Desirably, the through driver, especially the unfamiliar driver, should be provided a
continuous through route on which changing lanes is not necessary to continue on the through
route.
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Exhibit 10-45. Arrangement of Exits Between Successive Interchanges

In the process of maintaining route continuity, particularly through cities and bypasses,
interchange configurations need not always favor the heavy movement but rather the through
route. In this situation, heavy movements can be designed on flat curves with reasonably direct
connections and auxiliary lanes, equivalent operationally to through movements.

Exhibit 10-46 illustrates the principle of route continuity as applied to a hypothetical route,
Interstate 15, as it intersects other major high-volume routes (service interchanges not shown). In
Exhibit 10-46A route continuity is maintained on the designated route by keeping it on the left of
all other entering or exiting routes. In Exhibit 10-46B, route continuity is disrupted by other
routes exiting or entering on the left, except for the northbound direction of the last interchange.

Exhibit 10-46. Interchange Forms to Maintain Route Continuity
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Overlapping Routes

In some situations, two or more routes occupy a single alignment within a corridor. In rural
areas, the problem of handling overlapping routes is generally limited to providing adequate
signing and maintaining route continuity. In urban areas, the complexity of the problem increases
with the probability of weaving and the need for additional capacity and lane balance.

In urban areas, it is preferable not to have overlapping routes, especially for only short
distances. When routes overlap, signing is more complicated, and the decision process for the
driver is more demanding.

The provision for route continuity through overlapping sections is essential. However, in
some instances, this provision poses a problem in determining which route should have
precedence, and the problem is especially acute when both routes have the same classification.
Through a process of subclassification (i.e., U.S., State, city, or county route), a priority may be
established for one of the overlapping roadways. All other factors being equal, priority should be
assigned to the route that handles the highest volume of through traffic.

Once priority for one of the overlapping roadways has been established, basic lanes, lane
balance, and other principles of interchange design can be applied to the design of the
overlapping section. The lower classified facility should enter and exit on the right, thus
conforming to the concept of route continuity.

On overlapping roadways, weaving is usually involved. However, on longer overlaps, the
problem of weaving is minimized. Where the overlap is short, such as between successive
interchanges, careful attention should be given to the design of weaving sections and lane
balance.

In a situation where a major arterial would be overlapped by a lesser roadway, the minor
facility may be designed as a collector-distributor road with transfer roads connecting the two
facilities, as shown in Exhibit 10-47. This design removes weaving from the major roadway and
transfers it to the minor facility. (See the discussion of collector-distributor roads in this chapter.)

Signing and Marking

The safety, efficiency, and clarity of paths to be followed at interchanges depend largely on
their relative spacing, geometric layout, and effective signing. The location of and minimum
distances between ramp junctions depend to a large degree on whether or not effective signing
can be provided to inform, warn, and control drivers. Location and design of interchanges,
individually and as a group, should be evaluated for proper signing. Signs should conform to the
Manual on Uniform Traffic Control Devices (MUTCD) (4).

Pavement striping, delineators, and other markings are also important elements of driver
communication at interchanges. These should be uniform and consistent with the MUTCD (4).
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Exhibit 10-47. Collector-Distributor Road on Major-Minor Roadway Overlap

Basic Number of Lanes

Fundamental to establishing the number and arrangement of lanes on a freeway is the
designation of the basic number of lanes. A certain consistency should be maintained in the
number of lanes provided along any route of arterial character. Thus, the basic number of lanes is
defined as a minimum number of lanes designated and maintained over a significant length of a
route, irrespective of changes in traffic volume and lane-balance needs. Stating it another way,
the basic number of lanes is a constant number of lanes assigned to a route, exclusive of auxiliary
lanes.

As illustrated in Exhibit 10-48, the basic number of lanes on freeways is maintained over
significant lengths of the routes, as A to B or C to D. The number of lanes is predicated on the
general volume level of traffic over a substantial length of the facility. The volume considered
here is the DHV (normally, representative of the morning or evening weekday peak).

Localized variations are ignored, so short sections of roadway carrying lower volumes would
theoretically have reserve capacity, and short sections of roadway carrying somewhat higher
volumes would be compensated for by the addition of auxiliary lanes introduced within these
sections.
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Exhibit 10-48. Schematic of Basic Number of Lanes

An increase in the basic number of lanes is needed where traffic builds up sufficiently to
justify an extra lane and where such buildup raises the volume level over a substantial length of
the facility.

The basic number of lanes may be decreased where traffic volumes are significantly reduced
for a substantial length of highway. Lane reductions are discussed later in this chapter.

Coordination of Lane Balance and Basic Number of Lanes

To realize efficient traffic operation through and beyond an interchange, there should be a
balance in the number of traffic lanes on the freeway and ramps. Design traffic volumes and a
capacity analysis determine the basic number of lanes to be used on the highway and the
minimum number of lanes on the ramps. The basic number of lanes should be established for a
substantial length of freeway and should not be changed through pairs of interchanges, simply
because there are substantial volumes of traffic entering and leaving the freeway. In other words,
there should be continuity in the basic number of lanes. As described later in this section,
variations in traffic demand should be accommodated by means of auxiliary lanes where needed.

After the basic number of lanes is determined for each roadway, the balance in the number
of lanes should be checked on the basis of the following principles:

1. At entrances, the number of lanes beyond the merging of two traffic streams should not
be less than the sum of all traffic lanes on the merging roadways minus one, but may be
equal to the sum of all traffic lanes on the merging roadway (See Exhibit 10-49).

2. At exits, the number of approach lanes on the highway should be equal to the number of
lanes on the highway beyond the exit, plus the number of lanes on the exit, minus one.
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Exceptions to this principle occur at cloverleaf loop-ramp exits that follow a loop-ramp
entrance and at exits between closely spaced interchanges (i.e., interchanges where the
distance between the end of the taper of the entrance terminal and the beginning of the
taper of the exit terminal is less than 450 m [1,500 ft], and a continuous auxiliary lane
between the terminals is being used).  In these cases, the auxiliary lane may be dropped
in a single-lane exit with the number of lanes on the approach roadway being equal to
the number of through lanes beyond the exit plus the lane on the exit.

3. The traveled way of the highway should be reduced by not more than one traffic lane at
a time.

Typical examples of lane balance are shown in Exhibit 10-49.

Exhibit 10-49. Typical Examples of Lane Balance

The principles of lane balance seem to conflict with the concept of continuity in the basic
number of lanes, as illustrated in Exhibit 10-50. The exhibit shows three different arrangements
where a four-lane freeway in one direction of travel has a two-lane exit followed by a two-lane
entrance.
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Exhibit 10-50. Coordination of Lane Balance and Basic Number of Lanes

In Exhibit 10-50A, lane balance is maintained, but there is no compliance with the basic
number of lanes. This pattern may cause confusion and erratic operations for through traffic on
the freeway. Even though traffic volumes are reduced through the interchange, there is no
assurance that traffic demand will not increase under certain circumstances. Unduly large
concentrations of through traffic may be caused by special events or by closures or reduction in
capacity of other parallel facilities because of crashes or maintenance operations. Under such
circumstances, any lanes that have been dropped on a freeway between interchanges (based on
capacity and lane-balance needs as dictated by the normal DHV) produce definite bottlenecks.

The arrangement shown in Exhibit 10-50B provides continuity in the basic number of lanes
but does not conform with the principles of lane balance. With this arrangement, the large exiting
or entering traffic volume needing two lanes would have difficulty in diverging from or merging
with the main line flow.

Exhibit 10-50C illustrates an arrangement in which the concepts of lane balance and basic
number of lanes are brought into harmony by means of building on the basic number of lanes
(i.e., by adding auxiliary lanes or removing them from the basic width of the traveled way).
Auxiliary lanes may be added to satisfy capacity and weaving needs between interchanges, to
accommodate traffic pattern variations at interchanges, and for simplification of operations (as
reducing lane changing). The principles of lane balance should be applied in the use of auxiliary
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lanes. In this manner, the appropriate balance between traffic load and capacity is provided, and
lane balance and operational flexibility are realized.

Design details of multilane ramp terminals with auxiliary lanes are covered below in the
section on “Auxiliary Lanes.”

Auxiliary Lanes

An auxiliary lane is defined as the portion of the roadway adjoining the traveled way for
speed change, turning, storage for turning, weaving, truck climbing, and other purposes
supplementary to through-traffic movement. The width of an auxiliary lane should be equal to the
through lanes. An auxiliary lane may be provided to comply with the concept of lane balance, to
comply with capacity needs, or to accommodate speed changes, weaving, and maneuvering of
entering and leaving traffic. Where auxiliary lanes are provided along freeway main lanes, the
adjacent shoulder should desirably be 2.4 to 3.6 m [8 to 12 ft] in width, with a minimum 1.8 m
[6 ft] wide shoulder considered.

Operational efficiency may be improved by using a continuous auxiliary lane between the
entrance and exit terminals where (1) interchanges are closely spaced, (2) the distance between
the end of the taper on the entrance terminal and the beginning of the taper on the exit terminal is
short, and/or (3) local frontage roads do not exist. An auxiliary lane may be introduced as a single
exclusive lane or in conjunction with a two-lane entrance. The termination of the auxiliary lane
may be accomplished by several methods. The auxiliary lane may be dropped in a two-lane exit,
as illustrated in Exhibit 10-51A. This treatment complies with the principles of lane balance.
Some agencies prefer to drop the auxiliary lane in a single-lane exit, as illustrated in
Exhibit 10-51B. This treatment is in accordance with the exceptions listed under Principle 2 of
lane balance as presented in the earlier section on “Coordination of Lane Balance and Basic
Number of Lanes.” Another method is to carry the full-width auxiliary lane to the physical nose
before it is tapered into the through roadway. This design provides a recovery lane for drivers
who inadvertently remain in the discontinued lane (see Exhibit 10-51C). When these methods of
terminating the auxiliary lane (Exhibits 10-51B and Exhibit 10-51C) are used, the exit gore
should be visible throughout the length of the auxiliary lane.

If local experience with single-exit design indicates problems with turbulence in the traffic
flow caused by vehicles attempting to recover and proceed on the through lanes, the recovery lane
should be extended 150 to 300 m [500 to 1,000 ft] before being tapered into the through lanes
(see Exhibit 10-51D). Within large interchanges, this distance should be increased to 450 m
[1,500 ft]. When an auxiliary lane is carried through one or more interchanges, it may be dropped
as indicated above, or it may be merged into the through roadway approximately 750 m [2,500 ft]
beyond the influence of the last interchange (see Exhibit 10-51E).

When interchanges are widely spaced, it might not be practical or necessary to extend the
auxiliary lane from one interchange to the next. In such cases, the auxiliary lane originating at a
two-lane entrance should be carried along the freeway for an effective distance beyond the
merging point, as shown in Exhibit 10-52A1 and 10-52A2. An auxiliary lane introduced for a
two-lane exit should be carried along the freeway for an effective distance in advance of the exit
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and extended onto the ramp, as shown in Exhibit 10-52B1 and 10-52B2. Exhibits 10-52A1 and
10-52B1 utilize taper designs, whereas Exhibits 10-52A2 and 10-52B2 show parallel designs.

Exhibit 10-51. Alternative Methods of Dropping Auxiliary Lanes
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Exhibit 10-52. Coordination of Lane Balance and Basic Number of Lanes Through
Application of Auxiliary Lanes
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Generally, parallel designs are preferred. While tapered designs are acceptable, some
agencies are concerned about the inside merge on the tapered entrance ramps. Auxiliary lanes
should not be shorter than those shown later in this chapter for single-lane ramps in Exhibit 10-70
and Exhibit 10-73 with adjustments for grades as suggested in Exhibit 10-71. It is not precisely
known what the effective length of the introduced auxiliary lane should be under these
circumstances. Experience indicates that minimum distances of about 750 m [2,500 ft] produce
the desired operational effect and enables development of the full capacity of  two-lane entrances
and exits.

For those instances where an auxiliary lane extends for a long distance from an entrance at
one interchange to an exit at the next interchange, unfamiliar motorists may perceive the auxiliary
lane as an additional through lane. For these situations, an auxiliary lane may be terminated, as
discussed in the subsequent section entitled “Lane Reductions” or by providing a two-lane exit.

Auxiliary lanes are used to balance the traffic load and maintain a more uniform level of
service on the highway. They facilitate the positioning of drivers at exits and the merging of
drivers at entrances. Thus, the concept is very much related to signing and route continuity.
Careful consideration should be given to the design treatment of an auxiliary lane because it may
have the potential for trapping a driver at its termination point or the point where it is continued
onto a ramp or turning roadway.

Exhibit 10-53 illustrates the application of an auxiliary lane that is terminated through a
multilane exit terminal. The outside basic lane automatically becomes an interior lane with the
addition of the auxiliary lane. From this interior lane a driver may exit right or proceed straight
ahead. Although the driver has two choices of direction of travel, the design of multilane exit
terminals is not to be confused with the optional lane concept, as discussed in the subsection on
“Major Forks and Branch Connections” later in this chapter “Traveled-Way Widths.” The
example complies with the principles of lane balance and basic number of lanes. The design
emphasizes the through route and allows drivers to make their decision to travel through or turn
right well in advance of the exit point, or fairly close to it as a result of the additional maneuver
area.

Exhibit 10-53. Auxiliary Lane Dropped at Two-Lane Exit
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Lane Reductions

As discussed in the section “Basic Number of Lanes” and the section “Coordination of Lane
Balance and Basic Number of Lanes” earlier in this chapter, the basic number of lanes should be
maintained over a significant length of freeway. Lane reductions should not be made between and
within interchanges simply to accommodate variations in traffic volumes. Instead, auxiliary lanes,
as needed, are added or removed from the basic number of lanes, as described in the section on
“Auxiliary Lanes” in this chapter.

A reduction in the basic number of lanes may be made beyond a principal interchange
involving a major fork or at a point downstream from an interchange with another freeway. This
reduction may be made provided the exit volume is sufficiently large to change the basic number
of lanes beyond this point on the freeway route as a whole. Another case where the basic number
of lanes may be reduced is where a series of exits, as in outlying areas of the city, causes the
traffic load on the freeway to drop sufficiently to justify the lesser basic number of lanes.
Dropping a basic lane or an auxiliary lane may be accomplished at a two-lane exit ramp or
between interchanges.

If a basic lane or an auxiliary lane is to be dropped between interchanges, it should be
accomplished at a distance of 600 to 900 m [2,000 to 3,000 ft] from the previous interchange to
allow for adequate signing.

The reduction should not be made so far downstream that motorists become accustomed to a
number of lanes and are surprised by the reduction (see Exhibit 10-51E). Desirably, the lane-drop
transition should be located on tangent horizontal alignment and on the approach side of any crest
vertical curve. A sag vertical curve is also a good location for a lane drop because it provides
good visibility. Preferably, the lane reduction should be made on the right side following an exit
ramp because there is likely to be less traffic in that lane. A right-side lane reduction has
advantages in that speeds are generally lower and the merging maneuver from the right is more
familiar to most motorists, because it is similar to a merge at an entrance ramp. Left-side lane
reductions may not function as well because of generally higher speeds and the less familiar left-
side merge.

The end of the lane drop should be tapered into the highway in a manner similar to that at a
ramp entrance. Preferably, the rate of taper should be longer than that for a ramp. The minimum
taper rate should be 50:1, and the desirable taper rate is 70:1.

If there is a lane reduction of a basic lane or an auxiliary lane within an interchange, it
should be made in conjunction with a two-lane exit, as shown in Exhibit 10-51A, or in a single-
lane exit with an adequate recovery lane, as discussed in the section of this chapter on “Auxiliary
Lanes.”
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Weaving Sections

Weaving sections are highway segments where the pattern of traffic entering and leaving at
contiguous points of access results in vehicle paths crossing each other. Weaving sections may
occur within an interchange, between entrance ramps, followed by exit ramps of successive
interchanges, and on segments of overlapping roadways.

Because considerable turbulence occurs throughout weaving sections, interchange designs
that eliminate weaving entirely or at least remove it from the main facility are desirable. Weaving
sections may be eliminated from the main facility by the selection of interchange forms that do
not have weaving or by the incorporation of collector-distributor roads. Interchanges that provide
all exit movements before any entrance movements will eliminate weaving.

Although interchanges that do not involve weaving operate better than those that do,
interchanges with weaving areas generally are less costly than those without. Designs that avoid
weaving movements may need a greater number of structures or larger and more complex
structures, with some direct connections. Joint evaluation of the total interchange cost and the
specific volumes to be handled is needed to reach a sound decision between design alternatives.
The partial cloverleaf design with loops in opposite quadrants eliminates the weaving sections,
does not involve direct connections or additional structures, and has been found by some States to
operate superior to all other interchanges with a single separation structure.

Where cloverleaf interchanges are used, consideration should be given to the inclusion of
collector-distributor roads on the main facility, or possibly both facilities where warranted.

The capacity of weaving sections may be seriously restricted unless the weaving section has
adequate length, adequate width, and lane balance (See Chapter 2 for procedures for determining
weaving lengths and widths). Refer to the Highway Capacity Manual (HCM) (5) for capacity
analysis of weaving sections.

Collector-Distributor Roads

Collector-distributor roads between two interchanges and continuous collector-distributor
roads are discussed in Chapter 8. Collector-distributor roads within an interchange are discussed
in this section.

A full cloverleaf interchange in an urban or suburban area is a typical example of a single
interchange that should be analyzed for the need for collector-distributor roads within the
interchange. Collector-distributor roads may be one or two lanes in width, depending on capacity
needs. Lane balance should be maintained at entrances and exits to and from the main line, but
strict adherence is not mandatory on the collector-distributor road proper because weaving is
handled at reduced speed. The design speed usually ranges from 60 to 80 km/h [40 to 50 mph],
but should not be less than 20 km/h [10 mph] below the design speed of the main roadway.
Operational problems will occur if collector-distributor roads are not properly signed, especially
those servicing more than one interchange.
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Outer separations between the main line and the collector-distributor roads should be as wide
as practical; however, minimum widths are tolerable. The minimum width should allow for
shoulder widths equal to that on the main line and for a suitable barrier to prevent indiscriminate
crossovers.

The advantages of using collector-distributor roads within an interchange are that weaving is
transferred from the main roadway, single entrances and exits are developed, all main-line exits
occur in advance of the structure, and a uniform pattern of exits can be maintained (See the
following section on “Two-Exit Versus Single-Exit Interchange Design.”).

Two-Exit Versus Single-Exit Interchange Design

In general, interchanges that are designed with single exits are superior to those with two
exits, especially if one of the exits is a loop ramp or if the second exit is a loop ramp preceded by
an entrance loop ramp. Whether used in conjunction with a full cloverleaf or with a partial
cloverleaf interchange, the single-exit design may improve operational efficiency of the entire
facility.

The purposes for developing single exits, where applicable, are as follows:

• To remove weaving from the main facility and transfer it to a slower speed facility.
• To provide a high-speed exit from the main roadway for all exiting traffic.
• To simplify signing and the decision process.
• To satisfy driver expectancy by placing the exit in advance of the separation structure.
• To provide uniformity of exit patterns.
• To provide decision sight distance for all traffic exiting from the main roadway.

The full cloverleaf interchange, where a weaving section exceeds 1,000 vph, is an example
where operational efficiency may be improved by the development of single exits and entrances.

The loop ramps of a full cloverleaf interchange create a weaving section adjacent to the
outside through lane, and considerable deceleration-acceleration must occur in the through lane.
By using collector-distributor roads, as shown in Exhibit 10-26, a single exit is provided and
weaving is transferred to the collector-distributor road. Without a collector-distributor road, the
second exit of a cloverleaf interchange occurs beyond the separation structure and, in many cases,
is hidden behind a crest vertical curve. The single-exit design places the exit from the main line in
advance of the structure and is conducive to a uniform pattern of exits. Where the through
roadway overpasses the crossroad in a vertical curve, it may be more difficult to develop
full-decision sight distance for the loop ramp exit of a conventional cloverleaf interchange. The
use of the single-exit design may make it easier to obtain the desired decision sight distance due
to the exit occurring on the upgrade.

Some arrangements of partial cloverleaf loop ramps may feature single exits, as shown in
Exhibit 10-28F, and still be inferior because they do not provide any of the desirable purposes
previously discussed.
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On a full cloverleaf interchange, the single exit is developed by using a collector-distributor
road for the full length of the interchange. On certain partial cloverleaf arrangements, the single
exit can be developed by elongating the loop ramp in the upstream direction to the point where it
diverges from the right-turn movement well in advance of the separation structure. The
elongation of the loop ramp may be done with a spiral, simple curve, tangent, or a combination of
these.

Full diamond and SPUIs feature single exits and entrances and accomplish the desired intent
of single exits as well as entrances. There are some cases where a single exit does not work as
well as two exits, such as at high-volume, high-speed directional interchanges. The problem
usually occurs at the fork following the single exit from the freeway, particularly when the traffic
volume is great enough to warrant a two-lane exit and the distance from the exit terminal to the
fork is insufficient for weaving and proper signing. There is often some confusion at this second
decision point, resulting in poor operation and a high crash potential. Because of this, it may be
advantageous on some directional interchanges to provide two exits on each freeway leg.

Generally, the provision for single exits is more costly because of the added roadway, longer
bridges and, in some cases, additional separation structures. The overall efficiency of a cloverleaf
interchange with collector-distributor roads should be taken into consideration. Where ramp
volumes are low and not expected to increase significantly, or where a particular cloverleaf
weave does not exceed about 1,000 vph, it will often be impractical to use collector-distributor
roads. These conditions can be expected in rural areas or on low-volume freeways.

Collector-distributor roads may still be an option if significant future turning volumes are
expected or site investigations reveal a definitive need for such a configuration. Exhibit 10-54
shows various interchange configurations that are compatible with the concepts of uniform exit
patterns and exits in advance of the separation structure.

Wrong-Way Entrances

Wrong-way entrance onto freeways and arterial streets is not a frequent occurrence, but it
should be regarded as a serious problem wherever the likelihood exists because each occurrence
has such a high potential for culminating in a serious crash. This problem should be given special
consideration at all stages of design. Most wrong-way entrances occur at freeway offramps, at
intersections at grade along divided arterial streets, and at transitions from undivided to divided
highways. Several factors that contribute to wrong-way entrances are related to interchange
design. These factors concern the interchange configuration and, more particularly, the crossroad
terminal of the exit ramps, which are discussed below.
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Exhibit 10-54. Interchange Forms with One and Two Exits

Partial interchanges are particularly troublesome. Where provision is not made for any one
or more of the movements at an interchange, wrong-way entry may occur. Exit ramps that
connect to two-way frontage roads are also conducive to wrong-way entry. Without
channelization on the frontage road, they appear as open entries. Some of the “scissors”
channelization has proved to be confusing, resulting in wrong-way use.

Exit ramps with a sweeping connection to the street (e.g., outer connection, loop, and some
diamond ramps) have a low rate of wrong-way entry. However, one-way ramps that connect as an
unchannelized “T” intersection are most likely to lead to wrong-way entry.

Unusual or odd arrangements of exit ramps are confusing and conducive to wrong-way
entry. An example is the button-hook or J-shaped ramp that connects to a parallel or diagonal
street or frontage road, often well-removed from the interchange structure and other ramps.
Another example is a pair of right-turn connections to a lateral or parallel street (frontage road)
offset from the separation structure.

On undivided crossroads, a non-traversable median (except at turn points) introduced within
the interchange limits helps prevent wrong-way entry on diamond, partial cloverleaf, and full
cloverleaf interchanges. Where adjacent off-and-on ramps join a minor road, the ramp roadways
should be separated. The ramp-crossroad intersection at a diamond interchange should be
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well-removed from any other nearby intersection, such as a frontage road-crossroad intersection.
Local road connections within the length of any exit ramp should be avoided. Temporary ramp
terminals warrant special attention in layout details to avoid wrong-way entry paths.

Left-side main roadway exit ramps should be avoided because they may appear to be a right-
side entrance ramp to a confused motorist. Many wrong-way entries occur at night when volumes
are low and control devices are less effective. Lighting should be considered to minimize such
conditions.

Open sight distances throughout the entire length of the ramp help prevent wrong-way use.
Especially important is the driver’s view of the ramp terminal when approaching from the cross
street.

In the design of any interchange, consideration should be given to the likelihood of wrong-
way travel and to the practical measures that may be taken in the design and traffic control for
preventing or discouraging such usage. Signing to prevent wrong-way entry should be in
accordance with the MUTCD (4).

Ramps

Types and Examples

The term “ramp” includes all types, arrangements, and sizes of turning roadways that
connect two or more legs at an interchange. The components of a ramp are a terminal at each leg
and a connecting road. The geometry of the connecting road usually involves some curvature and
a grade. Generally, the horizontal and vertical alignment of ramps is based on lower design
speeds than the intersecting highways, but in some cases it may be equal.

Exhibit 10-55 illustrates several types of ramps and their characteristic shapes. Various
configurations are used; however, each can be broadly classified as one of the types shown. Each
ramp generally is a one-way roadway. Diagonal ramps (Exhibit 10-55A) are almost always one-
way but usually have both a left- and right-turning movement as the terminal on the minor
intersecting road. A diagonal ramp may be largely tangent or wishbone in shape with a reverse
curve. Diamond interchanges generally have four diagonal ramps.

A loop ramp may have single turning movements (left or right) or double turning
movements (left and right) at either or both ends. Exhibit 10-55D shows the case where there are
only single turns made at both ends of the ramp. With this loop pattern, a left-turning movement
is made without an at-grade crossing of the opposing through traffic. Instead, drivers making a
left-turn travel beyond the highway separation, turn to the right through approximately
270 degrees to enter the other highway. The loop usually involves more indirect travel distance
than any other type of ramp.
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Exhibit 10-55. General Types of Ramps

With a semidirect connection (Exhibit 10-55C), the driver makes a right turn first, heading
away from the intended direction, gradually reversing, and then completing the movement by
following directly around and entering the other road. This semidirect connection may also be
used for right turns, but there is little reason for its use if the conventional diagonal can be
provided. A descriptive term frequently associated with this type of ramp is “jug-handle,” the
obvious plan shape. Travel distance on this ramp is less than that for a comparable loop and more
than that for a direct connection. At least three structures or a three-level structure is needed.
Exhibit 10-55D is termed an outer connection, while Exhibit 10-55E is referred to as a direct
connection.

The different ramp patterns of an interchange (i.e., the different types of interchange
configurations) are made up of various combinations of these types of ramps. For example, the
trumpet configuration has one loop, one semidirectional ramp, and two right-turn directional or
diagonal ramps.
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General Ramp Design Considerations

Design speed. Desirably, ramp design speeds should approximate the low-volume running
speed on the intersecting highways. This design speed is not always practical, and lower design
speeds may be selected, but they should not be less than the low range presented in Exhibit 10-56.
Only those values for highway design speeds of at least 80 km/h [50 mph] apply to freeway and
expressway exits. The application of values in Exhibit 10-56 to various conditions and ramp types
is discussed as follows:

Portion of ramp to which design speed is applicable. Values in Exhibit 10-56 apply to the
sharpest, or controlling, ramp curve, usually on the ramp proper. These speeds do not pertain to
the ramp terminals, which should be properly transitioned and provided with speed-change
facilities adequate for the highway speed involved.

Ramps for right turns. An upper-range value of design speed is often attainable on ramps
for right turns, and a value between the upper and lower range is usually practical. The diagonal
ramp of a diamond interchange may also be used for right turns. For these diagonal ramps, a
value in the middle range is usually practical.

Loops. Upper-range values of design speed generally are not attainable on loop ramps.
Ramp design speeds above 50 km/h [30 mph] for loops involve large areas, rarely available in
urban areas, and long loops, which are costly and require left-turning drivers to travel a
considerable extra distance. Minimum values usually control, but for highway design speeds of
more than 80 km/h [50 mph], the loop design speed preferably should be no less than 40 km/h
(50-m radius) [25 mph (150-ft radius]. If less restrictive conditions exist, the loop design speed
and the radius may be increased.

Semidirect connections. Design speeds between the middle and upper ranges shown in
Exhibit 10-56 should be used. A design speed less than 50 km/h [30 mph] should not be used.
Generally, for short single-lane ramps, a design speed greater than 80 km/h [50 mph] is not
practical. For two-lane ramps, values in the middle and upper ranges are appropriate.

Direct connections. Design speeds between the middle and upper ranges shown in
Exhibit 10-56 should be used. The minimum design speed preferably should be 60 km/h
[40 mph].

Different design speeds on intersecting highways. The highway with the greater design
speed should be the control in selecting the design speed for the ramp as a whole. However, the
ramp design speed may vary, the portion of the ramp closer to the lower speed highway being
designed for the lower speed. This variation in ramp design speed is particularly applicable where
the ramp is on an upgrade from the higher speed highway to the lower speed highway.

At-grade terminals. Where a ramp joins a major crossroad or street, forming an intersection
at grade, Exhibit 10-56 is not applicable to that portion of the ramp near the intersection because a
stop sign or signal control is normally employed. This terminal design should be predicated on
near-minimum turning conditions, as given in Chapter 9. In urban areas, where the land adjacent
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to the interchange is developed commercially, provisions for pedestrian movements through the
interchange area should also be considered.

Metric
Highway design
speed (km/h)

50 60 70 80 90 100 110 120

Ramp design speed
(km/h)
Upper range (85%) 40 50 60 70 80 90 100 110
Middle range (70%) 30 40 50 60 60 70 80 90
Lower range (50%) 20 30 40 40 50 50 60 70
Corresponding
minimum radius (m)

see Exhibit 3-43

US Customary

Highway design
speed (mph)

30 35 40 45 50 55 60 65 70 75

Ramp design speed
(mph)
Upper range (85%) 25 30 35 40 45 48 50 55 60 65
Middle range (70%) 20 25 30 33 35 40 45 45 50 55
Lower range (50%) 15 18 20 23 25 28 30 30 35 40
Corresponding
minimum radius (ft)

see Exhibit 3-43

Exhibit 10-56. Guide Values for Ramp Design Speed as Related to Highway Design Speed

Curvature. The design guidelines for turning roadways at interchanges are discussed in
Chapter 3. They apply directly to the design of ramp curves. Compound or spiral curve transitions
are desirable to: (1) obtain the desired alignment of ramps, (2) provide for a comfortable
transition between the design speeds of the through and turning roadways, and (3) fit the natural
paths of vehicles. Caution should be exercised in the use of compound curvature to prevent
unexpected and abrupt speed adjustments. Additional design information regarding the use of
compound curves is contained in Chapter 3.

The general shape of a ramp evolves from the type of ramp selected, as previously described
and shown in Exhibit 10-55. The specific shape, or curvature, of a ramp may be influenced by
such factors as traffic pattern, traffic volume, design speed, topography, culture, intersection
angle, and type of ramp terminal.

Several ramp shapes may be used for the loop and outer connection of a semidirectional
interchange, as shown in Exhibit 10-57A. Except for its terminals, the loop may be a circular arc
or some other symmetrical or asymmetrical curve, formed with spiral transitions. The
asymmetrical arrangement may fit where the intersecting roads are not of the same importance
and the ramp terminals are designed for different speeds, the ramp in part functioning as a speed-
change area. Similar shapes may be dictated by right-of-way controls, profile and sight distance
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conditions, and terminal location. The freeway terminal should normally be placed in advance of
the structure. The most desirable alignment for an outer connection is one on a continuous curve
(line A). This arrangement, however, may involve questionably extensive right-of-way. Another
desirable arrangement has a central tangent and terminal curves (lines B-B and C-C). Where the
loop is more important than the outer connection, reverse alignment on the outer connection may
be used to reduce the area of right-of-way, as shown by line D-D. Any combination of lines B, C,
and D may be used for a practical shape.

Exhibit 10-57. Ramp Shapes

In Exhibit 10-57A, the loop and the outer connection are separated, as is generally desirable.
However, where the movements are minor and economy is desired, a portion of the two ramps
may be combined into a single two-way roadway. Where this design is used, a barrier should
separate the traffic in two directions. This design is generally discouraged.

Diagonal ramps may assume a variety of shapes, depending on the pattern of turning traffic
and right-of-way limitations. As shown in Exhibit 10-57B, the ramp may be a diagonal tangent
with connecting curves (solid line). To favor a right-turning movement, the ramp may be on a
continuous curve to the right with a spur to the left for left turns. On restricted right-of-way along
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the major highway, it may be appropriate to use reverse alignment with a portion of the ramp
being parallel to the through roadway.

Another variation of diagonal ramps, usually called “slip ramps,” connects with a parallel
frontage road, as shown in Exhibit 10-57C. Where this design is used, it is desirable to have one-
way frontage roads. Ramps to two-way frontage roads introduce the possibility of wrong-way
entry onto the through lanes. If two-way frontage roads are used, special attention should be
given in the design and signing of ramps to discourage the possibility of wrong-way entry.

The shape of a semidirect connection (Exhibit 10-57D) is influenced by the location of the
terminals with respect to the structures, the extent to which the structure is widened, and the curve
radii needed to maintain a desired turning speed for an important left-turning movement. The
angular position or the curvature may be dictated somewhat by the relative design speeds of the
intersection legs and by the proximity of other roadways.

Sight distance. Sight distance along a ramp should be at least as great as the design stopping
sight distance. Sight distance for passing is not needed. There should be a clear view of the entire
exit terminal, including the exit nose and a section of the ramp roadway beyond the gore.

The sight distance on a freeway preceding the approach nose of an exit ramp should exceed
the minimum stopping sight distance for the through traffic design speed, desirably by 25 percent
or more. Decision sight distance, as discussed in Chapter 3, is desired where feasible. There
should be a clear view of the entire exit terminal, including the exit nose. See Chapter 3 for
ranges in design values for stopping sight distance on horizontal and vertical curves for turning
roadways and open road conditions.

Grade and profile design. The profile of a typical ramp usually consists of a central portion
on an appreciable grade, coupled with terminal vertical curves and connections to the profiles of
the intersection legs. The following references to ramp gradient pertain largely to the central
portion of the ramp profile. Profiles at the terminals largely are determined by through-road
profiles and are seldom tangent grades.

Ramp grades should be as flat as practical to minimize the driving effort needed in
maneuvering from one road to another. Most ramps are curved, and steep ramp grades in
combination with curves hamper traffic flow. The slowing down of vehicles on an ascending
ramp is not as serious as on a through road, provided the speed is not decreased sufficiently to
result in a peak-hour backup onto the through road. Most diamond ramps are only 120 to 360 m
[400 to 1,200 ft] long, and the short central portion with the steepest gradient has only moderate
operational effect. Accordingly, gradients on ramps may be steeper than those on the intersecting
highways. For any one ramp, the gradient to be used is dependent on a number of factors unique
to that site and quadrant. The flatter the gradient on a ramp, the longer it will be, but the effect of
gradient on ramp length is not substantial. The conditions and designs at ramp terminals
frequently have an effect equally as great as the effect of the gradient. For example, when the
ramp profile is opposite in direction to that of the through highway, a fairly long vertical curve is
needed because of the large algebraic difference in grade; this adds considerably to the length of
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ramp. As another example, additional length may be needed to warp the ramp profile to attain
superelevation or to provide drainage.

In general, adequate sight distance is more important than a specific gradient control and
should be favored in design. Usually, these two controls are compatible. On one-way ramps, a
distinction should be made between ascending and descending gradients. For high-speed ramp
designs, the values cited in the next paragraph apply. However, with proper ramp terminal
facilities, short upgrades of 7 to 8 percent permit good operation without unduly slowing down
passenger cars. Short upgrades of as much as 5 percent do not unduly interfere with truck and bus
operation. On one-way downgrade ramps, gradients of up to 8 percent do not cause undesirable
operation due to excessive acceleration of passenger vehicles. However, there is a greater
potential for heavy trucks to increase their speeds on downgrades. Therefore, downgrades should
desirably be limited to 3 or 4 percent on ramps with sharp horizontal curvature and significant
heavy truck or bus traffic. In many areas, consideration of snow and ice conditions may limit the
choice of gradient regardless of the direction of the grade.

From the foregoing discussion, it can be seen that ramp grades are not directly related to
design speed; however, design speed is a general indication of the quality of design being used,
and the gradient for a ramp with a high design speed should be flatter than for one with a low
design speed. As general criteria, it is desirable that upgrades on ramps with a design speed of 70
to 80 km/h [45 to 50 mph] be limited to 3 to 5 percent; those for a 60-km/h [40-mph] design
speed, to 4 to 6 percent; those for a 40- to 50-km/h [25- to 30-mph] design speed, to 5 to 7
percent; and those for a 30- to 40-km/h [15- to 25-mph] design speed, to 6 to 8 percent. Where
appropriate for topographic conditions, grades steeper than desirable may be used. One-way
downgrades on ramps should be held to the same general maximums, but in special cases they
may be 2 percent greater. Where ramp terminals are properly located and fit other design needs
and where the curvature conforms to a reasonable design speed, ramps are generally long enough
to attain the difference in levels with grades that are level or, at least, not too steep. The cases in
which grade is a determining factor in the length of the ramp are as follows: (1) for intersection
angles of 70 degrees or less, the ramp may need to be located farther from the structure to provide
a ramp of sufficient length with reasonable grade; (2) where the intersection legs are on
appreciable grade, with the upper road ascending and the lower road descending from the
structure, the ramp will have to attain a large difference in elevation that increases with the
distance from the structure; (3) where a ramp leaves the lower road on a downgrade and meets the
higher road on a downgrade, longer-than-usual vertical curves at the terminals may need a long
ramp to meet grade limitations. For these reasons, alignment and grade of a ramp should be
determined jointly.

Vertical curves. Usually, ramp profiles assume the shape of the letter “S” with a sag vertical
curve at the lower end and a crest vertical curve at the upper end. Additional vertical curves may
be needed, particularly on ramps that overpass or underpass other roadways. Where a crest or sag
vertical curve extends onto the ramp terminal, the length of curve should be determined by using
a design speed between those on the ramp and the highway. See Chapter 3 for design values for
open and turning roadway conditions.
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Superelevation and cross slope. The following guidelines should be used for cross-slope
design on ramps:

1. Superelevation rates, as related to curvature and design speed on ramps, are given in
Exhibit 3-21 through 3-25. Where drainage impacts to adjacent property or the
frequency of slow-moving vehicles are important considerations, the superelevation
rates and corresponding radii in Exhibit 3-40 can be used.

2. The cross slope on portions of ramps on tangent normally should be sloped one way at a
practical rate ranging from 1.5 to 2 percent for high-type pavements.

3. In general, the rate of change in cross slope in the superelevation runoff section should
be based on the maximum relative gradients ? listed in Exhibit 3-27. The values listed
in this table are applicable to single-lane rotation. The adjustment factors bw listed in
Exhibit 3-28 allow for slight increases in the effective gradient for wider rotated widths.
The effective maximum relative gradients (equal to ?  ) bw) applicable to a range of
roadway widths are listed in Exhibit 9-43. The superelevation development is started or
ended along the auxiliary lane of the ramp terminal. Alternate profile lines for both
edges should be studied to ensure that all profiles match the control points and that no
unsightly bumps and dips are inadvertently developed. Spline profiles are very useful in
developing smooth lane/shoulder edges.

4. Another important control in developing superelevation along the ramp terminal is that
of the crossover crown line at the edge of the through-traffic lane. The maximum
algebraic difference in cross slope between the auxiliary lane and the adjacent through
lane is shown in Exhibit 9-48.

5. Three segments of a ramp should be analyzed to determine superelevation rates that
would be compatible with the design speed and the configuration of the ramp. The exit
terminal, the ramp proper, and the entrance terminal should be studied in combination
to ascertain the appropriate design speed and superelevation rates.

The guidelines in Item 5 can vary by the type of ramp configuration used. Three ramp
configurations are described in the following paragraphs. The diamond ramp usually consists of a
high-speed exit terminal, tangent or curved alignment on the ramp proper, and stop or yield
conditions at the entrance terminal. Deceleration to the first controlling curve speed should occur
on the auxiliary lane of the exit terminal and continued deceleration to stop or yield conditions
should occur on the ramp proper. As a result, superelevation rate and radii used should reflect a
decreasing sequence of design speeds for the exit terminal, ramp proper, and entrance terminal.

The loop ramp consists of a moderate-speed exit terminal connecting to a slow-speed ramp
proper, which in turn connects to a moderate-speed acceleration lane. The curvature of the ramp
proper may be a simple curve or a combination of curves, and is determined by the design speed
and superelevation rate used. Superelevation should be gradually developed into and out of the
curves for the ramp proper, as detailed later in this discussion.

Direct and semi-direct ramps generally are designed with a high-speed exit, a moderate- or
high-speed ramp proper, and a high-speed entrance. As a result, the design speed and
superelevation rates used are comparable to open-road conditions.
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On ramps designed for speeds of 70 km/h [45 mph] or less, superelevation ranges given in
Exhibit 3-40 are appropriate for design of the ramp proper.

The method of developing superelevation at free-flow ramp terminals is illustrated in
Exhibit 10-58.

Exhibit 10-58A shows a tapered exit from a tangent section with the first ramp curve falling
beyond the design deceleration length. The normal cross slope is projected onto the auxiliary
lane, and no superelevation is needed until the first ramp proper curve is reached.

Exhibit 10-58. Development of Superelevation at Free-Flow Ramp Terminals
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Exhibit 10-58B shows a parallel-type exit from a tangent section that leads into a flat exiting
curve. At point b, the normal cross slope of the through roadway is projected onto the auxiliary
lane. At point c, the cross slope can be gradually changed to start the development of
superelevation for the exiting curve. At point d, two breaks in the crossover crown line would be
conducive to developing a full superelevation in the vicinity of the physical nose.

Exhibits 10-58C and 10-58D show ramp terminals on which the superelevation of the
through roadway would be projected onto the auxiliary lane. Exhibit 10-58E shows a parallel
entrance terminal on the high side of a curve. At point e, the superelevation on the ramp begins to
decrease and is gradually decreased through the tangent section to point d. At point d, the cross
slope is gradually rotated to eventually meet the superelevation rate of the mainline at point c.

Exhibit 10-58F shows a parallel exit from a tangent section with sharp curvature developing
in advance of the physical nose. This design is typical for cloverleaf loops. Part of the cross-slope
transition can be accomplished over the length of the parallel lane with about half of the total
superelevation being developed at point b. Full superelevation of the ramp proper is reached
beyond the physical nose.

Care should be exercised to see that the rate of change in cross slope in the runoff section is
based on the maximum relative gradients listed in Exhibit 9-44 and that the algebraic difference
in cross slope does not exceed the values presented in Exhibit 9-49.

Gores. The term “gore” indicates an area downstream from the shoulder intersection points
as illustrated in Exhibit 10-59. The physical nose is a point upstream from the gore, having some
dimensional width that separates the roadways. The painted nose is a point, having no
dimensional width, occurring at the separation of the roadways. The neutral area refers to the
triangular area between the painted and the gore nose and incorporates the physical nose. The
geometric layout of these is an important part of exit ramp terminal design. It is the decision point
area that should be clearly seen and understood by approaching drivers. Furthermore, the
separating ramp roadway not only should be clearly evident but should also have a geometric
shape appropriate for the likely speeds at that point. In a series of interchanges along a freeway,
the gores should be uniform and have the same appearance to drivers.

As a general rule, the width at the gore nose is typically between 6.0 to 9.0 m [20 to 30 ft],
including paved shoulders, measured between the traveled way of the main line and that of the
ramp. This dimension may be increased if the ramp roadway curves away from the freeway
immediately beyond the gore nose or if speeds in excess of 100 km/h [60 mph] are expected to be
common.

The entire triangular area, or neutral area, should be striped to delineate the proper paths on
each side and to assist the driver in identifying the gore area. The MUTCD (4) may be referenced
for guidance on channelization. Standard or snow-plowable raised reflective markers can be
employed for additional delineation.
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Exhibit 10-59. Typical Gore Area Characteristics

Rumble strips may be placed in the gore area but should not be located too close to the gore
nose because such placement renders them ineffective for warning high-speed vehicles. In all
cases, supplemental devices of this type should be placed to provide the driver with ample time to
correct the vehicle’s path safely.

The rate of crashes in gore areas is typically greater than the rate of run-off-the-road crashes
at other locations. For this reason, the gore area, and the unpaved area beyond, should be kept as
free of obstructions as practical to provide a clear recovery area. The unpaved area beyond the
gore nose should be graded as nearly level with the roadways as practical so that vehicles
inadvertently entering will not be overturned or abruptly stopped by steep slopes. Heavy sign
supports, luminaire supports, and roadway structure supports should be kept well out of the
graded gore area. In addition, yielding or breakaway supports should be employed for the exit
sign, and concrete footings, where used, should be kept flush with the ground level.

Unfortunately, there will be situations where placement of a major obstruction in a gore is
unavoidable. Gores that occur at exit ramp terminals on elevated structures are a prime example.
Also, there are occasions when a bridge pier in a gore cannot be avoided. Guardrails and bridge
rails are designed to handle angular impacts but are not effective in handling the kind of near
head-on impacts that occur at these gores.

In recognition of this problem, a considerable effort has been directed toward the
development of cushioning or energy-dissipating devices for use in front of fixed objects. At
present, several types of crash cushions are being used. These devices substantially reduce the
severity of fixed-object collisions. Thus, adequate space should be provided for the installation of
a crash-cushion device whenever a major obstruction is present in a gore on a high-speed
highway. Reference may be made to Chapter 4 and to the Roadside Design Guide (3) for details
on the installation of crash-cushion devices.

Although the term “gore” generally refers to the area between a through roadway and an exit
ramp, the term may also be used to refer to the similar area between a through roadway and a
converging entrance ramp. At an entrance terminal, the point of convergence (beginning of all
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paved area) is defined as the “merging end.” In shape, layout, and extent, the triangular maneuver
area at an entrance terminal is much like that at an exit. However, it points downstream and
separates traffic streams already in lanes; thus, it is less of a decision area. The width at the base
of the paved triangular area is narrower, however, and is usually limited to the sum of the
shoulder widths on the ramp and freeway plus a narrow physical nose 1.2 to 2.4 m [4 to 8 ft]
wide.

Exhibit 10-60 illustrates typical gore designs for free-flow exit ramps. Exhibits 10-60A and
10-60B depict a recovery area adjacent to the outside through lane and moderate offset of the
ramp traveled way to the left.

Exhibit 10-60. Typical Gore Details
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Exhibit 10-60C presents a major fork, with neither diverging roadway having priority. The
offset is equal for each roadway, and striping or rumble strips are placed upstream from the
physical nose. Desirably, curbs, utility poles, and sign supports should be omitted from the gore
area, especially on high-speed facilities. When curbs are used, they should be low-profile, sloping
designs and the geometry of the gore area intersection points is usually curved. When curbs are
not used, the geometry of the gore area intersection points can be squared or truncated.

Exhibit 10-61 gives the minimum lengths for tapers beyond the offset nose (shown as length
Z in Exhibit 10-61). However, another alternative for providing a recovery area is the use of the
paved shoulder of the through lane.

Metric US Customary

Design speed of
approach highway

(km/h)

Length of nose taper
(Z) per unit width of

nose offset

Design speed of
approach highway

(mph)

Length of nose taper
(Z) per unit width of

nose offset
50
60
70
80
90

100
110
120

15.0
20.0
22.5
25.0
27.5
30.0
35.0
40.0

30
35
40
45
50
55
60
65
70
75

15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5

Exhibit 10-61. Minimum Length of Taper Beyond an Offset Nose

Exhibit 10-62 shows an entrance ramp, as at a cloverleaf loop, where a reduction in the ramp
lane width is appropriate in order to maintain a single-lane entrance. Another option is to begin
the reduction in the ramp lane width at the end of the ramp curvature.

Exhibit 10-62. Traveled-Way Narrowing on Entrance Ramps
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Exhibit 10-63 presents a photograph of a single-lane exit. The striping, pavement reflectors,
delineators, and fixed-source lighting help guide the exiting motorist.

Exhibit 10-63. Gore Area, Single-Lane Exit

Exhibit 10-64 shows a gore at a major fork between two freeways with three lanes on each
roadway. The small angle of divergence results in the long, gradual split with a clear recovery
area. Overhead signs are provided.

Exhibit 10-64. Gore Area, Major Fork
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Whereas Exhibit 10-65 shows a gore at a two-lane exit from a freeway, Exhibit 10-66 shows
a typical gore and ramp terminal for a ramp entering a freeway.

Exhibit 10-65. Gore Area, Two-Lane Exit

Exhibit 10-66. Entrance Terminal
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Ramp Traveled-Way Widths

Width and cross section. Ramp traveled-way widths are governed by the type of operation,
curvature, and volume and type of traffic. It should be noted that the roadway width for a turning
roadway includes the traveled-way width plus the shoulder width or equivalent clearance outside
the edges of the traveled way. The section “Widths for Turning Roadways” in Chapter 3 may be
referenced for additional discussion on the treatments at the edge of traveled way. Design widths
of ramp traveled ways for various conditions are given in Exhibit 10-67. Values are shown for
three general design traffic conditions, as follows:

Traffic Condition A—predominantly P vehicles, but some consideration for SU trucks.

Traffic Condition B—sufficient SU vehicles to govern design, but some consideration for
semitrailer vehicles.

Traffic Condition C—sufficient buses and combination trucks to govern design.

Traffic conditions A, B, and C are described in broad terms because design traffic volume
data for each type of vehicle are not available to define these traffic conditions with precision in
relation to traveled-way width. In general, traffic condition A has a small volume of trucks or
only an occasional large truck, traffic condition B has a moderate volume of trucks (in the range
of 5 to 10 percent of the total traffic), and traffic condition C has more and larger trucks.

Shoulders and lateral clearances. Design values for shoulders and lateral clearances on the
ramps are as follows:

• When paved shoulders are provided on ramps, they should have a uniform width for the
full length of ramp. For one-way operation, the sum of the right and left shoulder
widths should not exceed 3.0 to 3.6 m [10 to 12 ft]. A paved shoulder width of 0.6 to
1.2 m [2 to 4 ft] is desirable on the left with the remaining width of 2.4 to 3.0 m [8 to
10 ft] used for the paved right shoulder.

• The ramp traveled-way widths from Exhibit 10-67 for Case II and Case III should be
modified when paved shoulders are provided on the ramp. The ramp traveled-way
width for Case II should be reduced by the total width of both right and left shoulders.
However, in no case should the ramp traveled-way width be less than needed for Case I.
For example, with condition C and a 125-m [400-ft] radius, the Case II ramp traveled-
way width without shoulders is 6.6 m [22 ft]. If a 0.6-m [2-ft] left shoulder and a 2.4-m
[8-ft] right shoulder are provided, the minimum ramp traveled-way width should be
4.8 m [16 ft].

• Directional ramps with a design speed over 60 km/h [40 mph] should have a paved
right shoulder width of 2.4 to 3.0 m [8 to 10 ft] and a paved left shoulder width of 0.3 to
1.8 m [1 to 6 ft].

• For freeway ramp terminals where the ramp shoulder is narrower than the freeway
shoulder, the paved shoulder width of the through lane should be carried into the exit
terminal. It should also begin within the entrance terminal, with the transition to the



Metric US Customary
Pavement width (m) Pavement width (ft)

Case I
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case II
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case III
Two-lane operation—

either one-way or
two-way

Case I
One-lane, one-way

operation—no
provision for passing

a stalled vehicle

Case II
One-lane, one-way

operation—with
provision for passing

a stalled vehicle

Case III
Two-lane operation—

either one-way or
two-way

Design traffic conditions

Radius on
inner edge

of
pavement Design traffic conditions

Radius on
inner edge

of
pavement

R (m) A B C A B C A B C R (ft) A B C A B C A B C
15 5.4 5.5 7.0 6.0 7.8 9.2 9.4 11.0 13.6 50 18 18 23 20 26 30 31 36 45
25 4.8 5.0 5.8 5.6 6.9 7.9 8.6 9.7 11.1 75 16 17 20 19 23 27 29 33 38
30 4.5 4.9 5.5 5.5 6.7 7.6 8.4 9.4 10.6 100 15 16 18 18 22 25 28 31 35
50 4.2 4.6 5.0 5.3 6.3 7.0 7.9 8.8 9.5 150 14 15 17 18 21 23 26 29 32
75 3.9 4.5 4.8 5.2 6.1 6.7 7.7 8.5 8.9 200 13 15 16 17 20 22 26 28 30
100 3.9 4.5 4.8 5.2 5.9 6.5 7.6 8.3 8.7 300 13 15 15 17 20 22 25 28 29
125 3.9 4.5 4.8 5.1 5.9 6.4 7.6 8.2 8.5 400 13 15 15 17 19 21 25 27 28
150 3.6 4.5 4.5 5.1 5.8 6.4 7.5 8.2 8.4 500 12 15 15 17 19 21 25 27 28

Tangent 3.6 4.2 4.2 5.0 5.5 6.1 7.3 7.9 7.9 Tangent 12 14 14 17 18 20 24 26 26
Width modification regarding edge treatment Width modification regarding edge treatment

No stabilized
shoulder

None None None No stabilized
shoulder

None None None

Sloping curb None None None Sloping curb None None None
Vertical curb: Vertical curb:

one side Add 0.3 m None Add 0.3 m one side Add 1 ft None Add 1 ft
two sides Add 0.6 m Add 0.3 m Add 0.6 m two sides Add 2 ft Add 1 ft Add 2 ft

Stabilized
shoulder, one or
both sides

Lane width for
conditions B & C
on tangent may be
reduced to 3.6 m
where shoulder is
1.2 m or wider

Deduct shoulder
width; minimum
width as under
Case I

Deduct 0.6 m where
shoulder is 1.2 m
or wider

Stabilized
shoulder, one or
both sides

Lane width for
conditions B & C
on tangent may be
reduced to 12 ft
where shoulder is
4 ft or wider

Deduct shoulder
width; minimum
pavement width
as under Case I

Deduct 2 ft where
shoulder is 4 ft
or wider

Note: A = predominantly P vehicles, but some consideration for SU trucks.
B = sufficient SU vehicles to govern design, but some consideration

for semitrailer combination trucks.
C = sufficient bus and combination-trucks to govern design.

Note: A = predominantly P vehicles, but some consideration for SU trucks.
B = sufficient SU vehicles to govern design, but some consideration for

semitrailer combination trucks.
C = sufficient bus and combination-trucks to govern design.

Exhibit 10-67. Design Widths for Turning Roadways
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narrower ramp shoulder accomplished gracefully on the ramp end of the terminal.
Abrupt changes should be avoided.

• Ramps should have a lateral clearance on the right outside of the edge of the traveled
way of at least 1.8 m [6 ft], and preferably 2.4 to 3.0 m [8 to 10 ft], and a lateral
clearance on the left of at least 1.2 m [4 ft] beyond the edge of traveled way.

• Where ramps pass under structures, the total roadway width should be carried through
the structure. Desirably, structural supports should be located beyond the clear zone. As
a minimum, structural supports should be at least 1.2 m [4 ft] beyond the edge of paved
shoulder. The AASHTO Roadside Design Guide (3) provides guidance on clear zone
and the use of roadside barriers.

• Ramps on overpasses should have the full approach roadway width carried over the
structure.

• Edge lines or some type of color or texture differentiation between the traveled way and
shoulder is desirable.

Shoulders and curbs. Shoulders should be provided on ramps and ramp terminals in
interchange areas to provide a space that is clear of the traveled way for emergency stopping, to
minimize the effect of breakdowns, and to aid drivers who may be confused.

Ramps at interchanges should be designed without curbs. Curbs should be considered only
to facilitate particularly difficult drainage situations, such as in urban areas where restrictive
right-of-way favors enclosed drainage. In some cases, curbs are used at the ramp terminals but are
omitted along the central ramp portions. Where curbs are not used, full-depth paving should be
provided on shoulders because of the frequent use of shoulders for turning movements.

On low-speed facilities, curbs may be placed at the edge of roadway. Vertical curbs are
seldom used in conjunction with shoulders, except where pedestrian protection is needed. Where
curbs are used on high-speed facilities, sloping curbs should be placed at the outer edge of the
shoulder. Because of fewer restrictions and more liberal designs in rural areas, the need for curbs
seldom arises. See Chapter 4 for a full discussion of shoulder cross-section elements.

Ramp Terminals

The terminal of a ramp is that portion adjacent to the through traveled way, including speed-
change lanes, tapers, and islands. Ramp terminals may be the at-grade type, as at the crossroad
terminal of diamond or partial cloverleaf interchanges, or the free-flow type where ramp traffic
merges with or diverges from high-speed through traffic at flat angles. Design elements for the at-
grade type are discussed in Chapter 9, and those for the free-flow type are discussed in the
following sections.

Terminals are further classified as either single or multilane, according to the number of
lanes on the ramp at the terminal and as either a taper or parallel type, according to the
configuration of the speed-change lane.



Grade Separations and Interchanges

845

Left-hand entrances and exits. Left-hand entrances and exits are contrary to the concept of
driver expectancy when intermixed with right-hand entrances and exits. Therefore, extreme care
should be exercised to avoid left-hand entrances and exits in the design of interchanges.

Left-side ramp terminals break up the uniformity of interchange patterns and generally
create uncertain operation on through roadways. Left-hand entrances and exits are considered
satisfactory for collector-distributor roads; however, their use on high-speed, free-flow ramp
terminals is not recommended. Because left-hand entrances and exits are contrary to driver
expectancy, special attention should be given to signing and the provision for decision sight
distance in order to alert the driver that an unusual situation exists.

Terminal location and sight distance. Where diamond ramps and partial cloverleaf
arrangements intersect the crossroad at grade, an at-grade intersection is formed. Desirably, this
intersection should be located an adequate distance from the separation structure to provide
adequate sight distance for all approaches. Sight distance criteria are detailed in Chapter 3.

Drivers prefer and expect to exit in advance of the separation structure. The use of collector-
distributor roads and single exits on partial cloverleafs and other types of interchange
configurations automatically positions the main line exit in advance of the separation structure.

Designs that result in an exit concealed behind a crest vertical curve should be avoided,
especially on high-speed facilities. Desirably, high-speed entrance ramp terminals should be
located on descending grades to aid truck acceleration. Adequate sight distance at entrance
terminals should be available so that merging traffic on the ramp can adjust speed to merge into
gaps on the main facility.

Loop ramps that are located beyond the structure, as in the conventional cloverleaf or in
certain arrangements of partial cloverleafs, usually need a parallel deceleration lane. The actual
exit from the auxiliary lane is difficult for drivers to locate even when sight distance is not
restricted by a vertical curve. Placing the exit in advance of the structure via a single exit
alleviates this problem. See the section on “Two-Exit Versus Single-Exit Interchange Design”
earlier in this chapter.

Ramp terminal design. Profiles of ramp terminals should be designed in association with
horizontal curves to avoid sight restrictions that will adversely affect operations. At an exit into a
ramp on a descending grade, a horizontal curve ahead should not appear suddenly to a driver
using the ramp. Instead, the initial crest vertical curve should be made longer and sight distance
over it should be increased so that the location and direction of the horizontal curve are apparent
to the driver in sufficient time for the driver to respond appropriately. At an entrance terminal
from a ramp on an ascending grade, the portion of the ramp intended for acceleration and the
ramp terminal should closely parallel the through-lane profile to permit entering drivers to have a
clear view of the through road ahead, to the side, and to the rear.

It is desirable that profiles of highway ramp terminals be designed with a platform on the
ramp side of the approach nose or merging end. This platform should be at least 60 m [200 ft] in
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length and should have a profile that does not greatly differ from that of the adjacent through-
traffic lane.

A platform area should also be provided at the at-grade terminal of a ramp. The length of
this platform should be determined from the type of traffic control and the capacity at the
terminal. For further discussion, see Chapter 9.

Traffic control. On major highways, ramps are arranged to facilitate all turning movements
by merging or diverging maneuvers. On minor highways, some of the left-turning movements
often are made at grade. The left-turning movements leaving the crossing highway preferably
should have median left-turn lanes. For low-volume crossroads the left-turning movements from
ramps normally should be controlled by stop signs. The right-turning movements from ramps into
multilane crossroads should be provided with an acceleration lane or generous taper, or should be
controlled by stop or yield signs. Ramps approaching stop signs should be nearly perpendicular to
the crossroad and be nearly level for storage of several vehicles.

Traffic signal controls may be needed at ramp terminals on the minor road where there is
sufficient volume of through and turning traffic. In such cases, the intersections formed at the
terminals should be designed and operated in the same manner as any other traffic-signal-
controlled intersection at grade. Signal controls should be avoided on express-type highways and
confined to the minor highways on which other intersections are at grade and some of which are
signalized. In or near urban areas, signal control is especially appropriate at ramp terminals on
streets crossing over or under an expressway. Here the turning movements usually are sizable,
and the cost of right-of-way and improvements is high. As a result, appreciable savings may be
realized by the use of diamond ramps with high-type terminals on the expressway and signalized
terminals on the cross streets. Warrants for the installation of traffic signals that can be applied to
diamond ramp terminals are given in Part 4 of the MUTCD (4).

Distance between a free-flow terminal and structure. The terminal of a ramp should not
be near the grade-separation structure. If it is not practical to place the exit terminal in advance of
the structure, the exiting terminal on the far side of the structure should be well removed in order
that, when leaving, drivers have some distance after passing the structure in which to see the
turnout and begin the turnoff maneuver. Decision sight distance is recommended where practical.
The distance between the structure and the approach nose at the ramp terminal should be
sufficient for exiting drivers to leave the through lanes without undue hindrance to through
traffic. Such distance also aids drivers entering from a ramp terminal on the far side of the
structure to have a clear view well back on the through road behind or to the left. Such drivers
may be able to see back along the road beyond the limits of the structure, but as a general rule, the
crest of the profile at an overpass and the columns, abutments, and approach walls at an
underpass obstruct or impair their view of the traffic stream into which they merge.

The conditions for determining the distance between a structure and the far side approach
nose are similar to those discussed for speed-change lanes. A minimum distance between the
structure and an exit nose of about the same length as a speed-change taper is suggested. Decision
sight distances are desirable but are not rigid controls for ramp design. Topographic or right-of-
way controls may govern the overall shape of the ramp.
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While safety and convenience are enhanced by a long separation distance between a
structure and an exit ramp terminal, this distance can be too long for certain ramp arrangements
such as cloverleaf loop ramps. Unusually large right-of-way needs as well as increased travel
time and length on the loops may result. Where only one loop is needed and it falls on the far side
of the structure, a speed-change lane should be developed on the near side of the structure and
carried across the structure if sight distance is a problem.

The separation distance between a structure and a ramp terminal does not need to be as long
for ramp terminals on the near side of a structure as for those beyond the structure. Both the view
of the terminal ahead for drivers approaching on the through road and the view back along the
road for drivers on an entrance ramp are not affected by the structure. Where an entrance ramp
curve on the near side of the structure needs an acceleration lane, the ramp terminal should be
located to provide sufficient length for it between the terminal and the structure, or the
acceleration lane maybe continued through or over the structure. Where ramp terminals on the far
side of a structure are located close to it, the horizontal sight line may be limited by the abutment
or parapet; available sight distance should, therefore, be checked.

Distance between successive ramp terminals. On urban freeways, two or more ramp
terminals are often located in close succession. To provide sufficient weaving length and
adequate space for signing, a reasonable distance should be provided between successive ramp
terminals. Spacing between successive outer ramp terminals is dependent on the classification of
the interchanges involved, the function of the ramp pairs (entrance or exit), and weaving
potential.

The five possible ramp-pair combinations are: (1) an entrance followed by an entrance
(EN-EN), (2) an exit followed by an exit (EX-EX), (3) an exit followed by an entrance (EX-EN),
(4) an entrance followed by an exit (EN-EX) (weaving), and (5) turning roadways.

Exhibit 10-68 presents recommended minimum ramp terminal spacing for the various ramp-
pair combinations as they are applicable to interchange classifications.

Where an entrance ramp is followed by an exit ramp, the absolute minimum distance
between the successive noses is governed by weaving considerations. The spacing policy for
EN-EX ramp combinations is not applicable to cloverleaf loop ramps. For these interchanges, the
distance between EN-EX ramp noses is primarily dependent on loop ramp radii and roadway and
median widths. A recovery lane beyond the nose of the loop ramp exit is desirable.

When the distance between the successive noses is less than 450 m [1,500 ft], the speed-
change lanes should be connected to provide an auxiliary lane. This auxiliary lane improves
traffic operation over relatively short sections of the freeway route and is not considered an
addition to the basic number of lanes. See the section “Auxiliary Lanes” in this chapter for
alternate methods of dropping these lanes.
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Exhibit 10-68. Recommended Minimum Ramp Terminal Spacing

Speed-change lanes. Drivers leaving a highway at an interchange are required to reduce
speed as they exit on a ramp. Drivers entering a highway from a turning roadway accelerate until
the desired highway speed is reached. Because the change in speed is usually substantial,
provision should be made for acceleration and deceleration to be accomplished on auxiliary lanes
to minimize interference with through traffic and to reduce crash potential. Such an auxiliary
lane, including tapered areas, may be referred to as a speed-change lane. The terms “speed-
change lane,” “deceleration lane,” or “acceleration lane” as used herein apply broadly to the
added lane joining the traveled way of the highway with that of the turning roadway and do not
necessarily imply a definite lane of uniform width. This additional lane is a part of the elongated
ramp terminal area.

A speed-change lane should have sufficient length to enable a driver to make the appropriate
change in speed between the highway and the turning roadway in a safe and comfortable manner.
Moreover, in the case of an acceleration lane, there should be additional length to permit
adjustments in speeds of both through and entering vehicles so that the driver of the entering
vehicle can position himself opposite a gap in the through-traffic stream and maneuver into it
before reaching the end of the acceleration lane. This latter consideration also influences both the
configuration and length of an acceleration lane.

Two general forms of speed-change lanes are: (1) the taper and (2) the parallel type. The
taper type provides a direct entry or exit at a flat angle, whereas the parallel type has an added
lane for changing speed. Either type, when properly designed, will operate satisfactorily.
However, the parallel type is still favored in certain areas. Furthermore, some agencies use the
taper type for exits and the parallel type for entrances.
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See Chapter 9 for discussion of speed-change lanes as applicable to at-grade intersections.

Single-Lane Free-Flow Terminals, Entrances

Taper-type entrance. When properly designed, the taper-type entrance usually operates
smoothly at all volumes up to and including the design capacity of merging areas. By relatively
minor speed adjustment, the entering driver can see and use an available gap in the through-traffic
stream. A typical single-lane, taper-type entrance terminal is shown in Exhibit 10-69A.

Exhibit 10-69. Typical Single-Lane Entrance Ramps

The entrance is merged into the freeway with a long, uniform taper. Operational studies
show a desirable rate of taper of about 50:1 to 70:1 (longitudinal to lateral) between the outer
edge of the acceleration lane and the edge of the through-traffic lane. The gap acceptance length,
Lg is also a  consideration in the  design of taper-type  entrances, as illustrated  in Exhibit 10-69A.
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The geometrics of the ramp proper should be such that motorists may attain a speed that is
within 10 km/h [5 mph] of the operating speed of the freeway by the time they reach the point
where the left edge of the ramp joins the traveled way of the freeway. For consistency of
application, this point of convergence of the left edge of the ramp and the right edge of the
through lane may be assumed to occur where the right edge of the ramp traveled way is 3.6 m
[12 ft] from the right edge of the through lane of the freeway.

The distance needed for acceleration in advance of this point of convergence is governed by
the speed differential between the operating speed on the entrance curve of the ramp and the
operating speed of the highway. Exhibit 10-70 shows minimum lengths of acceleration distances
for entrance terminals. Exhibit 10-69 shows the minimum lengths for gap acceptance. Referring
to Exhibit 10-69, the larger value of the acceleration length (La) or the gap acceptance (Lg) length
is suggested for use in the design of the ramp entrance. Where the minimum values for nose
width (0.6 m [2 ft]), lane width 4.8 m [16 ft]), and taper rate (50:1) are used with high traffic
volumes, taper lengths longer than the larger of La or Lg may be needed to avoid inferior
operation and to reduce fairly sharp moves into the mainline traffic stream. Where grades are
present on ramps, speed-change lengths should be adjusted in accordance with Exhibit 10-71.

Parallel-type entrances. The parallel-type entrance provides an added lane of sufficient
length to enable a vehicle to accelerate to near-freeway speed prior to merging. A taper is
provided at the end of the added lane. The process of entering the freeway is similar to a lane
change to the left. The driver is able to use the side-view and rear-view mirrors to monitor
surrounding traffic.

A typical design of a parallel-type entrance is shown in Exhibit 10-69B. Desirably, a curve
with a radius of 300 m [1,000 ft] or more and a length of at least 60 m [200 ft] should be provided
in advance of the added lane. If this curve has a short radius, motorists tend to drive directly onto
the freeway without using the acceleration lane. This behavior results in undesirable merging
operations.

The taper at the downstream end of a parallel-type acceleration lane should be a suitable
length to guide the vehicle gradually onto the through lane of the freeway. A taper length of
approximately 90 m [300 ft] is suitable for design speeds up to 110 km/h [70 mph].

The length of a parallel-type acceleration lane is generally measured from the point where
the left edge of the traveled way of the ramp joins the traveled way of the freeway to the
beginning of the downstream taper. Whereas, in the case of the taper type entrance, acceleration
is accomplished on the ramp upstream of the point of convergence of the two roadways,
acceleration usually takes place downstream from this point in the case of the parallel type.
However, a part of the ramp proper may also be considered in the acceleration length, provided
the curve approaching the acceleration lane has a long radius of approximately 300 m [1,000 ft]
or more, and the motorist on the ramp has an unobstructed view of traffic on the freeway to his or
her left. The minimum acceleration lengths for entrance terminals are given in Exhibit 10-70, and
the adjustments for grades are given in Exhibit 10-71.



Grade Separations and Interchanges

851

Metric
Acceleration length, L (m) for entrance curve design speed (km/h)

Highway
Stop

condition 20 30 40 50 60 70 80
and initial speed, V′a (km/h)

Design
speed, V
(km/h)

Speed
reached,

Va

(km/h) 0 20 28 35 42 51 63 70
50 37 60 50 30 – – – – –
60 45 95 80 65 45 – – – –
70 53 150 130 110 90 65 – – –
80 60 200 180 165 145 115 65 – –
90 67 260 245 225 205 175 125 35 –

100 74 345 325 305 285 255 205 110 40
110 81 430 410 390 370 340 290 200 125
120 88 545 530 515 490 460 410 325 245

  Note:  Uniform 50:1 to 70:1 tapers are recommended where lengths of acceleration lanes exceed 400 m.

US Customary
Acceleration length, L (ft) for entrance curve design speed (mph)

Highway
Stop

condition 15 20 25 30 35 40 45 50

and initial speed, V′a (mph)
Design

speed, V
(mph)

Speed
reached,

Va

(mph) 0 14 18 22 26 30 36 40 44
30 23 180 140 – – – – – – –
35 27 280 220 160 – – – – – –
40 31 360 300 270 210 120 – – – –
45 35 560 490 440 380 280 160 – – –
50 39 720 660 610 550 450 350 130 – –
55 43 960 900 810 780 670 550 320 150 –
60 47 1200 1140 1100 1020 910 800 550 420 180
65 50 1410 1350 1310 1220 1120 1000 770 600 370
70 53 1620 1560 1520 1420 1350 1230 1000 820 580
75 55 1790 1730 1630 1580 1510 1420 1160 1040 780

  Note:  Uniform 50:1 to 70:1 tapers are recommended where lengths of acceleration lanes exceed 1,300 ft.

Exhibit 10-70. Minimum Acceleration Lengths for Entrance Terminals With Flat Grades of
2 Percent or Less



Metric US Customary

Deceleration lanes Deceleration lanesDesign
speed of
highway
(km/h)

Ratio of length on grade to length on level for design speed of
turning curve (km/h)a

Design
speed of
highway
(mph)

Ratio of length on grade to length on level for design speed of
turning curve (mph)a

All speeds 3 to 4% upgrade 3 to 4% downgrade All speeds 3 to 4% upgrade 3 to 4% downgrade
0.9 1.2 0.9 1.2

All speeds 5 to 6% upgrade 5 to 6% downgrade All speeds 5 to 6% upgrade 5 to 6% downgrade
0.8 1.35 0.8 1.35

Acceleration lanes Acceleration lanesDesign
speed of
highway
(km/h)

Ratio of length on grade to length of level for design speed of
turning curve (km/h)a

Design
speed of
highway
(mph)

Ratio of length on grade to length of level for design speed of
turning curve (mph)a

40 50 60 70 80 All speeds 20 30 40 50 All speeds

3 to 4% upgrade
3 to 4%

downgrade 3 to 4% upgrade
3 to 4%

downgrade
60 1.3 1.4 1.4 – – 0.7 40 1.3 1.3 – – 0.7
70 1.3 1.4 1.4 1.5 – 0.65 45 1.3 1.35 – – 0.675
80 1.4 1.5 1.5 1.5 1.6 0.65 50 1.3 1.4 1.4 – 0.65
90 1.4 1.5 1.5 1.5 1.6 0.6 55 1.35 1.45 1.45 – 0.625

100 1.5 1.6 1.7 1.7 1.8 0.6 60 1.4 1.5 1.5 1.6 0.6
110 1.5 1.6 1.7 1.7 1.8 0.6 65 1.45 1.55 1.6 1.7 0.6
120 1.5 1.6 1.7 1.7 1.8 0.6 70 1.5 1.6 1.7 1.8 0.6

5 to 6% upgrade
3 to 4%

downgrade 5 to 6% upgrade
5 to 6%

downgrade
60 1.5 1.5 – – – 0.6 40 1.5 1.5 – – 0.6
70 1.5 1.6 1.7 – – 0.6 45 1.5 1.6 – – 0.575
80 1.5 1.7 1.9 1.8 – 0.55 50 1.5 1.7 1.9 – 0.55
90 1.6 1.8 2.0 2.1 2.2 0.55 55 1.6 1.8 2.05 – 0.525

100 1.7 1.9 2.2 2.4 2.5 0.5 60 1.7 1.9 2.2 2.5 0.5
110 2.0 2.2 2.6 2.8 3.0 0.5 65 1.85 2.05 2.4 2.75 0.5
120 2.3 2.5 3.0 3.2 3.5 0.5 70 2.0 2.2 2.6 3.0 0.5

a  Ratio from this table multiplied by the length in Exhibit 10-70 or Exhibit 10-73 gives length of speed change lane on grade.

Exhibit 10-71. Speed Change Lane Adjustment Factors as a Function of Grade
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The operational and safety benefits of long acceleration lanes provided by parallel type
entrances are well recognized. A long acceleration lane provides more time for the merging
vehicles to find an opening in the through-traffic stream. An acceleration lane length of at least
360 m [1,200 ft], plus the taper, is desirable wherever it is anticipated that the ramp and freeway
will frequently carry traffic volumes approximately equal to the design capacity of the merging
area.

Single-Lane Free-Flow Terminals, Exits

Taper-type exits. The taper-type exit fits the direct path preferred by most drivers,
permitting them to follow an easy path within the diverging area. The taper-type exit terminal
beginning with an outer edge alignment break usually provides a clear indication of the point of
departure from the through lane and has generally been found to operate smoothly on high-
volume freeways. The divergence angle is usually between 2 and 5 degrees.

Studies of this type of terminal show that most vehicles leave the through lane at relatively
high speeds, thereby reducing the potential for rear-end collisions as a result of deceleration on
the through lane. The speed change can be achieved off the traveled way as the exiting vehicle
moves along the taper onto the ramp proper. Exhibit 10-72A shows a typical design for a
taper-type exit.

Vehicles should decelerate after clearing the through-traffic lane and before reaching the
point limiting design speed for the ramp proper. The length available for deceleration may be
assumed to extend from a point where the right edge of the tapered wedge is about 3.6 m [12 ft]
from the right edge of the right through lane, to the point of initial curvature of the exit ramp (i.e.,
the first horizontal curve on the ramp). The length provided between these points should be at
least as great as the distance needed to accomplish the appropriate deceleration, which is
governed by the speed of traffic on the through lane and the speed to be attained on the ramp.
Deceleration may end in a complete stop, as at a crossroad terminal for a diamond interchange, or
the critical speed may be governed by the curvature of the ramp roadway. Minimum deceleration
lengths for various combinations of design speeds for the highway and for the ramp roadway are
given in Exhibit 10-73. Grade adjustments are given in Exhibit 10-71.

The taper-type exit terminal design can be used advantageously in developing the desired
long, narrow, triangular emergency maneuver area just upstream from the exit nose located at a
proper offset from both the through lane and separate ramp lane. The taper configuration also
works well in the length-width superelevation adjustments to obtain a ramp cross slope different
from that of the through lane.

The width of the recovery area or the distance between the inner edges of the diverging lanes
at the ramp nose is usually 6.0 to 9.0 m [20 to 30 ft]. This entire area should be paved to provide a
maneuver and recovery area, but the desired travel path for the ramp roadway should be clearly
delineated by pavement markings.
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Exhibit 10-72. Exit Ramps—Single Lane
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Metric
Deceleration length, L (m) for design speed of exit curve V ′ (km/h)

Stop
condition 20 30 40 50 60 70 80

For average running speed on exit curve V ′a (km/h)

Highway
design

speed, V
(km/h)

Speed
reached,
Va (km/h) 0 20 28 35 42 51 63 70

50 47 75 70 60 45 – – – –
60 55 95 90 80 65 55 – – –
70 63 110 105 95 85 70 55 – –
80 70 130 125 115 100 90 80 55 –
90 77 145 140 135 120 110 100 75 60

100 85 170 165 155 145 135 120 100 85
110 91 180 180 170 160 150 140 120 105
120 98 200 195 185 175 170 155 140 120

V = design speed of highway (km/h)
Va = average running speed on highway (km/h)
V ′ = design speed of exit curve (km/h)
V ′a = average running speed on exit curve (km/h)

US Customary
Deceleration length, L (ft) for design speed of exit curve, V ′ (mph)

Stop
condition 15 20 25 30 35 40 45 50

For average running speed on exit curve, V ′a (mph)Highway
design

speed, V
(mph)

Speed
reached,

Va

(mph) 0 14 18 22 26 30 36 40 44
30 28 235 200 170 140 – – – – –
35 32 280 250 210 185 150 – – – –
40 36 320 295 265 235 185 155 – – –
45 40 385 350 325 295 250 220 – – –
50 44 435 405 385 355 315 285 225 175 –
55 48 480 455 440 410 380 350 285 235 –
60 52 530 500 480 460 430 405 350 300 240
65 55 570 540 520 500 470 440 390 340 280
70 58 615 590 570 550 520 490 440 390 340
75 61 660 635 620 600 575 535 490 440 390

V = design speed of highway (mph)
Va = average running speed on highway (mph)
V ′ = design speed of exit curve (mph)
V ′a = average running speed on exit curve (mph)

Exhibit 10-73. Minimum Deceleration Lengths for Exit Terminals With Flat Grades of
2 Percent or Less
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Parallel-type exits. A parallel-type exit terminal usually begins with a taper, followed by an
added lane that is parallel to the traveled way. A typical parallel-type exit terminal is shown in
Exhibit 10-72C. This type of terminal provides an inviting exit area, because the foreshortened
view of the taper and the added width are very apparent. Parallel-type exits operate best when
drivers choose to exit the through lane sufficiently in advance of the exit nose to permit
deceleration to occur on the added lane (deceleration lane) and allows them to follow a path
similar to that encouraged by a taper design. Drivers who do not exit the through lane sufficiently
in advance of the exit nose will likely utilize a more abrupt reverse-curve maneuver, which is
somewhat unnatural and can sometimes result in the driver slowing in the through lane. In
locations where both the mainline and ramp carry high volumes of traffic, the deceleration lane
provided by the parallel-type exit provides storage for vehicles that would otherwise undesirably
queue up on the through lane or on a shoulder, if available.

The length of a parallel-type deceleration lane is usually measured from the point where the
added lane attains a 3.6 m [12 ft] width to the point where the alignment of the ramp roadway
departs from the alignment of the freeway. Where the ramp proper is curved, it is desirable to
provide a transition at the end of the deceleration lane. A compound curve may be used with the
initial curve desirably and should have a long radius of about 300 m [1,000 ft] or more. A
transition or a long radius curve is also desirable if the deceleration lane connects with a relatively
straight ramp. In such cases, a portion of the ramp may be considered as a part of the deceleration
length, thus shortening to some extent the appropriate length of contiguous parallel lane.
Minimum lengths are given in Exhibit 10-73, and adjustments for grades are given in
Exhibit 10-71. Longer parallel-type deceleration lanes are more likely than shorter lanes to be
used properly. Lengths of at least 240 m [800 ft] are desirable.

The taper portion of a parallel-type deceleration lane should have a taper of approximately
15:1 to 25:1 [longitudinal:transverse]. A long taper indicates the general path to be followed and
reduces the unused portion of the deceleration lane. However, a long taper tends to entice the
through driver into the deceleration lane. A short taper produces a better “target” to the
approaching driver, giving a positive indication of the added lane ahead.

Free-flow terminals on curves. The previous discussion was based on highways with a
tangent alignment. Because the curvature on most freeways is slight, there is usually no need to
make any appreciable adjustments at ramp terminals on curves. However, where the curves on a
freeway are relatively sharp and there are exits and entrances located on these curves, some
adjustments in design may be desirable to avoid operational difficulties.

On freeways having design speeds of 100 km/h [60 mph] or more, the curves are sufficiently
gentle so that either the parallel type or the taper type of speed-change lane is suitable. With the
parallel type, the design is about the same as that on tangent and the added lane is usually on the
same curvature as the main line. With the taper type, the dimensions applicable to terminals
located on tangent alignment are also suitable for use on curves. A method for developing the
alignment of tapered speed-change lanes on curves is illustrated in Exhibit 10-74. On curved
sections, the ramp is tapered at the same rate relative to the through-traffic lanes as on tangent
sections.
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Exhibit 10-74. Layout of Taper-Type Terminals on Curves (Metric)
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Exhibit 10-74. Layout of Taper-Type Terminals on Curves (U.S. Customary)
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Wherever a part of a tapered speed-change lane falls on curved alignment,  it is desirable that
the entire length be within the limits of the curve. Where the taper is introduced on tangent
alignment just upstream from the beginning of the curve, the outer edge of the taper will appear
as a kink at the point of curvature.

At ramp terminals on relatively sharp curves, such as those that may occur on freeways
having a design speed of 80 km/h [50 mph], the parallel type of speed-change lanes has an
advantage over the taper type. At exits the parallel type is less likely to confuse through traffic,
and at entrances this type will usually result in smoother merging operations. Parallel-type speed-
change lanes at ramp terminals on curves are illustrated in Exhibit 10-75.

Exhibit 10-75. Parallel-Type Ramp Terminals on Curves
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Entrances on curved sections of highway are generally less of a problem than exits.
Exhibits 10-75A and Exhibit 10-75B show entrances with the highway curving to the left and
right, respectively. It is important that the approach curve on the ramp has a very long radius as it
joins the acceleration lane. This aligns the entering vehicle with the acceleration lane and lessens
the chances of motorists entering directly onto the through lanes. The taper at the end of the
acceleration lane should be long, preferably about 90 m [300 ft] in length. When reverse-curve
alignment occurs between the ramp and speed-change lane, an intervening tangent should be used
to aid in superelevation transition.

An exit may be particularly troublesome where the highway curves to the left
(Exhibit 10-75C) because traffic on the outside lane tends to follow the ramp. Exits on left-
turning curves should be avoided, if practical. Caution should be used in positioning a taper-type
deceleration lane on the outside of a left-turning main line curve. The design should provide a
definite break in the right edge of traveled way to provide a visual cue to the through driver so
that the driver is not inadvertently led off the through roadway. To make the deceleration lane
more apparent to approaching motorists, the taper should be shorter, preferably no more than
30 m [100 ft] in length. The deceleration lane should begin either upstream or downstream from
the PC. It should not begin right at the PC, as the deceleration lane appears to be an extension of
the tangent, and motorists are more likely to be confused. The ramp proper should begin with a
section of tangent or a long-radius curve to permit a long and gradual reversing of the
superelevation.

An alternate design, which will usually avoid operational problems, is to locate the exit
terminal a considerable distance upstream from the PC. In this design, separate and parallel ramp
roadway is provided to connect with the ramp proper.

With the highway curving to the right and the exit located on the right (Exhibit 10-75D,
there is a tendency for vehicles to exit inadvertently. Again, the taper should be short to provide
additional “target” value for the deceleration lane. With this configuration, the superelevation of
the deceleration lane is readily achieved by continuing the rate from the traveled way and
generally increasing it to the appropriate rate for the ramp curve.

Multilane free-flow terminals. Multilane terminals are appropriate where traffic is too great
for single-lane operation. Other considerations that may call for multilane terminals are through-
route continuity, queuing on long ramps, lane balance, and design flexibility. The most common
multilane terminals consist of two-lane entrances and exits at freeways. Other multilane terminals
are sometimes termed “major forks” and “branch connections.” The latter terms denote a
separating and joining of two major routes.

Two-lane entrances. Two-lane entrances are warranted for two situations: either as branch
connections or because of capacity needs for the on-ramp. To satisfy lane-balance needs, at least
one additional lane should be provided downstream. This addition may be a basic lane, if needed
for capacity, or an auxiliary lane that may be dropped 750 to 900 m [2,500 to 3,000 ft]
downstream from the entrance or at the next interchange. In some instances, two additional lanes
may be needed because of capacity considerations.
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If the two-lane entrance is preceded by a two-lane exit, there is probably no need to increase
the basic number of lanes on the freeway from a capacity standpoint. In this case, the added lane
that results from the two-lane entrance is considered an auxiliary lane, and it may be dropped
approximately 750 m [2,500 ft] or more downstream from the entrance. Details of lane drops
were discussed earlier in this chapter.

Exhibit 10-76 illustrates simple two-lane entrance terminals where a lane has been added to
the freeway. The number of lanes on the freeway has little or no effect on terminal design.
Exhibit 10-76A presents a taper-type entrance and Exhibit 10-76B shows a parallel-type entrance.
Intermixing of the two designs is not recommended within a system route or an urban-area
system.

The basic form or layout of a two-lane taper-type entrance, as shown in Exhibit 10-76A, is
the same as a single-lane taper, as described earlier in this chapter, with a second lane added to
the right or outer side and continued as an added or auxiliary lane on the freeway. Exhibit 10-70
shows minimum lengths of acceleration distances for entrance ramps. The gap acceptance length
is also a consideration as illustrated in Exhibit 10-76A. Where ramp grades are involved, the
lengths should be adjusted as shown in Exhibit 10-71. As in the case of a single-lane entrance, it
is most desirable that the geometrics of the ramp proper permit motorists to attain the
approximate running speed of the freeway before reaching the tapered section.

With the parallel type of two-lane entrance, as shown in Exhibit 10-76B, the left lane of the
ramp is continued onto the freeway as an added lane. The right lane of the ramp is carried as a
parallel lane for at least 90 to 150 m [300 to 500 ft] and terminated by a tapered section at least
90 m [300 ft] in length. The length of the right lane should, as a minimum, be determined from
the acceleration length or gap acceptance length, as shown in Exhibit 10-76B. Major factors in
determining the appropriate length are the traffic volume on the ramp and the traffic volume on
the freeway.

When the volume of the two-lane ramp, either the taper or parallel type, exceeds the capacity
of a through lane as specified in the HCM (5), it is suggested that the value for Lg (Exhibit 10-76)
be in the range of 300 to 665 m [900 to 2,000 ft] to allow sufficient time and distance for vehicles
in the left ramp lane to move into the mainline lanes, thereby opening space and providing time
for vehicles in the right ramp lane to move into the left ramp lane. Following the termination of
the left ramp lane, an additional distance in the range of 300 to 665 m [900 to 2,000 ft] should be
provided, plus a taper before terminating the right ramp lane.

Although both the taper type and the parallel type of two-lane entrances will operate
efficiently when properly designed, some designers prefer the parallel type. This is based on the
premise that the taper type involves an “inside merge” with traffic traveling on both sides of the
merging lanes. If either vehicle involved with the merging movement abandons the merge, traffic
in the adjacent lanes could prevent the merging vehicles from escaping to the adjacent lanes. By
contrast, the parallel type allows the merging vehicle to escape to the right shoulder without any
interference.
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Exhibit 10-76. Typical Two-Lane Entrance Ramps
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Where the predominant two-lane entrances in a particular State or locality are of the parallel
type and, therefore, drivers are accustomed to that type of entrance, a taper-type entrance would
violate driver expectancy, and vice versa. Thus, a particular type of entrance terminal is
sometimes condemned as being unsatisfactory when in fact the difficulty may be lack of
uniformity. Either form of two-lane entrance is satisfactory if used exclusively within an area or a
region, but they should not be intermixed along a given route.

Two-lane exits. Where the traffic volume leaving the freeway at an exit terminal exceeds the
design capacity of a single lane, a two-lane exit terminal should be provided. To satisfy lane-
balance needs and not to reduce the basic number of through lanes, it is usually appropriate to add
an auxiliary lane upstream from the exit. A distance of approximately 450 m [1,500 ft] is
recommended to develop the full capacity of a two-lane exit. Typical designs for two-lane exit
terminals are shown in Exhibit 10-77; the taper is illustrated in Exhibit 10-77A and the parallel
type in Exhibit 10-77B.

Exhibit 10-77. Two-Lane Exit Terminals



AASHTO—Geometric Design of Highways and Streets

864

In cases where the basic number of lanes is to be reduced beyond a two-lane exit, the basic
number of lanes should be carried beyond the exit before the outer lane is dropped. This design
provides a recovery area for any through vehicles that remain in that lane. This was discussed in
the section “Lane Reductions” earlier in this chapter.

With the parallel type of two-lane exit, as shown in Exhibit 10-77B, the operation is different
from the taper type in that traffic in the outer through lane of the freeway must change lanes in
order to exit. In fact, an exiting motorist is required to move two lanes to the right in order to use
the right lane of the ramp. Thus, considerable lane changing is needed in order for the exit to
operate efficiently. This entire operation takes place over a substantial length of highway, which
is dependent in part on the total traffic volume on the freeway and especially on the volume using
the exit ramp. The total length from the beginning of the first taper to the point where the ramp
traveled way departs from the right-hand through lane of the freeway should range from 750 m
[2,500 ft] for turning volumes of 1,500 vph or less upward to 1,000 m [3,500 ft] for turning
volumes of 3,000 vph.

Two-lane terminals on curved alignment. The design of ramp terminals where the freeway
is on curved alignment is discussed under single-lane terminals. The same principles of design, in
which offsets from the edge of roadway are used, may be used in the layout of two-lane
terminals.

Major forks and branch connections. A major fork is defined as the bifurcation of a
directional roadway of a terminating freeway route into two directional multilane ramps that
connect to another freeway, or of a freeway route into two separate freeway routes of about equal
importance.

The design of major forks is subject to the same principles of lane balance as any other
diverging area. The total number of lanes in the two roadways beyond the divergence should
exceed the number of lanes approaching the diverging area by at least one. Operational
difficulties invariably develop unless traffic in one of the interior lanes has an option of taking
either of the diverging roadways. Accordingly, the nose should be placed in direct alignment with
the center line of one of the interior lanes, as illustrated in Exhibits 10-78A, B, or C, where the
horizontal alignment of the two departing roadways are in curves. This interior lane is continued
as a full-width lane, both left and right of the gore. Thus, the width of this interior lane will be at
least 7.2 m [24 ft] at the painted nose (prolongation of pavement-edge stripes) and preferably not
over 8.4 m [28 ft]. The length over which the widening from 3.6 to 7.2 m [12 to 24 ft] takes place
should be within the range of 300 or 540 m [1,000 or 1,800 ft]. However, in the case where at
least one of the approaches is on a tangent alignment and continues on a tangent, a true optional
interior lane cannot be physically developed. As such, the principles of the two-lane exit facility
should be used as shown in Exhibit 10-78D.
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Exhibit 10-78. Major Forks

In the case of a two-lane roadway separating into two, two-lane routes, there is no interior
lane. In such cases, it is advisable to widen the approach roadway to three lanes, thus creating an
interior lane. The lane is added on the side of the fork that serves the lesser traffic volume. In
Exhibit 10-78A, the right (lower) fork would be the more lightly traveled of the two. The
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widening from 10.8 m [36 ft] for the approach roadway to about 14.4 or 15.0 m [48 or 50 ft] at
the painted nose should be accomplished in a continuous sweeping curve with no reverse
curvature in the alignment of the roadway edges.

A branch connection is defined as the beginning of a directional roadway of a freeway
formed by the convergence of two directional multilane ramps from another freeway or by the
convergence of two freeway routes to form a single freeway route.

The number of lanes downstream from the point of convergence may be one lane fewer than
the combined total on the two approach roadways. In some cases, the traffic demand may indicate
that the number of lanes going away from the merging area be equal to the sum of the number of
lanes on the two roadways approaching it, and a design of this type will pose no operational
problem. Such a design is illustrated in Exhibit 10-79A.

Exhibit 10-79. Branch Connections
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Where a lane is to be dropped, which is the more common case, a means for accomplishing
the reduction is discussed in the section “Lane Reductions” in this chapter. The lane that is
terminated will ordinarily be the exterior lane from the roadway serving the lowest volume per
lane. However, some considerations should also be given to the fact that the outer lane from the
roadway entering from the right is the slow-speed lane for that roadway, whereas the opposite is
true for the roadway entering from the left. If the traffic volumes per lane are about equal, it
would be proper to terminate the lane on the right, as shown in Exhibit 10-79B. In any case,
consistency within an area or region is often more important than volume per lane since the latter
may change with the specific design or with traffic demand changing over time. The lane being
terminated should be carried at full lane width for a distance of approximately 300 m [1,000 ft]
before being tapered out.

Another consideration is the possibility of a high-speed inside merge, as in Exhibit 10-79C.
This merge should be treated as any other high-speed merging situation; see the discussion of the
advantages of parallel-type entrance in the earlier section on “Two-Lane Entrances.”

Other Interchange Design Features

Testing for Ease of Operation

Each section of freeway that includes a series of interchanges or a succession of exits and
entrances should be tested for various operational characteristics of the route including
adaptability, capacity, and operational features. The evaluation tests for ease of operation and for
route continuity from a driver’s point of view, both of which are affected by the location,
proximity, and sequence of exits and entrances; the merging, diverging, and weaving movements
involved; practicality of signing; and clarity of paths to be followed. This test should be
completed after the preliminary design and before each interchange is completed.

A route may be tested by isolating those parts of the plan that will affect drivers on
individual paths through the interchange. Viewing an entire plan, as it might be seen from the air,
may give an impression of complexity because of the number of exits, entrances, ramps, and
structures. Actually, it is not as complex to the drivers, who see only the path they are driving on.
On the other hand, certain weaknesses of operation not evident on the overall plan will be
revealed in testing a single path of travel.

The plan should be tested by drawing or tracing the individual path for each principal origin
and destination and studying thereon those physical features that will be encountered by a driver.
The test can also be made on an overall plan on which the path to be studied and the stubs of
connecting roads are colored or shaded. The plan should show the peak-hour volumes, number of
traffic lanes, and peak-hour and off-peak-hour running speed. Thus, the designer can visualize
exactly what the driver sees—only the road being traveled, with the various points of ingress and
egress and the directional signs along it—and have a sense of the accompanying traffic.

Such an analysis indicates whether or not confusion is likely because of exits and entrances
too close together or interference is likely because of successive weaving sections. It should also
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show whether or not the path is clearly defined, if it is practical to sign the facility properly, and if
major or overhead signs are needed and where they may be placed. The test may show that the
path is easy to travel, direct in character, and free from sections that might confuse drivers, or it
may show that the path is sufficiently complex and confronted with disturbing elements so that an
adjustment in design is appropriate. As a result, it may be appropriate to move or eliminate
certain ramps. In an extreme case, the test may show that it is appropriate to change the overall
pattern by eliminating an interchange, introducing collector-distributor roads in order to prevent
interference with through traffic, or making some other radical change in design.

Exhibit 10-80 is a simple diagrammatic solution to a typical freeway operational problem.
The freeway joins a principal arterial at a branch connection and diverges at a major fork in a
distance of approximately 1.5 to 5.0 km [1 to 3 mi]. There may be other connections to and from
the freeway between these points. The through freeway merges on the left at point X and diverges
on the right at point Y. The desirable solution, as shown in this figure, does not involve any lane
changes on the through lanes of the freeway. Traffic on the local arterial enters and exits on the
right, and there is no disruption of route continuity on either facility.

Exhibit 10-80. Diagram of Freeway Operational Problem and Solution

Pedestrians

The accommodation of pedestrians through urban interchanges should be considered early in
the development of interchange configurations. High-density land use in the vicinity of an
interchange can generate heavy pedestrian movements, resulting in conflicts between vehicles
and pedestrians.

The movement of pedestrians through interchanges can be enhanced by providing sidewalks
to separate the pedestrian from the vehicular traffic. When sidewalks are provided, they should be
placed as far from the roadway as practical and be wide enough to handle the anticipated
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pedestrian volumes. To maximize pedestrian usage, the sidewalk should provide the most direct
route through the interchange with minimal change in vertical alignment. Through complex
interchange configurations, the use of informational signing may be appropriate to direct
pedestrians to appropriate alternate routes.

Where pedestrians will be crossing an interchange ramp, adequate sight distance should be
provided to ensure that drivers detect the presence of pedestrians and pedestrians can perceive
gaps in the traffic flow. To provide increased visibility at night, pedestrian ramp crossings should
have overhead illumination. Where there are insufficient gaps in the traffic flow to allow
pedestrians to cross the ramp, pedestrian-actuated signals or a pedestrian overpass/underpass
should be considered.

Ramp Metering

The purpose of ramp metering is to reduce congestion or improve merge operations on urban
freeways. The metering may be limited to only one ramp or integrated into a series of entrance
ramps.

Ramp metering consists of traffic signals installed on entrance ramps in advance of the
entrance terminal to control the number of vehicles entering the freeway. The traffic signals may
be pretimed or traffic actuated to release the entering vehicles individually or in platoons.

Pretimed signals release vehicles at regular intervals that have been determined by traffic
volume studies. Traffic-actuated signals involve detectors placed on the freeway, upstream of the
entrance terminal, to measure the approach traffic volumes. The metering rate is adjusted by
comparing the upstream volumes to the downstream capacity, which has been determined either
by traffic volume studies or measured by detectors in the pavement.

Ramp metering to improve merge operations involves detectors on the upstream approach of
the freeway to determine acceptable gaps in the traffic flow. The traffic on the entrance ramp is
released to coincide with the gap detected in the traffic on the freeway. For further information on
ramp metering, see the Highway Capacity Manual (5). In addition, the AASHTO Guide for the
Design of High-Occupancy Vehicle Facilities (6) provides treatments for ramp metering in
conjunction with HOV lanes.

Grading and Landscape Development

Grading at an interchange is determined chiefly by the alignments, profiles, cross sections,
and drainage needs for the intersecting highways and ramps. Each through roadway or ramp
should not be treated as a separate unit and graded to a specified cross section without regard to
its relation with adjacent roads and to the surrounding topography. Instead, the whole
construction area should be designed as a single unit to keep construction and maintenance costs
to a minimum, obtain maximum visibility, and enhance the area’s appearance. In some parts, such
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as at narrow sections between converging roadways, the slopes and grading controls may affect
the alignment and profile design.

Contour grading design. An important and early step in interchange design is the initial
bridge control study in which the preliminary alignment and profiles of the intersecting roads are
developed to determine the controls for bridge design. Alternative treatments of such elements as
clearances, curbs, walks, and position and extent of walls should be examined in regard to general
grading before conclusions are drawn for the bridge design, particularly for lengths of wing walls.
Minor modifications in alignment and profile, in abutments and walls, and in related earthwork
may produce a more desirable solution as a whole.

Steep roadside earth slopes should be avoided for all roads and ramps at interchanges. Flat
slopes should be used where practical, for economical construction and maintenance, to increase
safety and enhance the appearance of the area. Broad rounded drainageways or swale-like
depressions should be used, where practical, to encourage healthy turf and easy mowing. V
ditches and small ditches with steep side slopes should be avoided. Drainage channels and related
structures should be as inconspicuous and maintenance-free as practical. They should not be an
eyesore or become an obstacle to an errant vehicle. Transition grading between cut and fill slopes
should be long and natural in appearance. The slopes should be well rounded and smooth to blend
the highway into the adjacent terrain. The contours should have flowing continuity and be
congruous with the form of the roadway and with the adjacent topography as well.

The contour grading and drainage plan should be designed to protect existing trees and
preserve other desirable features, as practical. This effort, however, should be consistent with the
objectives stated above.

Plantings. Proposed plantings should be selected with regard to their ultimate growth.
Improperly located shrubs or trees may decrease horizontal sight distance on curves and seriously
interfere with lateral sight distance between adjacent roadways. Even low-lying ground covers
may shorten vertical sight distance on curving ramps.

Trees or shrubs may be used to outline travel paths or to give drivers a sense of an
obstruction ahead. For example, the ends of a directional island or approach nose may be planted
with low-growing shrubs that will be seen from a considerable distance and direct the driver’s
attention to the need for a turn. Shrubs that could cause vehicle damage on impact or obscure
signs or warning devices should be avoided.

The AASHTO Roadside Design Guide (3) should be referenced for guidance on minimum
clear zones prior to planting trees that will mature to greater than 100 mm [4 in] in diameter.
Distances greater than the minimum are often appropriate because overhanging branches create a
distraction, and leaves on the roadway reduce the pavement surface friction, especially when wet.
In areas where ice and snow are a problem, all trees should be planted an adequate distance from
the traveled way to allow for snow drifting and to prevent icing in shaded areas.
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Models

Three-dimensional models are helpful in the design of interchanges. Models are particularly
useful in communicating the designer’s ideas to lay groups and others who are not trained to
visualize three dimensions from the plans. Design concept teams and other officials find models
helpful in analyzing proposed designs.

Highway models fall into two basic categories—design models and presentation models.
Design models are simple and easily adjusted, thus permitting the designer to experiment with
different concepts. Presentation models are more permanent and are valuable to highway officials
when making a presentation to others who are not familiar with engineering terms and methods.
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Acceleration
Distance, 45
Effects of grade, 238, 850–852
Intersections, 658–680
Lateral, 131–135, 138–142, 166,

173–179
Lanes, see Speed-change Lanes
Rates, 43–44, 119–121

Acceleration lanes; see Speed-change
Lanes

Accelerometer, 135

Access control; see Control of Access
and Access Management

Access management ; see Control of
Access and Access Management

Accessibility, 6–7

Accidents; see Safety

Aesthetics
Alignment

Combination, horizontal and
vertical, 283–290

Horizontal, 233–235
Vertical, 282–283

Interchanges, 751–752, 757, 759,
762–764

Landscaping, 292–293, 444,
870–871

Medians, 341–343, 397, 438–439,
514, 517

Recreational roads, 408, 413, 415,
417

Sideslopes, 332–333

Alignment—Combinations of
Arterials; see Arterials
Collectors, 423–428, 435
Coordination in design, 285–290
Freeways, 513, 535–536
General design controls, 284–285,

809–810

Horizontal; see Alignment—
Horizontal

Horizontal and vertical, general
considerations of, 283–284

Interchanges, 809–810
Intersections at grade, 559–745
Local roads and streets, 386, 395
Sight distance; see Sight Distance
Vertical; see Alignment—Vertical

Alignment—Horizontal
Aesthetics, 233–235
Arterials, 449, 461–462, 475
Changes in, 233–235, 425, 449
Collectors, 425, 428, 435
Combination with vertical

alignment, 283–290
Curves; see Curves—Horizontal
Design considerations, 141–191
Design speed, 67–72, 141–167
Divided highways, 809–810
Effect of grade on, 167–168
Friction factor, 133–140
General considerations, 132–140,

233–235
Interchanges, 809–810
Intersections at grade, 559–745
Local roads and streets, see Local

Roads and Streets
Minimum radius, 142, 145
Offtracking, 206–211
Pavement widening; see Traveled

Way
Ramps, see Ramps
Recreational roads, 413–415
Residential areas, 395
Sharpest curve without

superelevation, 166–167
Safety, 103
Side friction factor, 133–140
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Sight distance, 228–232, 384–385,
395, 425–426, 435, 449,
453–454, 475, 682–683; see
also Sight Distance

Speed-change lanes; see Speed-
change Lanes

Spiral curves, 176–177; see also
Transitions

Superelevation; see Superelevation
Theoretical considerations,

131–132
Transitions, see Transitions
Traveled way widening, 212–220

Alignment—Vertical; see also
Profile
Arterials, 449–450, 461–462,

475–476
Broken back, 234–235, 283
Collectors, 425–427, 433, 435–436
Combination with horizontal,

283–290
Critical length of grade, see

Grades
Curves; see Curves—Vertical
Emergency escape ramps; see

Ramps
Escape ramps, see Ramps
General design controls for,

282–283
Grades; see Grades
Grade separations, 771–773
Interchanges, 809–810; see also

Interchanges
Intersections, 283, 586; see

also Intersections
Local roads and streets, 386, 395
Railroad-highway grade crossings;

see Railroad-highway Grade
Crossings

Ramps; see Ramps
Recreational roads, 413
Safety, 103–104
Terrain, 235
Traveled way edge, design of

smooth profiles for, 187–188
Vertical curves; see Curves—

Vertical
Vertical rise, total, 771–773

Alleys, 400–401

Amenities, see Aesthetics

Approach nose
Bullet, 701, 702
Curbs, 633
Offset, 633–635, 723–724
Superelevation, 647
Taper, 647
Treatment; see Markings

Arterials, see also Divided Highways,
Multilane Highways
Alignment, 449–450, 461–462, 475
Bikeways, 500
Bus lanes, 504–505
Bus stops, 501–504
Bus turnouts, 372–374, 504
Borders and sidewalks, 483–484
Characteristics, 13, 447–448,

473
Clearances, 451, 452, 476, 485–486
Cross section, 453, 463–464,

466–470, 486
Cross slope, 450, 459, 476
Curbs, 323–327, 477
Definitions, 7–13, 447, 457–458,

473
Directional lane usage, 495–498
Divided, 458–473; see also

Divided Highways
Examples, 457, 484–485
Frontage roads; see Frontage

Roads
Grades, 235–247, 450, 461–463,

475
Intersections, 470–471
Lane width, 452, 456, 459,

476–477
Left turns, 458, 478–481, 492–494,

497
Level of service, 448, 474–475
Medians, 454–457, 460–461,
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469–470, 478–482
Number of lanes, 450, 454–457,

477–478
Parking, 377–379, 477, 482–483,

495
References, 506
Right turns, 492
Rural, 447–473
Shoulders, 452, 459–460, 477
Signal control; see Signal Control
Speed; see Design Speed
Traffic control devices, 490–492;

see also Traffic Control
Devices

Transit facilities, 500–506
Ultimate development of four-lane,

454–456
Undivided, 457–458
Urban, 473–506
Utilities, 490

Arterial systems
Characteristics, 447–448, 473
Minor, 9–12, 447
Principal, 8–12, 447
Rural, 8–10, 447–473
Urban, 10–12, 473–506

At-grade intersections ; see
Intersections

Auxiliary lanes
At interchanges, 818–821
At intersections, 437–438, 480,

692–693, 717–727
Bus turnouts, 372–374, 504
Climbing lanes; see Climbing

Lanes
Cross slope, 459, 652–653
Definition, 818
Left-turn, 341–342, 458–459,

478–481, 492–494, 496–497,
573–576, 686, 711–713,
716–729

Length, 718–720, 851, 853
Median lanes; see Median Lanes
Offset left-turn, 727

On overpasses, 769–770
Passing lanes; see Passing Lanes
Right-turn, 717–720
Speed-change lanes; see Speed-

Change Lanes
Storage, 569, 573, 575, 718–719
Taper, 692, 719–726, 819–820
Width, 316, 719, 720–727, 818

Average daily traffic (ADT); see
Traffic

Ball-bank indicator, 134–135

Barriers ; see Traffic Barriers, or
Noise

Benefit analyses; see Road User
Benefit Analyses or Economic
Evaluation

Benefit/cost ratio; see Economic
Evaluation

Bicycle facilities, 100–101, 318–319,
322, 325–326, 371, 375, 378, 393,
408, 433, 437, 443, 471–472, 477,
500, 559–560, 562, 630, 638, 692,
732

Bicycle lane considerations , 101,
692, 732

Borders
Arterials, 466–467, 483–484, 486
Collectors, 442
Freeways, 512
Function, 361–362, 442
Local roads and streets, 403–404
Sidewalks; see Sidewalks
Width, 361–362, 483–484

Braking; see also Driver
Brake reaction time, 110–111
Distance, 111–113
Effects of grades; see Grades
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Bridges, see also Grade Separation
Structures
Clearances, 476, 765–768, 770
Collectors, 430–431
Freeways, 510
Local roads and streets, 389–390,

403
Lighting, 294–296
Pedestrian accommodations,

361–365, 403; see also
Pedestrian Facilities

Railings, 451, 768
Roadway width, 387–391, 403,

428–431, 437–438, 451, 485,
510

Structural capacity, 389–390,
430–431

Buses; see also Public Transit
Classification, 501–506
Design vehicles, 15–20, 23–28
Lanes, 504–505, 547–549
Park-and-ride facilities, 374–378
Stops, 472, 501–504, 547–554
Turnouts, 372–374

Arterials, 372–374, 472, 504
Freeways, 372, 547–554

Capacity, see also Traffic
ADT, 58–66, 384, 394, 424, 434,

448, 474, 508
Analysis, 74–88, 424, 448, 474,

508, 559–560, 583
Applications, 74–75
Arterials, 448, 474
Climbing lanes, 251–254
Definition, 74
Degree of congestion, see

Degree of Congestion
Design, 75–81, 424, 448, 474, 508,

583, 759
DHV, 61–63, 75, 448, 474, 508
Effect of alignment and profile, 82,

425, 449, 475
Entrance terminal; see Terminals
Exit terminal; see Terminals
Flow rate, 61–63, 72–79, 448, 474,

508
General characteristics, 74
Highway factors, 81–82
Interchanges, 82–83, 751–752
Interrupted flow, 76
Intersections, 76, 88, 686–692;

see also Intersections
Lateral clearances, 81, 315–316
Level of service, 84–85; see also

Level of Service
Parking, 377–379
Passing lanes, 254–257
Passing opportunities, 254–259
PHF (peak-hour factor), 83
Ramps and ramp terminals, 82–83,

869
Reverse-flow operations, 496–498
Roadside interference, 81–82, 89
Shoulders, 318
Terrain type; see Topography
Trucks, 83, 249–251
Two-lane highways, 247–251,

254–259
Weaving sections, 82, 85–87; see

also Weaving Sections
Width of lanes, 81, 315–316
Work zones, 301–303

Channelization
Advantages, 627–629, 690–692
Definition, 690
Design principles, 690–692
Examples, 562–583, 628, 630, 688
Islands, 470, 627–643
Median lanes; see Median Lanes
Pavement markings; see Markings
Safety, 105
Warrants, 691

Channels—drainage; see also
Drainage
Interceptor, 328–329
Linings, 329; see also Erosion

Control
Medians, 329
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Classification, functional, 1–14
Access needs and controls, 6–7
Concept, 1–13
Movement, 1–4, 7
Relationships between functional

classes, 4–5
Relationship to design, 13
Rural, 8–10
Systems, 7–13
Urban, 10–12

Clear zones, 322–323, 391–392, 403,
417, 431, 441, 467, 485–486, 511,
870

Clearances
At tunnels, 355–360
At walls, 765–767
Bridges, 389–390, 430–431
Curb, 326–327
Divided highways, on left, 765–766
Grade separation structures; see

Grade Separation Structures
Guardrail, 764–767
Horizontal, 322–323, 391, 403,

430–431, 441, 452, 765–767
Luminaire supports (poles), 295
On arterials, 451, 460, 476, 485
On collectors, 431–433, 440–441
On curves, for sight distance,

228–233, 683
On local roads and streets, 389–392
Rail transit, 554–558
Sign supports, 298–299
To building line, 526, 528
To bus transit facilities, 547–554
To obstructions, 321–323,

391–392, 403, 417, 431, 441,
467, 485–486, 511, 519, 870

Turning roadways, 226–228
Underpasses, 765–767
Vehicles in opposite directions,

passing maneuvers, 122
Vehicles on curves, 587–625
Vertical, 767–768

on arterials, 451, 478
on collectors, 431, 440–441

on freeways, 510
on local roads and streets, 389,

403, 418
on recreational roads, 418

Climbing lanes
Arrangements, 247–254,

453–454, 462–463
Beginning of, 250, 254
Critical length of grade, 242–247
Cross slope; see Cross Slope
Ending of, 250–251, 254
Examples, 248, 254
General, 247, 453–454, 462–463
On multilane highways, 251–254,

462–463
On two-lane highways, 247–251
Recreational vehicles, 253
Shoulders on, 251, 252, 453
Signing, 251
Taper, 250–251
Trucks, 249, 252–254
Warrants, 248–249
Width, 251, 253

Cloverleafs; see Interchanges

Collector roads and streets
Functional classification, 1–4, 9,

12, 423
General design considerations,

423–445
Rural, 9, 424–433
References, 444–445
Urban, 12, 433–444
Parking on, 377–379, 437–438

Collector-distributor roads , 547,
747, 792–794, 807, 811–812, 814,
823–825, 845, 868; see also
Interchanges

Congestion; see Degree of
Congestion

Connections ; see Ramps
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Construction areas, 301–303

Contrasting surfaces
Auxiliary lanes, 731
Curb and gutter, 326
Islands, 632–633, 638–641
Median lanes, 720–726
Ramps, 844
Shoulders, 322
Turnouts, 372

Control devices; see Traffic Control
Devices

Control of access and access
management
Arterials, 88–95, 102–103, 471,

473, 486–488
Benefits, 102–105
Classifications, 90–91
Collectors, 423, 433
Crossroad, interchanges, 753–754
Definition, 88–89, 507
Design considerations, 88–95
Driveway control, 89
Freeways, 507
Full, 89, 507
General, 6–7, 88–95, 447, 507
Interchanges and intersections,

753–756
Methods, 91, 486–488
Operational features, 88–89
Partial, 89
Principles, 90
Safety effects, 91–95, 102–103
Signals, 90
With frontage roads, 471, 488, 498

Control radii; see Radii

Crossover crown line ; see Crown

Cross section
Curbs; see Curbs
Divided highways, 454–457,

463–470
with frontage roads, 469

Drainage from shoulders, 319–321
Elements, 309–381
Examples, 310–311, 333–335
Freeways, 513–526, 519–522,

526–530, 533–534
Medians, 463–470
References, 380–381
Shoulders, 316–321, 477
Superelevated, 132, 138–139,

141–191, 334–335, 463–466
Two-lane rural arterials, 453
Typical, 309–312, 333–335, 457,

465–470, 513–516, 519–522,
526–530, 533–534

Tunnel, 357–359
Ultimate four-lane, 454–457

Crashes; see Safety

Cross slope
Arterials, 450–451, 459, 463–466,

475–476
Auxiliary lanes, 652
Change in, 646; see also

Superelevation, Runoff
Climbing lanes, 251, 254
Collectors, 425, 428, 435
Crossover crown line; see Crown
Divided highways, 312, 459,

463–466, 475–476
Drainage, 312–314, 435, 475–476,

508–509
Freeways, 508–509
Intersecting roadways, 586
Local roads and streets, 387, 396
Maximum, 313–314
Minimum, 166–167
Normal, 166–167, 313–314,

333–334
Parking lanes, 476
Ramps; see Ramps
Recreational roads, 415
Removing, for superelevation, 167,

176
Rollover, control for

pavement crown, 309–314
shoulders, 319–321, 334–335
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Shape, 167
Shoulder slope break, 319–321,

334–335
Superelevated, 132, 138–139,

141–191, 387, 396, 428, 435,
450, 463–466, 475–476, 509

Tunnels; see Tunnels
Turnouts, bus; see Turnouts

Crosswalks, 99, 367, 370, 488–490,
623–624

Crown
Crossover crown line, 309–314
Cross slope; see Cross Slope
Freeways, 508–509
General, 309–314, 450, 652–653
Pavement, 425, 652–653
Recreational roads, 415

Cul-de-sacs, 398–400

Curbs
Arterials, 459, 467–468, 477–481,

489
Asphaltic concrete, 323–324
Bituminous, 323–324
Collector streets, 439
Concrete, 323–324
Configurations, 324–326
Considerations for pedestrians and

bicycles, 291–292, 325,
402, 489

Cross section, 326
Drainage, 286, 291, 323, 325, 500
Driveway access, 439
Extruded, 324
Freeways, 509
General, 323–327, 392, 398, 439,

477, 509
Granite, 323–324
Gutter, 324–326
Islands; see Islands
Local roads and streets, 392, 398
Medians, 323–324, 438–439,

479–480, 633, 636–637
Near overpasses, 770

Offset from traveled way, 326–327,
632–637

Placement, 326–327, 509, 631–637
Radii; see Radii
Ramps; see Ramps
Shoulder, with and without,

325–327
Sloping, 324–326, 340, 632, 641,

844
Turning roadways

Effect on traveled way/
roadway width, 226–228,
615–618

Types, 323–325, 439
Underpasses, 767
Utilities, 297
Vertical, 323–327, 439, 632, 844
Width, 324–327

Curves—Horizontal
Broken back, 234–235
Compound, 205–206, 234
Design speed and curvature, 132,

143–155, 156–165 (tables),
166, 192–198

Design tables, 156–165
Low-speed urban, 192–198

Formula, 131, 133, 142–143, 195
Friction factors, 133–140, 143–166,

192–198
Intersection; see Curves—

Intersection
Maximum curvature, 142–168,

192–198
Ramp; see Ramps
Sight distance on, 128–130,

228–233
Spirals; see Transitions
Superelevation; see Superelevation
Transitions; see Transitions
Traveled way widening on; see

Widening
Turning roadways, 191–192,

198–206

Curves—Intersection
Compound, 203, 205–206
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Control radii for left turns, 694–700
Encroachment; see Turning
Maximum curvature, 198–203,

404–405
Minimum designs for sharpest turn,

199–203, 404–405, 587–618,
694–700

Choice of design, 596–618
Oblique-angle, 570, 614–615
Passenger vehicles, 597–613,

694–698
Semi-trailers, 614, 694–697,

699–700
Single-unit trucks and buses, 613,

694–698
Minimum radii, 199–203, 404–405,

587–618, 694–700
Ramps; see Ramps
Speed-curvature relations, 198–200
Spiral, 203–205
Turning roadway, 191–192,

198–206

Curves—Vertical
Asymmetrical, 270
Broken back, 283
Crest, 270–276, 682, 771–773
Design controls for, 272–276,

682–683
passing sight distance,

275–276
stopping sight distance,

272–275
Drainage requirements on, 270,

273, 275–276, 278–279
General considerations, 269–270,

682
Lengths, 270–283, 682
Mimimum gradient, 270, 275, 279
Parabolic, 270
Ramps; see Ramps
Sag, 276–282, 682
Sight distance on, 128–131,

270–282, 461–462, 682
Turning roadway, 682
Types, 269

Dead-end streets; see Cul-de-sacs

Deceleration
Adjusting speed approaching

intersections, 43, 45
turning roadways, 643

Braking, 110–114
Lanes, 853–856, 863–864; see also

Speed-change Lanes
Length at auxiliary lane, 717–718
Rates, 43, 45, 111–113
Tapers, 853, 855, 856–860
Trucks, on grades, 235–254,

453–454, 462–463

Decision sight distance, 50, 55, 111,
115–117, 270, 449, 807, 810, 824,
832, 845–846
Definition, 115

Degree of congestion
Acceptable limits, 77–81
Alignment, 82
Definition, 75
Design speed; see Design Speed
Freeways, 80
Levels of service, 84–85
Measures, 75–76
Multilane highways, 80–81
Peak-hour factor, 83
Principles, 78–81
Ramps and ramp terminals, 82–83
Relation to traffic flow, 75–77
Signals, 77
Weaving, 82

Delineators ; see Markings

Design
Capacity; see Capacity
Controls and criteria, 15–108

bicycle facilities, 100–101
driver performance, 46–57
economic analysis, 106
environment, 106
pedestrians, 96–100
references, 106–108
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safety, 101–166
traffic characteristics, 58–74
vehicles; see Design Vehicles

Elements of, 109–307
alignment—combinations,

283–286, 287–290
alignment—horizontal,

131–235
alignment—vertical, 235–283
decision sight distance,

115–117
drainage, 286, 291–292
erosion control and landscape

development, 292–293
fencing, 301
grade separations and

interchanges, 747–871
information centers, 293–294
intersections, 559–745
intersection sight distance,

654–681
low-speed urban streets,

192–198
maintenance of traffic through

construction areas, 301–303
noise barriers, 300
passing sight distance,

118–126
references, 303–307
rest areas, 293–294
scenic windows, 293–294
sight distance, 109–128
stopping sight distance,

110–114
traffic control devices,

298–300
traveled way widening on

curves, 212–220
turning roadways, 191–192
utilities, 296–298

Period, 58–62
Speed; see Design Speed
Vehicles; see Design Vehicles

Design hourly volume (DHV); see
Traffic

Design speed
Alignment—combinations,

283–286, 287–290
Alignment—horizontal, 131–235
Alignment—vertical, 235–283
Arterials, 71–72, 448
Channelization, 690–691
Collectors, 424–425, 434
Freeways, 69, 507
General, 67–72
Local roads and streets, 384,

394–395, 409–410, 419
Intersections, 569, 587, 629, 643,

647, 652, 654–681, 682–683,
686, 718, 720, 732, 736

Ramps; see Ramps
Relation to

average running speed, 67–68
average trip length, 70
grades, lengths, 242–247
maximum grades, 239–242
maximum relative profile

gradients, 170, 646–647
Operating speed, 66–68
Recreational roads, 409–410
Resource recovery roads, 419
Running speed, 67–68
Sight distance, 110–115, 384–386,

395, 425–427, 435, 449
Speed-change lane length; see 

Speed-change Lanes
Superelevation, 132–191, 192–198
Traffic volumes, 384–385, 424–426
Use of spirals, 176–183

Design vehicles, 15–46
Bus (BUS), 16–17, 19–20, 23–28,

42–43, 613
Characteristics, 15–18
Control radii for left turns, 694–699
Definition, 15–18
Dimensions, 16–17
For profile design; see

Alignment—Vertical
Height; see Height
Intersections, 587–625, 638–643,

654–681, 693–708, 715
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Median openings, 693–708
Minimum turning radius and paths,

18–29, 31–43; see also Design
Vehicles—Intersections

Overhang, 18, 43
Passenger car (P), 16–17, 19–21,

42, 597–599, 613
Performance, 43–45
Recreational Vehicles; see

Recreational Vehicles
Semitrailer; see Design Vehicles
Single-unit truck (SU) and truck

combinations, 16–17,
19–20, 22, 42, 600, 613,
616–625, 638–643, 654–681,
693–708, 715

Track width, 18, 206–220
Tractor-semitrailer combinations;

see Design Vehicles—Truck
Combinations

Truck combinations (WB-12 to
WB-35), 16–17, 19–20, 29–37,
42, 587–625, 638–643,
654–681, 693–708, 715; see

also Truck
Vehicular pollution, 43, 45–46

Design volume ; see Capacity or
Traffic

Detours , 301–303

Diamond interchanges; see
Interchanges

Directional; see also Interchanges
Distribution; see Traffic
Lane usage, 495–496

Disabilities; see Persons with
Disabilities

Divided highways (other than
freeways), 458–473, 478–482
Alignment; see Alignment
Clearances; see Clearances
Cross sections; see Cross Sections

Cross slope, pavement, 312, 459,
463–466, 475–476

Definition, 458
General features, 458–459
Interchanges, 470–471; see also

Intersections
Lane widths, 459, 466–469,

476–477
Median openings; see Median

Openings
Median width, 460–461, 469–470,

478–482
Medians; see Medians
Operational problems, 469–471,

478–482
Profile, 461–462, 475
Right-of-Way; see Right-of-Way
Shoulders, 459–460, 466–469, 477
Stopping sight distance, 449, 462,

475
Superelevated cross sections,

188–190, 309–314, 463–464
Widely separated roadways,

469–470

Drainage
Channels, 291, 310–311, 327–329,

333–334, 341
Controls, 291–292

on vertical curves, 270–283
Curb and gutter, 323–327, 398,

439, 477
Erosion; see Erosion Control
Pavement, 312–314, 435, 475–476,

508–509
Shoulders, 319–321
Storm frequencies, for design,

291–292

Drivers, 46–56
Alertness, 54–57
Brake reaction time, 50–53,

110–113
Characteristics in relation to design,

46–57
Comfort, 134, 277–278
Decision maneuver time, 115–117
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Error, 48, 53–56
Expectancy, 53
General, 46–47
Guidance, 48–49
Height of eye and object; see

Height
Information processing, 49–53
Older, 47
Perception-reaction times, 50–53,

110–113
Performance, 46–56, 751–752
Primacy, 53
Safety, 46–47, 54–56, 101–106
Speed, effects of, 56–57
Tasks, 47–52

Driveways, 88–95, 352–353, 402,
440, 486–488, 733–735

Dual-divided freeways
Advantages, 544–545
Arrangements, 544–546
Cross section, 544–546; see also

Cross Section
Design, 544–545
Disadvantages, 545
Examples, 545–546

Ecology; see Environmental
Evaluation

Economic evaluation
General, 106, 750, 755–756
Motor vehicle operating costs,

750, 756
Road user costs and benefits, 67,

750, 756

Emergency escape ramps , see
Ramps

Environmental evaluation
Drainage channels, 286, 291–292
Erosion control; see Erosion

Control
General, 106

Tree removal for safety, 403, 441
Vehicular pollution, 43–44

Erosion control
Drainage channels, 291–292,

327–329
General, 292–293, 393, 407, 444,

451, 500
Seeding and planting, 293,

331–333, 393, 407, 444
Side slopes, 293, 330–333, 453

Escape Ramps ; see Ramps

Esthetics; see Aesthetics

Fencing, 301

Formulas
Braking distance, 111
e and f distribution, 152–154, 195
Intersection sight distance, 663, 671
Length of superelevation runoff, 

195
Middle ordinate, 229–231
Minimum radius, 142
Offtracking, vehicle turning,

207, 209
Passing sight distance, elements of,

121–122
crest vertical curves, 275

Railroad-highway grade crossing
sight distance, 738–742

Side friction factor, 133
Sight triangles, see Formulas—

Intersection Sight Distance
Spiral length, 177
Stopping, effects of grades on,

113–114
Stopping sight distance, 113–114

crest vertical curves, 271–272
horizontal curves, 229–230
sag vertical curves, 276–282

Traveled way widening, 212, 214
Vehicle operation on a curve, 131
Weaving sections; see

Weaving Sections
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Four-lane highways
Capacity; see Capacity
Divided; see Divided Highways
Superelevation runoff; see

Superelevation
Ultimate development of, 454–456
Undivided, 457–458

Freeways
Alignment, 513
Borders, 512, 516, 532–533
Bus facilities, 549–554
Bus stops, 549–554
Bus turnouts, 372
Capacity, 79–83
Clearances, vertical and horizontal,

510–511, 526
Classification, 8, 10–11, 13,

447, 507
Collector-distributor roads; see

also Collector-distributor
Roads

Combination-type, 534–540
Control of access; see Control of

Access and Access
Management

Cross section, 519–522, 526–527,
532–534, 537–538

Curbs along, 509
Definition, 507
Depressed, 69, 517–524
Design speed, 67–72, 507
Dual-divided; see Dual-divided

Freeways
Elevated, 69, 509, 524–532
Examples, 514–515, 520, 522–524,

530–536, 538–541, 543–546
544–546

Frontage roads, 512, 516; see also
Frontage Roads

General design considerations,
507–513, 517

Grades, 509–510
Ground-level, 69, 513–514,

531–534
High-occupancy vehicle (HOV)

facilities, 547, 549

Lane width, 508–509
Levels of service, 508
Maximum grades; see Grades
Medians, 513–516, 517
On embankment, 529-530
Outer separations, 512, 529–530
Overpasses; see Grade Separations,

or Grade Separation Structures
Pavement, 508
Profile control, 513, 535–536
Ramps, 512, 525–526; see also

Ramps
References, 558
Reverse-flow, 541–544; see also

Reverse-flow Roadways
Rural, 512–516
Safety, 507, 512–513
Shoulders, 509
Sideslopes, 516, 518–519
Structures, 510
Superelevation, 509; see also

Superelevation
Terminals, 525–526, 844–867; see
also

Terminals
Terrain, 512–513, 535–536
Transit facilities, 547–558; see also

Public Transit
Traveled way, 508
Tunnels; see Tunnels
Urban, 517–558
Viaduct, 69, 509, 524–532,

757–762
Volume, 508
Walls, 518–519
Width, 508–509

Friction; see also Superelevation
Ice and snow, 141–142
Side friction factors

open highways, 133–137,
143–145

turning roadways, 191–192
urban streets, low-speed,

192–194
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Frontage roads
Access control, with and without;

see Control of Access and
Access Management

Arterials, 346–348, 466–469, 488
Cross street connections to, 758
Cross sections with, 453, 516
Freeways, 343–346, 512, 516,

519–521, 526, 529–530,
532–534, 537–538

Functions, 343–346
General, 343–346
Interchanges with, 782–783
Intersections with, 729–732
Means of driveway control, 343
Outer separation, 346–348; see also

Outer Separation
Problems with, 343–346, 729–732
Two-way, 344–346

Functional classification; see
Classification, Functional

Grades
Arterials, 450, 462
Alignment coordination, 285–290,

586, 758–759
At intersections, 586
Climbing lanes; see Climbing

Lanes
Collectors, 425,

427, 435–436
Control for design, 239, 242

maximum, 239, 242
minimum, 242

Critical lengths, 242–247
Effect on

acceleration, 236–247, 586,
763

capacity, 247–254, 474–475
deceleration, 236–247, 586,

763
drainage, 395, 475, 482
intersection sight distance, 660,

662, 664–665, 667–668,
672, 676

noise, 45–46

passing sight distance, 125
Freeways, 509–510
General, 235–247
Grade separations, see Grade

Separations
Grates, 439
Gutter, 439
Intersections, 475, 586
Local roads and streets, 386, 395,

418
Maximum

on arterials, 450
on collectors, 425, 427,

435–436
on freeways, 509–510
relation to design speed, 239,
242

Profile pertaining to intersections,
475, 586

Ramps; see Ramps
Recreational roads, 411–413,
Stopping sight distance, 114–115
Superelevation, 167–168
Vehicle operations,

passenger cars, 236, 586
trucks, 236–239

Weight/power ratio, 236–239,
242–247

Grade separations ; see also Grade
Separation Structures
Arterials, 451, 488
Distance to effect grade separation,

771–773
Overpass versus underpass,

762–765
Pedestrian, 96–97, 362–365,

488, 759–760, 868–869
References, 871
Safety; see Safety
Spacing, 758–759, 811
Span arrangements, 760–762
Stage construction; see

Stage Construction
Structures; see Grade Separation

Structures
Warrants for, 749–750
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With frontage roads, 488
Without ramps, 773–774, 809

Grade separation structures; see
also Grade Separations
Approaches to, 498–499, 809–810
Arterials, 451, 488
Bridge railings, 339–340, 768,

770
Clearances, 451, 476, 510–511,

765–773
Curbs; see Curbs
Design considerations, 498–499,

762–765
Freeways, 507, 510–511
General, 498–499, 756–774
Guardrail at; see Guardrail
Horizontal clearances, 765–767;

see Clearances
Long-span, 756–757
Medians, 770–771
Overpasses, 762–765, 768–771
Overpass versus underpass,

762–765
Pedestrians, 363–366
Railroads, 756–757
Shoulders, 764–765; see also

Shoulders
Sidewalks and pedestrian facilities,

96–97, 362–365, 488, 759–760,
868–869

Types, 756–771
Underpasses, 762–768, 773; see

also Clearances

Grading; see also Erosion Control
and Landscape Development
Grading design, 317–318, 869–870
Interchanges, 869–870
Stage construction; see Stage

Construction

Guardrail; see also Traffic Barriers
and Bridges—Railings
Additional width for, 317–319
At underpasses, 765–767
Clearance from pavement edge,

391, 765–767, 770
Contribution to driver guidance, 49
Damage, as warrant for escape

ramps, 261
Design of, 104–105
Gores, 836–841
Local roads and streets, 391, 403
Location of luminaire supports; see

Lighting
Median; see Medians
Near mailboxes, 355
Near shoulders, 415
Near sidewalks, 334
Placement, 391, 403, 765–767

Guideposts, 632; see also Guardrail

Gutter; see Curbs

Headlight
Glare, 459, 469–470
Height of, 274
Sight distance, 274, 276–277

Height
Eye, 127, 271, 274, 281–282, 410,

425, 657–658
Headlight, 274
Object, 127–128, 271, 275,

281–282, 410, 425, 657
Vehicles, 16–17, 127–128

High-occupancy vehicle (HOV)
facilities, 547, 549

Horizontal alignment ; see
Alignment—Horizontal

Horizontal curves; see Curves—
Horizontal

Indirect left turns , 709–716

Information centers ; see Rest Areas

Interchanges
Acceleration lanes; see Speed-

change Lanes
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Adaptability, 751–752
Alignment, 775–814
Approaches to, 809–810
Arterials, 498–499
Capacity, 749
Cloverleaf, 747–748, 780,

792–797, 807–808, 823–826
Collector-distributor roads,

747–748, 792–794, 807,
811–813, 823–826

Combinations, 803–806
Configurations, 747–748, 775–814
Continuity, 808, 811–812
Deceleration lanes; see Speed-

change Lanes
Definition, 747–748
Design considerations, 806–827
Design procedure, 749–750,

755–756, 762–765, 806–808,
814–827, 867–871

Diamond, 747–748, 763, 780,
782–791, 803, 806–808

Directional, 747–748, 775–779,
780, 798–802

Economic factors, 755–756
Four-leg, 747–748, 780–802
General, 747–748, 774
Grading, 869–870
Landscape development, 869–870
Lane balance, 815–822
Lane reductions, 822
Lanes, basic number of, 814
Lighting; see Lighting
Major forks, 864–867
Models, 871
Multiple-level, 800–802
Number of lanes, basic, 814–815
Offset, 803
Operation, 749–750, 867–868
Overlapping routes, 813
Partial cloverleaf, 747–748,

780–781, 794–797, 806–808
Pedestrians, 868–869
Preliminary design, 806–808
Profile, 809–810
Ramps; see Ramps

Ramps in one quadrant, 747–748,
780–781

Ramp metering, 869
References, 871
Route continuity, 811–812
Safety, 749–750, 755, 774
Semidirectional, 798–802
Signing and marking, 813
Single-exit design, 824–825
Single-point urban, 747–748, 780,

787–791
Site conditions, 752
Site distance, 759, 807, 810
Spacing, 811
Speed-change lanes; see Speed-

change Lanes
Split diamond, 782–785, 826
Stage development, 755; see also

Stage Construction
Three-leg, 747–748, 775–780
Trumpet, 747–748, 779–780
Two-exit design, 824–825
Type selection, 806–807
Types, 747–748, 808, 826
Uniformity, 811
Warrants for, 749–750
Weaving sections, 82, 85–87,

792–793, 823
Wrong way entry at, 683–686, 782,

825–287

Intersection design elements; see
Intersections

Intersections
Alignment, 392, 404, 432, 442,

583–586, 629–630
Angle, 392, 404–405, 432,

583–585, 681, 704–706
Arterials, 470–471, 490
Bicycles, 732
Capacity 75–77, 88, 583
Channelized, 227, 562–563,

566–569, 570–576, 625–643,
690–692, 716–717, 727–732

Collectors, 432, 442
Continuous left-turn lanes, see
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Median Lanes
Control devices; see Traffic Control

Devices, Signal Controls, or
Signs

Curb return radii, 405, 615–625
Curves, 584–586; see Curves—

Intersection
Definition, 559–562
Design, 392, 404–405, 432, 442,

470–471, 490, 559–745
Examples

four-leg, 569–575, 688
multi-leg, 575–577
roundabouts, 578–583
three-leg, 563–569, 687

Four-leg, 569–575, 688
Frontage roads, 729–732
Functional area of, 560–562
General, 392, 404–405, 432, 442,

470–471, 490, 559–563,
686–690

Grades; see Grades
Illumination levels, 406–407
Islands, 625–643
Lighting, 406–407, 443, 733
Local roads and streets, 392,

404–405
Median lanes; see Median Lanes
Median openings; see Median

Openings
U-turns, and indirect left turns,

709–716
Median width at intersections,

460–461, 478–482, 693–708
Multi-leg, 575–577
On curves, 584–585
Pavement edge design; see Turning

Roadways
Profile, 586, 652–653
Railroad-highway grade crossings;

see Railroad-highway Grade
Crossings

Ramp terminals, 844–848; see also
Terminals

References, 743–745
Roundabouts, 578–583

Safety, 101–106
Shoulders; see Shoulders
Sight distance, 654–681, 737–743
Sight triangles, 655–658, 739, 742
Signal control, effect of; see

Signal Control
Signs; see Signs
Skew, 392, 404–405, 432,

571–573, 583–585, 681,
704–706

Superelevation, 643–653; see also
Superelevation

Three-leg, 563–569, 687
Traffic control devices; see

Traffic Control Devices, Signal
Control, Signs

Transitions; see Transitions
Turning movements, 490–494,

660–680, 694–729
Turning roadways; see Turning

Roadways
Two-way left-turn lanes; see

Median Lanes
Types, 559–583, 562, 686–690,

709–712
U-turns; see U-turns
Wheelchair ramps, 732

Islands
Approach-end treatment, 632–637,

701
Approach nose, 632–637, 701

offset, 632–641
Channelized; see Channelization,

Intersections
Corner, 632–635, 638–643
Cross section, 632–633, 636, 637
Curbed, 227, 562–563, 566–569,

570–576, 625, 643
Definition, 625–627
Delineation, 632–637, 641
Divisional, 629–630, 633, 637

intersection with, 629
Examples with; see Intersections
Functions, 625–630
General, 625–630
Non-paved, 631–633
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Refuge, 630
Shoulders adjacent to, 226–227
Size and designation, 626–627,

630–638, 642
Types, 626–630

Landscape development
Collectors, 444
Erosion control; see Erosion

Control
General, 292–293
Interchanges, 869–870
Islands, 631–632
Local roads and streets, 407–408
Noise control, 350–351; see also

Noise

Land Use
Management (controls), 471,

486–488
Zoning, 394, 487

Lanes
Climbing; see Climbing Lanes
Different widths in combination,

477
Exclusive bus, 504–505
Exclusive HOV, 549
Left turn; see Auxiliary Lanes

on arterials, 450, 454–457
477–480, 495–498

on collectors, 428, 437
on freeways, 814–822
on local roads and streets,

387, 396–397, 415
Parking lanes; see Parking
Passing lanes; see Passing Lanes
Placement of vehicles within, 48
Reduction, 301–303, 815–818, 821,

822, 863–867
Right-turn; see Auxiliary Lanes
Turning; see Auxiliary Lanes
Two-way left-turn, 342, 397, 437,

478–482, 716–717
Widths, 315–316, 387–389, 397,

415, 428–429, 437, 452, 459, 
476–477, 508

Widths with curb and gutter, 326,
398

Lengths
Auxiliary lanes at intersections,

717–726
Curves

horizontal, 131–191
intersection, 198–206,

587–625, 638–653
vertical, 269–282

Design vehicles; see Design
Vehicles

Grades, 242–247
Median openings; see Median

Openings
Sight distance, 109–131, 654–681
Spirals, 177–184
Storage, 718–719
Superelevation runoff, 169–172,

182–183, 646
Superelevation runout; see

Lengths—Tangent Runout
Tangent Runout, 173, 183–187
Vehicles, see Vehicles
Weaving Sections; see Weaving

Sections

Levels of Service
Definition, 84
Design capacity; see Capacity
Selection of, 84–85, 384, 394, 424,

434, 448, 474–475, 508

Lighting
Arterials, 500
Benefits, 294, 500
Breakaway, 295
Design, 294–296
Freeways, 294
Guide, 294
General, 294–296, 303,

406–407, 443, 500, 733
Heights of luminaires, 295
Interchanges, 295
Intersections, 295, 733
Location of luminaire supports,
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295–296
Moveable bridges, 295
Minimum illumination levels, 294,

406
Objects, 299
Pedestrian, 97, 406
Railroad-highway grade crossing,

295
Signs, 299
Toll plazas, 295
Tunnels, 295
Uniformity, 407
Warrants, 406
Work zones, 303

Local roads and streets
General, 383–384
References, 420–421
Rural

alignment, 386
bicycle facilities, 393
bridges to remain in place,

389–390
clearances, 389, 391–392
cross slope, 387
curbs, 392
design speed, 384
design traffic volumes, 384
erosion control, 393
foreslopes, 391
intersection design, 392
grades, 386
horizontal clearance to

obstructions, 391–392
lane width, 387–389
number of lanes, 387
railroad-highway grade

crossings, 392
right-of-way width, 391
sight distance, 384–386
signs and markings, 393
shoulder width, 387–389
structures, 389–390
superelevation, 387
traffic control devices, 393
vertical clearance, 389
width of roadway, 387–389

Special purpose, 408–420
local service, 420
recreational, 408–418
resource recovery, 418–419

Urban, 393–408
alignment, 395
alleys, 400
bicycle facilities, 408
border area, 403–404
clearances, 403
cross slope, 396
curb return radius, 405
curbs, 398
cul-de-sacs, 398–400
definition, 393–394
design speed, 394–395
design traffic volume, 394
drainage, 398
driveways, 402
erosion control, 407
general, 393–394
grades, 395
horizontal clearance to

obstructions, 403
intersection design, 404–405
landscaping, 407–408
lane width, 397
lighting, 406–407
medians, 397
number of lanes, 396
parking lanes, 397
railroad-highway grade

crossings, 405–406
right-of-way width, 404
sidewalk curb ramps, 402
sidewalks, 400, 402
sight distance, 395
superelevation, 387
traffic control devices, 396
turnarounds, 398–400
utilities, 404
vertical clearance, 403
width of roadway, 397
widths for bridges, 403

Loops ; see Ramps



Index

891

Mailboxes, 354–355

Maintenance
Interchanges, 755
Side slopes, 330–333
Traffic, during construction,

301–303

Major forks; see Interchanges

Markings
Approach nose treatment (gore),

836–841
Auxiliary lanes, 575, 717–726
Bridge, 451
Centerline, 298–299
Collectors, 433, 443
Climbing lanes, 251, 453–454
Curbs, reflectorized, 323; see also

Curbs
Delineators, 299
Edge lines, 299, 322, 844
General, 298–299
Islands, 625–629, 633
Local roads and streets, 393, 407,

418
Median lanes, 438–439, 479
No passing, 123, 299
Object markers, 299
Parking lanes, 379, 482–483
Passing lanes, 254–257, 453–454
Pavement, 299, 490–492
Pedestrian, 367, 369
Railroad-highway grade crossings,

392–393, 405–406, 432–433,
472, 736

Recreational roads, 418
Resource recovery roads, 418
Shoulders, 322; see also

Markings—Edge Lines
Turnouts for slow vehicles, 258
Types, 299
Work zones, 301–303

Mass transit, see Public Transit

Medians
Arterials, divided, 454, 457,

460–461, 463–470
Barrier, 338–339, 460, 517, 525,

533–534
Collectors, 438–439
Contrast, 575, 720–732
Crashes, 460–481
Cross section, 463–470, 486, 515,

520, 522, 528–531, 533–534,
637

Curbs, 323–327, 439, 720–726
Definition, 341
Depressed, 341–342
Deterrent to wrong-way

movements, 683–686, 782
Drainage channels, 329
End, shape or treatment of, 338,

516, 632–637, 701, 704–706,
726–727

Flush, 342, 397, 437, 439,
478–482, 716–717, 726

For ultimate development of
divided arterial, 454–457

Freeways, 513–516, 517, 525
Frontage roads, 729–732
General, 341–343
Islands; see Islands
Lane; see Median Lanes
Local roads and streets, 397
On overpass, 770–771
Openings; see Median Openings
Raised, 342; see also Medians—

Curbs
Slopes; see Side Slopes
Summary, 341–343
Superelevated with, 188–190,

463–466
Transversable; see Medians—Flush
Types, 341–343, 463–466, 513–516
Variation in width of, 460–461,

478–482, 513–516
Width, 341–343, 438–439,

460–461, 463–470, 478–482,
513–516, 517, 702–708,
712–716
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at intersections, 460–461,
478–482

U-turns, design for, 712–716;
see also U-turns

Median barriers
Arterials, 479, 481–482
Curbs; see Curbs
Freeways, 517
General, 338–339
Types, 338–339

Median lanes
Left-turn; see Auxiliary Lanes
Special designs for left turns,

573–576, 709–716
Storage, 461, 470, 730–732; see

also Auxiliary Lanes
Two-way left-turn, 342, 397,

437, 478–482, 716–717
Width, 477, 716; see also

Auxiliary Lanes

Median openings
Above minimum designs for left

turns, 706–708
Bullet nose, 701, 704–706
Control radii, 438, 694–706
Design for cross traffic, 438,

460–461, 478–481, 693–706
Designs for left turns, 438,

460–461, 478–481, 693–708
Emergency crossovers, 514–515
General, 460–461, 478–482,

693–694
Intersections, 341
Length (and shape), 438, 693–708
Minimum length, 438, 701–706
On arterials, 460–461, 478–482
On collector roads and streets,

438–439
Semicircular, 701
Shape of median end, 701, 704–706
Skew, effect of, 704–706
Space between, U-turns,

714–716; see also U-Turns

With median lanes; see Median
Lanes

Multilane Highways; see also
Arterials, Divided Highways
Climbing lanes, 251–254, 453–454,

462–463
Cross slope, 459, 476
Intersections with, 470–471
Pavement width, 452, 456–457,

459, 478
Safety, 457–461, 478–482
Sight distance, 126
Undivided, 457–458

Noise, 348–352
Abatement criteria, 349–350
Barriers, 300
Design noise levels, 349–350
Design procedure to control,

348–351
From vehicles, 45–46
General considerations, 348–349
Human reactions, 348–349
Landscaping, effect on, 350–351
Location, effect on, 350–351
Physical measurement, decibels,

348–350
Reduction design, 350–352, 512,

518

Nose; see Approach Nose

Offset; see Clearances

One-way roadways; see Divided
Highways

One-way streets, 495–496

Operating speed, 66

Outer separations
Arterials, 468–469, 498
Definition, 346–348
Designs, 348
Drainage, 347
Freeways, 512, 529–530
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Frontage roads, 343–348, 467–469,
498, 516, 729–732

General, 346–348
Width, 346–348, 729–732, 824

Overpasses; see Grade Separation
Structures

Parking
Central business district, 379, 483
Curb, 377–379, 437–438, 482–483,

495
Design, 377–379, 437–438,

482–483, 495
Lanes, 377–379, 437–438,

482–483, 495
Lane width, 378–379

on arterials, 482–483
on collectors, 438
on local roads and streets,

396–397
On-street, 377–379, 437–438,

482–483, 495
Park-and-ride facilities, 374–378
Residential areas, 397, 437–438
Rest areas; see Rest Areas
Shoulders, 477

Passenger cars
Acceleration, 43–44, 670–680
Design vehicles; see Design

Vehicles
Traffic, composition of, 63–64
Turning path, 18–21, 597–599

Passing lanes
Definition, 254–255
Examples, 256
General, 254–257
Length, 256
Location, 255, 453
Need for, 255, 453
Number of lanes, 255
Operational benefits, 256
Shoulders, 256
Sight distance, 255

Tapers, 256–257
Transitions, 257
Traffic control devices, 257

Passing sections
Frequency, 125–126
Lanes; see Passing Lanes
No-passing zones, 123
Shoulder driving, 258–259
Shoulder use sections, 259
Sight distance, 118–126
Transitions, 256
Turnouts, 257–258, 322

Passing sight distance
Arterials, 449, 453–454
Collectors, 425–427, 435
Criteria for design, 118–122
Definition, 118
Design values, 122–125
Effect of grade, 125
Elements of, 119–122
Frequency and length, 125–126
Height of eye, 127
Height of object, 127
Local roads and streets, 384–385,

395, 410–412
Measuring, 128–131
Multilane highways, 126
On horizontal curves, 232–233
On recreational roads, 410–412
On vertical curves, 275–276
Relation to stopping sight distance,

386, 426–427, 449

Paths, 21–41; see also Turning or
Turning Roadways

Pavement; see also Traveled Way
Contrasts; see Contrasting Surfaces
Cross slope, 309–314; see also

Cross Slope
Edge design, 405, 587–625,

638–653
Edge lines, 299, 322, 844
General, 309–316
Lane widths; see Lanes



AASHTO—Geometric Design of Highways and Streets

894

Markings; see Markings
Railroad-highway grade crossings,

392–393, 405, 432–433, 472,
484, 735–743

Recreational roads, 415
Skid resistance, 314–315
Surface (types), 314–315, 412
Widening on curves, 206–220
Widths

divided intersections, 569–570
lane, 315–316, 387–389, 397,

415, 428–429, 437, 452,
459, 476–477, 508

ramps; see Ramps
turning roadways, 220–226,

587–625, 638–643,
842–844

Peak-hour factor (PHF), 83; see also
Capacity

Peak-hour traffic
Composition, 63–64
Design, 59–66
Directional distribution, 62–63
Future, 65–66
General, 59–62
Maximum, 59–61
Thirtieth highest, 60–62

Pedestrians; see also Pedestrian
Facilities and Sidewalks
Capacity (walkway), 98–99
Characteristics, 96–97, 99–100
Crosswalks, see Crosswalks
Definition, 96–97
Disabilities, persons with, 96,

99–100, 363, 365–371, 375,
402, 407, 435, 440, 554, 732

General, 96–97
Safety, 96–97, 471
Walking speeds, 97

Pedestrian facilities; see also
Pedestrians
Arterials, 471–472, 488–490
At-grade crossings, 559–560, 615,

618–627, 630, 632–633,
638–641, 690–692

Crossing distance, effect of radii
on, 615, 618, 623–625

Crosswalks; see Crosswalks
Depressed freeways; see Freeways
Disabled, 96, 99–100, 363,

365–371, 375, 402, 407, 435,
440, 554, 732

Grade separations; see Grade
Separation Structures

Interchanges, 868–869
Pedestrian overpasses, 96, 363–365
Pedestrian underpasses, 96
Protective screens, 364–365
Ramps, 365–371, 554; see also

Sidewalk Curb Ramps
Separations; see Grade Separation

Structures
Sidewalks; see Sidewalks
Signals, 488–490
Signs, 367
Spacing of separated crossings on

freeways, 363–364
Stairs (stairways), 364, 554
Warrants, 362, 363–365
Width, 364–371

Perception-reaction Time , 50–53,
110–111

Persons with disabilities, 96, 99–
100, 363, 365–371, 375, 402, 407,
435, 440, 554, 732

Planning
Comprehensive, 74, 433, 759,

762–763
Freeway, 507–508
Functional classification; see

Classification, Functional
Land use, 5, 7, 65, 91, 353, 383,

423, 471, 486–488
Transportation improvements, 474,

500–501
Ultimate development of four-lane

divided arterials, 454–456
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Pollution Control, 45–46, 348–352;
see also Noise
Vehicular emissions, 43–46, 74

Public transit
Buses, 15–20, 23–28, 372–378,

472, 501–506, 547–554
Bus lanes, 504–505, 547–549
Bus stops, 472, 501–504, 547–554
High-occupancy vehicle (HOV)

facilities, 547–554
Joint use of right-of-way, 548,

554–558
On arterials, 372–374, 472,

501–506
On freeways, 372, 547–557
Rail, 547–548, 554–558
Rapid transit, 554–557
Stairs, ramps, and escalators, 549
Station location and spacing, 554,

557
Turnouts, bus, 372–374, 472, 504,

547–554

Profile; see Alignment—Vertical

Radii
Curb return, 405, 615–625
Intersection, 198–211, 405,

587–625, 638–643
Islands, ends of, 701; see also

Islands
Minimum, 142–168, 192–206
Minimum radius curves without

superelevation, 166–167
Minimum turning, 18–43, 694–700
Minimum turning for left turns,

694–700
Tables, 145, 156–165, 179, 197,

201

Railroad-highway Grade Crossings
Alignment and profile, 735–736
Arterials, 472, 484
Collectors, 432–433, 443
Design, 392, 405–406, 432–433,

443, 735–743

Lighting, 294
Local roads and streets, 392,

405–406
Protective devices, 472, 484,

736–737
Sight distance, 392, 405–406,

432–433, 443, 736–743
Surface types, 743
Traffic control, 392, 405–406,

432–433, 443, 472, 484,
736–737

Widths, 392, 405–406, 433, 443

Rail transit, see Public Transit

Ramps
Alignment, 827–836
Approach nose, 836–841
Button-hooked, 826
Capacity, 82–83
Clearances, 842, 844

At structures, 764, 844
Horizontal; see Clearances

Components, 827
Compound curves, 830–831
Connection to frontage roads,

782–784, 826, 831–832
Contrasting surface, 844
Crossover crown line, 836
Cross section, 842–844
Cross slope, 834–836
Curbs, 839, 844
Curvature, 830–832, 833
Definition, 827–828
Design speed, 67–72, 792–793,

827, 829–830, 833, 834, 839,
842

Diagonal, 827–828
Direct connection, 798–802,

828–829, 834
Distance between successive ramp

terminals, 847
Emergency escape, 259–269
Entrances and exits, 82–83,

343–346, 525–526, 815–821,
824–827, 836–841, 844–867,

Examples, 828
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Gores, 526, 836–841
Grades, 832–833
Lane reductions; see Lanes
Left, 845
Lengths, 832–833
Loop, 792–797, 798, 800, 803–808,

827–832
Metering; see Ramp Metering
Number; see Interchanges—

Configurations
Outer connection, 828
Partial cloverleaf, 792, 794–797
Pedestrians; see Pedestrian

Facilities
Profile, 832–833, 845–846
Radii; see Radii
Right turns, 829
Semidirect, 798–802, 828–829, 834
Shapes, 827–833
Shoulders, 836, 838–389, 842–844
Sidewalk curb, 365–371, 402, 440,

489
Sight distance, 827, 832
Slip, 344–346, 542, 548, 832
Speed-change lanes, 654, 848–864
Spiral curves; see Transitions
Superelevation, 834–836
Terminal design, 82–83, 798, 829,

836–841, 844–867; see also
Terminals

Traffic control, 683–686, 829, 834
Tapers, 849–855
Traveled way widths, 842–844
Types, 827–828
Vertical curves, 833
Weaving; see Weaving Sections
Wheelchair, 365–371, 402, 440,

489
Widths, 220–228, 842–844
Wrong-way entry, 683–686

Ramp metering, 869

Rapid transit; see Public Transit

Recovery area; see Clear Zones

Recreational roads , 408–418

Recreational vehicles, 15–20, 38–41,
43, 410
Climbing lanes for, 239, 247–249
Effects on volume, 247–249, 252–

254
On grades, 239–247

Resource recovery roads , 418–419

Rest areas, 57, 293–294, 472–473
Definition, 293
Information centers, 293–294
Scenic overlooks, 293–294

Retaining walls, 468
Effect on traffic operations, 315
Lateral clearances; see Clearances
Need for, 331, 465, 468, 518, 530
On depressed freeways, 350–351,

511, 518–522
Sight distance, 232, 519

Reverse-flow roadways, 496–498
Advantages, 496–498
Cross section, 541
Examples, 542–544
Terminals, 542–543

Right-of-way
Arterials, 453, 466–469, 486
Collectors, 432, 441
Drainage, 286, 291–292
Freeways, 512, 519–522, 526–530,

532–534
Interchanges, 753
Local roads and streets, 391,

404
Two-lane highways, 452
Utilities, accommodating, 296–298,

490
Width, 391, 404, 432, 441, 453,

486
With frontage roads, 468–469, 486,

516, 528–529, 532–533
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Roadside
Access control; see Control of

Access and Access
Management

Borders and sidewalks; see
Borders, Sidewalks

Clear zones; see Clear Zones
Driveways, 89–95, 352–353, 402,

440, 486–488, 733–735
Erosion control, 292–293, 331–333,

393, 407, 444, 451, 500
Fencing, 301
Mailboxes, 354–355
Recovery areas; see Clear Zones
Seeding and planting; see Erosion

Control
Sideslopes, 330–333
Sight distance; see Sight Distance

Roadway, definition, 309

Roadway width, 315–316, 387–389,
397, 415, 428–429, 437; see also
Lanes

Road user benefit analyses; see
Economic Evaluation

Roundabouts; see Intersections

Rounding
Island corners, 632–637
Shoulders, 317, 320
Side slopes, 317, 320, 330–333

Route continuity, 811–812

Runoff; see Superelevation

Runout, superelevation; see Tangent
Runout

Safety
Arterials, 452, 458, 459, 460–461,

471, 472–473, 477, 478, 481,
482, 483, 487, 488, 489, 491,
492, 494, 497, 504

Alignment, 103–106, 142–143,

168, 175, 178–181, 183, 187,
192–193, 198, 269–270, 277,
284, 395, 425, 435, 573

Auxiliary lanes, 494, 562, 686, 717
Bicycles, 100–101, 472, 482
Borders, 403, 441–442, 483, 512,

532
Bus stops, 504
Causal factors for crashes, multiple,

101
Climbing lanes, 247, 249–252
Clear zones, 104, 417
Collectors, 423–424, 425, 428–429,

432, 434, 435, 441–442, 443
Consistency/uniformity of design,

101
Control of access, 81, 88–95, 102,

352, 402, 434, 458, 471, 487,
753

Curbs, 291, 323–324, 327, 398, 509
Curves, horizontal, 103, 142–143,

168, 175, 178–181, 183, 192–
193, 198, 284, 513

Curves, vertical, 187, 269–270,
277, 284, 513

Decisions, frequency of, 101, 103
Divided highways, 103
Driver errors, 53–56, 103, 115
Driver expectancy, 53, 101
Driveways, 81, 102, 352–353, 402,

733
Day versus night, 294
Emergency escape ramps, 259–269
Freeways, 507, 509, 512, 513, 514,

519, 532, 554
Frontage roads, 343–345
General, 101–106
Grade, 103, 242–247
Grade separations, 747, 749–750,

755, 575, 765, 773
Guardrail, 104
Interchanges, 747, 749, 753, 781,

809, 811, 813, 847, 853, 870
Intersections, 102–105, 192–193,

198, 460–461, 470, 488, 491,
492, 494, 559–560, 562, 578–
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581, 584, 686, 717, 733, 781
Lane width, 315, 452, 459
Left-turn prohibition, 492
Lighting, 105, 294–296, 443, 733
Local roads and streets, 383, 391,

394, 395, 398, 402, 403, 417
Low-volume roads, 316, 383–384,

424
Mailboxes, 354–355
Maneuvers, traffic, 55
Median barrier, 103, 338–339, 514,

519
Median openings, 460–461
Medians, 103, 342–343, 460–461,

470, 478-482, 513, 532
Older drivers, 47
One–way roadways at intersections,

470
Parking, 378
Pavement skid resistrance, 314–315
Pedestrians, 97–100, 363–366, 472,

489, 492, 504
Rail transit, 554
Ramps, 837, 847, 853
Range/variance of speeds, 102
Relation to geometric design, 103
Relation to operations, 76
Responsibility, 101
Rest areas, 293–294, 472–473
Reverse-flow operation, 497
Roadside design, 104, 299,

328–333, 391, 417, 428–429,
442, 514, 519, 870

Roadside development, 81
Roadside maintenance, 519
Roundabouts, 578–581
Rumble strips, 104
Shoulders, 103, 318–319, 452, 477
Sight distance, 105, 109, 232
Slope breaks, 334
Speed, 56, 67–71, 101–104, 512
Speed-change lanes, 853
Traffic barriers, 103, 104, 337–340,

514, 519
Traffic control devices, 105,

298–300, 491

Trucks, 241–243, 261–262
Turning roadways, 192–193, 198,

562
Two-way left-turn lanes, 342
Tunnels, 359
Undivided highways, 458
Work zones, 301–303

Scenic overlooks; see Rest Areas

Service volumes, 75, 84–88

Shoulders
Adjacent to

climbing lanes; 251–252, 453
islands, 632–637
passing lanes, 256

Arterials, 452, 459–460, 477
Continuous, 318–319
Contrasting surfaces, 322
Cross section, 316–321, 477
Cross slope, design values,

319–320
Cross slope, maximum slope break;

see Cross Slope
Curb, 323–327
Curb, along outer edge, 318–321
Definition, 316
Divided highways, 459–460
Driving, 258–259
Freeways, 508–509
General characteristics, 316–318
Graded width, 316–318
Intermittent, 318–319
Left shoulder, divided highways,

459–460, 508–509
On structure, 319, 451, 459
Paved, 258–259, 316–322, 452–453
Ramps; see Ramps
Safety, 102–104
Sidewalks; see Sidewalks
Six-lane highway, 459–460
Stability, 321–323
Superelevation; see Cross Slope
Turning roadways, 226–227
Turnouts; see Turnouts
Useable width, 316–317, 452
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Use sections, 259
Vertical clearance; see Clearances
Width, 226–228, 251, 258,

318–319, 387–389, 415, 429
With guardrail, 319, 429

Sideslopes
Channels, drainage, 327–329
Collectors, 428–429
Earth slopes, 330–333
Erosion prevention; see Erosion

Control
Freeways, 516
General, 327, 330–333, 453
Local roads and streets, 391, 417
Regions, 330–331
Right-of-way, 453
Roadside recovery area, 331, 391,

417, 428–429, 516
Rock slopes, 333
Rounding, 317, 320, 330–333
Safety, 328–333
Sight distance; see Sight Distance
Treatment to avoid snowdrifting,

328, 332, 334

Sidewalks
Along roadways,

Rural, 361–362
Urban, 361–362, 400–402, 440,

483–484, 488
Location, 400–402, 440, 444,

483–484, 488–490
Overpasses, 431
Pedestrian, 99, 105, 365–371; see

also Pedestrians or Pedestrian
Facilities

Underpasses, 765–767
Warrants, 361–363
Widths, 364, 402, 440

Sidewalk curb ramps, 365–371, 402,
440, 489

Sight distance
Arterials, 449, 453, 475
Collectors, 425–426, 435–436

Criteria for measuring, 127–131
Decision, 115–117
Definition, 109–110, 115, 118
Design for, 109–131, 654–683
Design speed, in relation to,

109–131, 453, 654–681
General, 109
Headlight, 276–280
Height of eye, 127
Height of object, 127–128
Horizontal curves, 128–131,

228–233, 682–683
Interchanges; see Interchanges
Intersections, 583–586, 654–683;

see also Intersections
Left turn from major road, at

intersections, 678–680
Local roads and streets, 384–386,

395, 410–411
Measuring and recording, 127–131,

228–231
Multilane highways, 126
No control, intersections with,

658–660`
Passing; see Passing Sight

Distance
Railroad-highway grade crossings,

735–743
Recreational roads, 410–411
Signal control, intersections with,

675, 678
Skew, 681
Stop control, intersections with,

660–670, 678
Stopping; see Stopping Sight

Distance
Turning roadways, 228–233,

682–683
Underpasses, 280–282, 759
Vertical curves, 128–131, 269–282,

682
Yield control, intersections with,

670–677

Sight triangles, 655–658



AASHTO—Geometric Design of Highways and Streets

900

Signal control
Arterials, 490–492
Capacity with, 72–80, 86, 490–492
Effect on intersection design,

81–82, 299–300, 442, 470,
489–492, 560, 575, 653–654,
675, 678, 782

Installation guidelines for,
299–300, 490–492

Lane arrangement, 299–300
Lane-use control signals, 497
Location, 299–300
Pedestrians, 99–100, 490–492
Plan development, 299–300
Principles, 105, 299–300
Ramp terminals, 846
Warrants, 300, 443

Signs , 298–299
Arterials, 451
Bridges, 389
Climbing lanes, 251
Collectors, 433, 443
Construction, 301–303
Detours, 302
Escape ramps, 266
General, 298–299
Intersections, 578, 654–681
Islands, 633, 638
Local roads and streets, 393, 407,

418
Location, 298–299
Passing lanes, 257
Railroad-highway grade crossings,

392, 405, 432, 443, 472
Ramps, 837, 846
Recreational roads, 419
Reference, 298–299
Resource recovery roads, 419
Relationship to design, 298–299
Reverse-flow facilities, 496–498
Shoulder use sections, 259
Types, 299

Single-point urban interchange; see
Interchanges

Six-lane highways, 460, 467, 517

Skid-resistance; see Pavements

Slope , terms, 330

Stopping curbs ; see Curbs

Speed
Curve speed, 134–135
Design, 67–72; see also Design

Speed
Effect on drivers, 56–57
Function, 3
General, 66
Operating, 66
Pedestrian, walking, 97
Relation of traffic volume to

average running, 67
Running, 67
Safety, 243
Spot, 67
Trucks, on grades, 236–239,

243–247

Speed-change lanes
Acceleration lanes, 525, 692–693,

848–853, 856–863
Bus turnouts, 372
Deceleration lanes, 525, 692–693,

848–849, 853–860, 863–864
Definition, 692–693, 848
General, 560, 692–693, 848
Intersections, 692–693
Length, 525, 848–856, 860–864
Ramps; see Ramps
Taper, 692–693, 848–864
Warrants, 692–693
Width, 848–864

Spirals; see Transitions

Spline
For ramps, 834
For runoff, 188
For vertical curves, 653
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Stage construction, 514, 521
Grade separation structures, 755,

756–762
Interchanges, 751–752
Ultimate development of four-lane

divided arterials, 454–457

Stop control
Intersections, 660–670
Ramp terminals; see Ramps

Stopping sight distance
Arterials, 449, 457–458, 461–462
Barriers, noise, 300
Brake-reaction time, 110–111
Braking distance, 111–113
Collectors, 425–426
Deceleration rate, 113
Design values, 112
Effect of grade, 113–115
General, 109–110
Height of eye, 127
Height of object, 127–128
Intersections, 654–655, 682–683;

see also Intersections—Sight
Distance

Local roads and streets, 384–386,
395, 410–411

Multilane highways, 126, 457–458
Measuring and recording, 127–131
On horizontal curves, 228–232
On vertical curves

Crest, 270–275, 682
Sag, 276–280, 682

Perception reaction time, 110–111,
682

Recreational roads, 410–411
Trucks, 114
Wet pavement, 113

Structures; see Grade Separation
Structures

Superelevation
Accelerometer, 134–135
Arterials, 450, 463–466, 475
Axis of rotation with medians,

188–190
Ball-bank indicator, 134–135
Collectors, 428, 435
Design rates, 147–166, 176, 182,

192–198, 643–653
Development of finalized

e distribution, 146–155
Distribution of e and f, 138–140,

192–198
Effect of grades, 167–168
Freeways, 509
General considerations, 132–140
Intersection curves, 198–206,

584–585, 643–653
maximum rate, 643–653
runoff, 646–647

Limiting rates, 141–142, 147–166,
176, 182, 192–198, 643–653
Local roads and streets, 387, 396

413–415
Low-speed design, 192–198
Maximum rates, 141–142,

147–166, 176, 182, 192–198,
643–653

Outer cross sections, 310–311,
334–335

Ramps; see Ramps
Rates for design, 147–166,

192–198, 643–653
Recreational roads, 413–415
Runoff, 169–172, 173–176, 182,

195, 646–652
definition, 168
design, smooth profiles,

187–188
design with medians, 189–190
length, 169–172, 182,

195–198, 646–653
location with respect to end of

curve, 173–176
low speed urban streets,

192–198
methods of attainment,

184–187, 647–651
multilane highways, 188–190
with medians, 189–190
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Runout, tangent, 173
Sharpest curve without, 166–167
Side friction factor, 133–137
Tables, 156–165
Theoretical considerations,

131–132
Typical cross sections, 311
Turning roadway terminals,

646–653
Urban streets, low speed, 192–198

Surface; see Pavement

Systems ; see Classification

Tangent runout, 173, 183–187

Tapers
Auxiliary lanes, 719–726, 818–821,

848–864
Beyond offset nose, 702–703,

726–727, 836–839
Climbing lanes, 250–251
Construction zones, 301–303
Intersections, 719–726
Median lanes, 719–726
Passing lane, 256–257
Speed-change lanes, 692–693,

848–864
Turnouts, 258

Terminals
Alignment and curvature, 191–192,

198–206, 845–846, 856–860
Capacity, 82–83; see also Capacity
Definition, 844
Distance between, 847
Distance from structure, 846
Elevated freeways, 525–526
Entrance, 82–83, 837–839, 841,

845, 849–853, 856–863
Exit, 82–83, 643–645, 836–841,

844–845, 853–860, 863–864
Gore areas, 836–841
Multilane free-flow, 860–864
Shoulders, 842–844
Sight distance, 832, 845

Single-lane free-flow, 849–860
Superelevation, 646–653, 834–836

Terrain, 235, 242–247

Topography
Effect on

alignment, 233–235, 282–290,
425, 435, 447, 461–462,
469–470, 513

climbing lanes, 242–254, 453
design speed, 448
grade separation structures,

747, 752, 762–764,
771–773

interchange design, 747,
749–753, 781

location, 235, 469–470, 486
passing lanes, 254–257,

453–454
widely separated roadways,

469–470
warrants for grade separation,
749–750

Traffic
Average daily (ADT), 58–66,

384, 394, 424, 448
Characteristics, 58–74
Composition, 63–64
Control devices, 49; see also

Traffic Control Devices
Current, 58
Design hourly volume (DHV),

61–62, 75–76, 448, 474
Design traffic conditions, 225–226
Design year, 61–62, 424–425,

433–434, 448, 474
Directional distribution, 59–63,

496–498
Flow, 72–81
General considerations, 2, 58
Generated, 2–3
Highest hourly volume (HV),

59–63
Lane assignment, 497
Maintenance during construction,
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301–303, 455–456
Maximum annual hourly, 60
Passenger car, 64
Passenger-car equivalency, 84
Peak-hour, 59–62
Projection, 65–66
Seasonal fluctuation, 61
Speed, 66–74
Thirtieth highest hourly volume

(30 HV), 59–62
Truck, 63–64; see also Trucks
Volume, 58–66, 384, 394, 424,

434, 448, 474, 508, 751

Traffic barriers
Bridge railings, 339–340, 757,

768–770
Curbs, 323–327, 333–334
Crash cushions, 335–336, 340, 837
General, 103–104, 335–336, 486
Longitudinal, 337–339
Median, 338–339
Roadside, 318–319, 337,

417, 428

Traffic control devices
Arterials, 71, 490–498
Collectors, 433, 443–444
General, 298–300
Intersections, 73–74, 653–654,

690–691
Markings; see Markings
Reverse-flow roadways, 541–544
Railroad-highway grade crossings;

see Railroad-highway Grade
Crossings

Sight distance at intersections,
relationship to, 658–680

Signals; see Signal Control
Signs; see Signs

Traffic regulation, 490–494

Transit; see Public Transit

Transitions
Advantages, 2–3, 176

Adjustment factors
Compound curves, 184, 203,

205–206
Definition, 168–169
General, 168–169
Intersection, 198–206
Minimum grades, 190–191
Runoff, superelevation; see

Superelevation
Runout, tangent, 173, 183–187
Spiral curves, 176–183, 203–205,

233–234
Traveled way widening, 212–220
Turning roadways, 191–192,

203–206
Types, 168–169
Two-lane and four-lane sections,

257

Traveled way, 309–316, 343–346
Definition, 309
Edge design, 187–188, 587–625
Ramp width, 842–843
Traffic conditions, 220–226
Turning roadways, 220–226
Widening on curves, 206–220
Width; see Width

Trucks; see also Design Vehicles
Acceleration

on grades, 235–238
Climbing lanes, 247–254, 453–454,

462–463
Combination, 15–20, 29–37
Control grades, 239–242
Critical length of grade, 242–247
Deceleration on grades, 235–238
Definition for operational analysis,

64
Height of eye, 127
Minimum turning radius, 18–20,

31–37
Off-tracking, 29, 206–227
Operating characteristics on grades,

235–247
Single unit, 15–20, 22
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Stopping sight distance, 114
Weight/power ratio, 236–239

Tunnels
Alignment, 357
Clearances, 357–359
Costs, 356
Cross section, 357–359
Design considerations, 355–357
Examples, 359–361
General, 355–356
Grades, 357
Lighting, 357
Sidewalks, 357–359
Types, 385
Ventilation, 357

Turning; see also Design Vehicles
Definition, 15–18
Design vehicles, 597–625
Indirect left turns, 709–713
Lanes; see Auxiliary Lanes
Movements, 492–494;

see also Intersections
Operation on curves, 206–220
Radius, minimum, 18–43,

587–596
Simultaneous left turns, 727,

729
Speed, 18
Track width, 206–220

Turning roadways
Approach nose, 646–651
Curvature, 198–206, 830–832
Design, 191–192
Edge design, 587–625
Effect of curb radii, 615–625
Free-flow, 643
General, 587
Islands, 638–643
Pavement edge design,

587–625
Radii, 587–596
Right-angle turns, 596–625
Shoulders, 226–228

Stopping sight distance,
682

Superelevation, 643–653
Terminal design, 646–651
Widths, 220–228

Turnouts
Bus, 372–374, 472, 504, 549–554;

see also Buses
On two-lane roads, 257–258, 322

Two-lane highways
Arterials, 447–454
Climbing lanes, 242–251
Collectors, 424–433
Passing lanes, 125–126, 254–257,

453–454
Passing sight distance, 24 (table)

118–126,
Shoulder driving, 258–259
Shoulder use sections, 259
Turnouts, 257–258, 322

Ultimate development; see Stage
Construction

Underpasses; see Grade Separation
Structures

Undivided multilane highways,
457–458

Utilities
Adjacent to clear zones, 452
General, 296–297, 404,  441–442,

490
Location, 296–298
Rural, 298
Urban, 297–298

U-turns
Designs for, 709–716
Median openings, 713–716
Spacing, 714
Special designs, 711–714, 716
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Vehicles; see Design Vehicles,
Recreational Vehicles, Trucks, and
Turning

Vertical alignment, see Alignment—
Vertical

Vertical curbs ; see Curbs

Vertical curves; see Curves—
Vertical

Viaducts; see Freeways—Elevated,
and Freeways—Viaduct

Walkways; see Sidewalks

Warrants
Climbing lanes, 248–254
Grade separations, 749–750
Interchanges, 749–750
Passing lanes, 254–257, 453
Pedestrian grade separations,

363–365
Shoulders, 316–319
Sidewalks, 361–363

Weaving sections
Capacity, 85–87, 823
Cloverleafs, 792–793, 823
Definition, 82, 823
Design volumes, 85–86
Examples, 87
General, 823
Length, 847–848
Multiple, 87
Simple, 86–87
Types, 86–87

Widening
Design values, 214–218
To introduce divisional islands,

629–630
Traveled way, on curves, 206–220

Width
Arterials, 452, 459, 466–469,

476–478, 485

Borders, 403–404, 442, 483–484
Bridges and drainage structures; see

Bridges
Climbing lanes, 247–254; see also

Climbing Lanes
Collectors, 428–429, 437, 440
Extra allowance for operation on

curves, 206–220
Gutter, 325–326
Lanes, 315–316; see also Lanes
Local roads and streets, 387–389,

397, 403, 415
Medians, 341, 456, 460–461,

478–479, 513–517, 525
Median lanes, 720–726; see also

Median Lanes
Pavement; see Pavement
Ramps, 842–844
Right-of-way, 391, 404, 432, 441,

453, 466–469, 486; see also
Right-of-way

Shoulders, 226–228, 251, 258–259,
318–319, 387–389, 415, 429; see

also Shoulders
Sidewalks; see Sidewalks
Track, 206–220
Traveled way, 315–316, 387–389,

397, 415, 428–429, 437, 452,
459, 476–477, 508, 842–844

Turning roadways; see Turning
Roadways

Work zones, 301–303

Wrong-way entry
Design to discourage, 683–686,

782, 825–827

Zoning; see Land Use
Access control, 486–488
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